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Abstract— Audio signals are often contaminated by background 

environment noise and buzzing or humming noise from audio 

equipments. Audio denoising aims at attenuating the noise while 

retaining the underlying signals. Removing noise from audio 

signals requires a nondiagonal processing of time-frequency 

coefficients to avoid producing “musical noise.” A block 

thresholding estimation procedure is introduced, which adjusts all 

parameters adaptively to signal property by minimizing a Stein 

estimation of the risk. Non Diagonal time-frequency audio 

denoising algorithm attenuates the noise by processing each 

spectrogram coefficient independently. This Estimator is to 

minimize the error between clean signal and the enhanced signal. 

Numerical experiments demonstrate the performance and 

robustness of this procedure through objective and subjective 

evaluations. 

 
Index Terms—Audio Denoising, Block Thresholding, Audio 

signal processing, STFT Transform, Spectrogram, Time-

Frequency Audio Denoising, Adaptive Block Thresholding 

I. INTRODUCTION 

Non Diagonal time-frequency audio denoising algorithms 

attenuate the noise by processing each window Fourier or 

wavelet coefficient independently, with thresholding 

operators. These algorithms create isolated time-frequency 

structures that are perceived as a “musical noise” is strongly 

attenuated with nondiagonal time-frequency estimators that 

regularize the estimation by recursively aggregating time-

frequency coefficients. This approach has further been 

improved by optimizing the SNR estimation with 

parameterized filters that rely on stochastic audio models. 

However, these parameters should be adjusted to the nature of 

the audio signal, which often varies and is unknown. In 

practice, they are empirically fixed. This paper introduces a 

new nondiagonal audio denoising algorithm through adaptive 

time-frequency block thresholding. Block thresholding has 

been introduced by Cai and Silverman in mathematical 

statistics to improve the asymptotic decay of diagonal 

thresholding estimators. For audio time-frequency denoising, 

block thresholding regularizes the estimate and is thus 

effective in musical noise reduction. Block parameters are 

automatically adjusted by minimizing a Stein estimator of the 

risk, which is calculated analytically from the noisy signal 

values. 
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Numerical experiments show that this new adaptive 

estimator is robust to signal type variations and improves the 

SNR and the perceived quality with respect to state of the art 

audio denoising algorithms. 

Applications such as music and speech restoration are 

numerous. 

The paper first reviews the proposed approach of time-

frequency audio denoising algorithms by emphasizing the 

difference between diagonal and nondiagonal methods. 

Section III introduces proposed approach and Section IV 

computes a Stein unbiased estimate of the resulting risk to 

adjust automatically the block parameters. Numerical Results 

and comparisons are presented in Section V, with objective 

and subjective measures. 

II. STATE OF THE PROBLEM 

A.  Diagonal Estimation 

Simple time-frequency denoising algorithms compute each 

attenuation factor only from the corresponding noisy 

coefficient and are thus called diagonal estimators. These 

algorithms have a limited performance and produce a musical 

noise. In Diagonal Estimation the Posterior SNR is 

considered. Posterior SNR is the SNR of the Audio Noisy 

Signal. 

Diagonal estimators of the SNR  ( , )l k  are computed from 

the a posteriori SNR defined by                 
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One can verify that  [̂ , ] [ , ] 1l k l k     is an unbiased 

estimator.                 

The empirical Wiener estimator is defined as 
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Variants of this empirical Wiener are obtained by 

minimizing a sum of signal distortion and residual noise 

energy. 

The empirical Wiener attenuation rule is given as 
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Where  
1 2, 0    and 1    is an over-subtraction factor to 

compensate variation of noise 

amplitude. 
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The attenuation factor [ , ]a l k  of these diagonal estimators 

only depends upon [ , ]Y l k   with no time-frequency 

regularization. The resulting attenuated coefficients [ , ]a l k  

[ , ]Y l k  thus lack of time-frequency regularity. It produces 

isolated time-frequency coefficients which restore isolated 

time-frequency structures that are perceived as a musical 

noise. A soft thresholding produces a similar phenomenon 

because each coefficient is also thresholded independently 

from its neighbors. To remove this musical noise, uses a block 

thresholding estimator that takes into account the fact that 

large spectrogram coefficients of most audio sounds are 

aggregated together in the time-frequency plane.  

Nondiagonal time-frequency estimators are more effective 

than diagonal estimators to remove noise from audio signals 

because they introduce less musical noise. 

III. PROPOSED APPROACH 

Methodology of Solution 

A. Audio denoising 

Time-frequency audio-denoising procedures compute a 

short-time Fourier transform or a wavelet transform or a 

wavelet packet transform of the noisy signal, and processes 

the resulting coefficients to attenuate the noise. These 

representations reveal the time-frequency signal structures 

that can be discriminated from the noise. We concentrate on 

the coefficient processing as opposed to the choice of 

representations. Numerical experiments are performed with 

short-time Fourier transforms that are most commonly used in 

audio processing.  

The audio signal f is contaminated by a noise that is often 

modeled as a zero-mean Gaussian process independent of f: 

 

[ ] [ ] €[ ]y n f n n  ,   n=0, 1… N -1 

A time-frequency transform decomposes the audio signal 

over time-frequency localization indices. The resulting 

coefficientsshallbewrittenas         
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Where, * denotes the conjugate and l & k are time and 

frequency localization indices. 

     A denoising algorithm modifies time-frequency 

coefficients by multiplying each of them by an attenuation 

factor to attenuate the noise component. Time-frequency 

denoising algorithms differ through the calculation of the 

attenuation factors a [l, k].The noise coefficient variance is 

supposed to be known or estimated. 

 

                            σ
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If the noise is stationary, which is often the case, and then 

the noise variance does not depend upon time: 
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Figure.1. Block Diagram of Denoising Musical Audio 

noise signal 

 

B. Non diagonal Estimation 

To reduce musical noise as well as the estimation risk, 

several authors have proposed to estimate a priori SNR ξ [l, k] 

with a time-frequency regularization of the posteriori SNR     

γ [l, k]. Resulting attenuation factors a [l, k] thus depend upon 

the data values Y [l', k’] for (l’, k’)   in a whole neighborhood 

of and the resulting estimator is said to be nondiagonal and 

given by,   

,,

ˆ[ ] (1/ ) [ , ] [ , ] [ ]l kl k
f n A a l k Y l k g n   

 Ephraim and Malah have introduced a decision-directed 

SNR estimator obtained with a first order recursive time 

filtering: 

ˆ ˆ[ , ] [ 1, ] (1 )( [ , ] 1)l k l k l k         

where α € [0, 1] a recursive is filter parameter and is an 

empirical SNR estimate of based on the previously computed 

estimate. 

In nondiagonal Estimation we consider priori SNR. Pre 

SNR is the SNR of Audio signal. Nondiagonal estimators 

clearly outperform diagonal estimators but depend upon 

regularization filtering parameters. 

Large regularization filters reduce the noise energy but 

introduce more signal distortion. It is desirable that filter 

parameters are adjusted depending upon the nature of audio 

signals. In practice, however, they are selected empirically. 

A time-frequency block thresholding estimator regularizes 

estimation by calculating a single attenuation factor over 

time-frequency blocks. The adaptive block thresholding 

chooses the sizes by minimizing an estimate of the risk. Best 

block sizes are computed by minimizing this estimated risk. 
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Cohen improved the decision-directed SNR estimator by 

combining a causal recursive temporal filter with a noncausal 

compactly supported time-frequency filter to get a first SNR 

estimation. He then refines this estimation in a Bayesian 

formulation by computing a new SNR estimation using the 

MMSE-SP attenuation from the first SNR estimate. This 

noncausal a priori SNR estimator has been combined with 

attenuation rules derived from Gaussian. Matz and Hlawatsch 

have also proposed to estimate the SNR with a rectangular 

time-frequency filter and to use it together with the empirical 

Wiener estimator.  

  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a), (b), (c), (d): Block Thresholding of denoised 

5dB Mozart, Piano, TIMIT and Speech signal 
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(h) 

Figure 3. (e), (f), (g), (h): Block Thresholding of denoised 

10dB Mozart,        -5dBPiano, 20.63dBTIMIT and 

8dBSpeech signal 
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Figure.4. Block diagram of BT Estimator 

IV. BLOCK THRESHOLDING ALGORITHM 

Block thresholding was introduced in statistics by Cai and 

Silverman to obtain nearly minimax signal estimators. For 

audio signal denoising, we describe an adaptive block 

thresholding nondiagonal estimator that automatically adjusts 

all parameters.  

A. Block Thresholding  Estimator Algorithm 

A time-frequency block thresholding estimator regularizes 

estimation by calculating a single attenuation factor over 

time-frequency blocks. The signal estimator f̂  is calculated 

from the noisy data y with a constant attenuation factor a i over 

each block Bi 

,

1 ( , )

ˆ[ ] [ , ] [ ]
i
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i l k

i l k B

f n a Y l k g n
 

   

 To understand how to compute each a i, one relates the 

Stein estimation risk, r =E {||ƒ- f̂ ||
2
} to the frame energy 

conversion and given by, 
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       Since Y[l,k] = F[l,k] + ε[l,k]  one can verify that the upper 

bound is minimized by choosing  

a i  = 1 -  1/(ξ i + 1 ) 

where  

 

is the average a priori SNR in Bi.  It is calculated from 

 
which are the average signal energy and noise energy in Bi 

and Where          = no. of coefficients within a block Bi 

 

Cai and Silverman introduced block thresholding 

estimators that estimate the SNR over each Bi  by averaging 

the noisy signal energy  

 

 

 

Where 

 

 

 

 

The resulting attenuation factor ai 

 

 

 

 

A block thresholding estimator can thus be interpreted as 

a nondiagonal estimator derived from averaged SNR 

estimations over blocks. Each attenuation factor is calculated 

from all coefficients in each block, which regularizes the 

time-frequency coefficient estimation. 

B. Stein  Risk and Choice of λ 

An upper bound of the risk of the block thresholding 

estimator is computed by analyzing separately the bias and 

variance terms. Observe that the upper bound of the oracle 

risk with blocks is always larger than that of the oracle risk  

without blocks, because the former is obtained through the 

same minimization but with less parameters as attenuation 

factors remain constant over each block 

A time-frequency block thresholding estimator regularizes 

estimation by calculating a single attenuation factor over 

time-frequency blocks. The signal estimator f̂  is calculated 

from the noisy data y with a constant attenuation factor a i over 

each block Bi 

,
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 To understand how to compute each a i, one relates the 

Stein estimation risk, r =E {||ƒ- f̂ ||
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} to the frame energy 

conversion and given by, 
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Given a choice of block size and the residual noise 

probability level δ that one tolerates, the thresholding level λ 

.For each block width and length, λ is estimated using “Monte 

Carlo simulation”  .The below Table  shows the resulting λ 

with δ = 0.1%. Let us remark that for a block width W > 1, 

blocks that contain same number of coefficients, B
#
 = LXW, 

have close λ values. 

 
λ 

value 

W =16  W = 8 W = 4 W = 2 W = 1 

L = 8 1.5 1.8 2.0 2.5 2.5 

L = 4 1.8 2.0 2.5 3.5 3.5 

L = 2 2.0 2.5  3.5 4.7 4.7 

Table.1 Thresholding level λ calculated with different 

block size B# = L X W and   with δ = 0.1%. 

  The SURE was originally used to estimate the mean of a 

multivariate normal distribution. We use it to estimate the 

tuning parameters in the content of speech restoration. 
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 Risk is calculated from the given equation 

 

 

 

 

Where          = no. of coefficients within a block Bi 

λ  for Thresholding level 

C. Adaptive Block Thresholding 

A block thresholding segments the time-frequency plane in 

disjoint rectangular blocks of length L i in time and width W   

in frequency. In the following by “block size” we mean a 

choice of block shapes and sizes among a collection of 

possibilities. The adaptive block thresholding chooses the 

sizes by minimizing an estimate of the risk.  

The risk E {||ƒ-ƒ'||
2
} cannot be calculated since ƒ is 

unknown, but it can be estimated with a Stein risk estimate. 

Best block sizes are computed by minimizing this estimated 

risk. 

The Stein estimation risk, r =E {||ƒ- f̂ ||
2
} to the frame energy 

conversion.      

If the noise is Gaussian white and the frame is an 

orthogonal basis then the noise coefficients are uncorrelated 

with same variance  

The adaptive block thresholding groups coefficients in 

blocks whose sizes are adjusted to minimize the Stein risk 

estimate and it attenuates coefficients in those blocks. To 

regularize the adaptive segmentation in blocks, the time-

frequency plane is first decomposed in macroblocks Mj, j = 1, 

2, 3……J. Each macroblock is segmented in blocks Bi of 

same size which means that       = pj is constant over a 

macroblock Mj. 

The Stein risk estimation over is Mj is (1/A) Σi€ Mj Ri   

Several such segmentations are possible and we want to 

choose the one that leads to the smallest risk estimation. The 

optimal block size and hence pj is calculated by choosing the 

block shape that minimizes Σi€ Mj Ri  . Once the block sizes are 

computed, coefficients in each are attenuated, where is 

calculated. 

In numerical experiments, each macroblock is segmented 

with 15 possible block sizes LxW with a combination of 

block length L = 8, 4, 2 and block width W = 16, 8, 4, 2, 1. 

The size of macroblocks is set to be equal to the maximum 

block size 8* 16.  

Let  f be the block thresholding estimation from the noisy 

data y. This new attenuation factor is applied on the noisy 

time-frequency coefficients to reconstruct a second estimator. 

,,

ˆ[ ] (1/ ) [ , ] [ , ] [ ]l kl k
f n A a l k Y l k g n   

V. ANALYSIS OF RESULTS AND DISCUSSIONS 

The experiments presented below have been performed on 

various types of audio signals: “Piano” is a simple example 

that contains a single clear clavier stroke; “Mozart” is a 

musical excerpt that contains relatively quick notes played by 

a solo oboe; “TIMIT-M” and “TIMIT-F” are, respectively, 

male and female utterances taken from the TIMIT database . 

“TIMIT-M” and “TIMIT-F” are sampled at 16 kHz whereas 

all the other signals are sampled at 11 kHz. They were 

corrupted by Gaussian white noise of different amplitude. 

Short-time Fourier transforms with half-overlapping windows 

were used in the experiments. 

These windows are the square root of Hanning windows of 

size 50 ms for “Piano” and “Mozart” and 20 ms for “TIMIT-

M” and “TIMIT-F.”1 For each sound, denoising with “partial 

noise removal” and “maximum noise removal” were applied: 

the former retains some low-amplitude residual noise; the 

latter removes almost all the original noise. 

Both objective and subjective evaluations have been 

performed. 

The objective measures are respectively the SNR and the 

segmental SNR defined as 
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Where H represents the number of frames in the signal, S is 

the number of samples per frame that corresponds to 32ms, 

and T(x) = min [max(x,-10), 35] confines the SNR in each 

frame to a perceptually meaningful range between 35db and -

10db. 

 Segmental SNR has been shown to have a higher 

correlation with perceived quality than SNR. 

 

SIGNAL & SNR 
NON-DIAGONAL 

SNR    SSNR 

DIAGONAL 

SNR      SSNR 

Mozart5dB 

Mozart8dB 

Mozart9.23dB 
Mozart10dB 

Mozart15dB 

15.53   15.5248 

18.19   18.1867 

19.04   19.0345 
19.53   19.5243 

21.98   21.9794 

13.97    14.4141 

14.26    14.4869 

14.32    14.5059 
14.35    14.5150 

20.24    15.4368 

Piano4.75dB 17.11    17.1095 13.76     08.5116 

TIMIT10.76dB 18.86    19.0279 17.72     14.3172 

Speech5dB 

Speech10dB 

17.52    17.5099 

22.07    22.0618 

16.69     16.6823 
16.91     16.9012 

 

Table.2 Comparison of Four Types of Noisy Signals with 

Different Noise Levels. 
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VI.  CONCLUSION 

Nondiagonal time-frequency estimators are more effective 

than diagonal estimators to remove noise from audio signals 

because they introduce less musical noise. These 

nondiagonals estimators are derived from a time-frequency 

SNR estimation performed with parameterized filters applied 

to time- frequency coefficients. This is mainly used in Music 

and Speech Restoration. 
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