
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

132

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0167091511/2011©BEIESP

A Consistent Protected Structural Design for

Mobile Agents in Open Network Systems

Arihant Khicha, Neeti Kapoor

Abstract- A system in which user programs (the agent) may

willingly and separately travel from one the host to the mobile

agent server is a mobile-agent system. A large exploitation of

mobile agent systems is not possible without gratifying security

structural design. The attack of a visiting code by a malicious

host is the major barrier facing wide exploitation of mobile

agents. The fact that host computers have complete control over

all the programs of a visiting agent makes it very hard to protect

agents from untrusted hosts. This has resulted to restricted

exploitation of mobile agents to acknowledged hosts in congested

networks where the agent’s security is assured. However, this

restriction negates the original major concept of sovereignty on

the basis of which mobile agent technology is established. This

paper proposed a dynamic protected structural design for mobile

agents systems, using Platform Registry and Travel Diary

Protection Scheme. The scheme protects and allows mobile

agents to travel liberally in open networks environment.

Keywords- Mobile Agents, Travel Diary, Security, Platform

Registry.

I. INTRODUCTION

Mobile agent is an agent that can be simply consider as a

unit run in dynamic environment with independent ability

and mobility. This technology has great significance in data

mining, e- Commerce, distributed computing, network

management etc. Security is the main issue that prevents

mobile agent from being widely used. There are two aspects

in which Security problems lie: security of host and security

of agent.

The first difficulty has many common characteristics of

conventional computer security; so to solve the difficulty

with satisfactory results equivalent conventional methods

are used. But the second difficulty is still a major challenge.

Our study concentrates on the mobile agent’s security on a

host platform. Moreover, an agent can get on two categories

of expedition: the first is expedition with a diary containing

pre-defined itinerary and second is expedition in which the

mobile agent has no fore knowledge of the host to visit. It is

called a free-roaming mobile agent whose protection is more

difficult. Methods used to defend an agent’s data and its

state count on the category of the agents’ expedition.

These free-roaming agents can face more complex attacks

such as replay attacks, colluded truncation attack, or many

other host attacks on a visiting agent if traveling dairy does

not specify where to visit.

This paper focuses on security of free-roaming agents in

open net environments and it also presents a security

protocol which performed a good role in preventing attacks.

Manuscript Received October 18, 2011.

Arihant Khicha,Information Technology,RIET,Jaipur, India.

9001099903, (e-mail: arihantkhicha@gmail.com).
Neeti Kapoor, Information Technology, RTU, Jaipur, India.

(e-mail: neeti.kapoor87@gmail.com).

II. LITERATURE ANALYSIS

Many security issues have been identified since beginning

of mobile agent. These issues were classified according to

the unit being attacked: attack of agents against agents,

attack of agents against hosts, and attack of hosts against

agents and the source of the attack. The first type is

categorized as – attack of agents against agents in which

we find attacks where the agents access or modify another

agent’s data, masquerade their identity in order to make a

transaction forged, or repetitively it also send messages to

another agent in order to initiate a denial of service attack,

among others. The second type is attack of agents against

host and it includes threats in which agents use system

resources unnecessary, access resource which they can

access as well as perform malicious action, expand access

to a service to which they are not permitted, and so on. For

the first two categories, where agent is an attacker already a

sound solutions is proposed. Along with the solutions that

provide a satisfactory level of protection, the most

resourceful is Software-Based Fault Isolation [3]. This

method, also known as sandboxing based on limiting

program accessibility in a congested field, in such a way that

the available resources and program address space are

restrained within this field. The different method for these

kinds of attacks consists: using safe code interpretation [4],

where it prevents the agent from attacking the host by using

the set of available instructions: providing the authentication

to the agent owner by signing the code, as well as also

include some method to check the owner level of trust [10], ,

in order to proof that the implementation of that code is

secure [11], along with the code it also send logical

demonstrations. Concerning the second category - agents

against host, in this any peripheral entity can be source of

the attack if it is also not part of the agent platform. This

peripheral entity can perform attacks against the host’s

communications with the outside or against the platform

resources (files, communication ports, etc.). In these cases,

to a great extent, the mechanism on which security depends

is provided by the operating system.

Transport Layer Security [12], secure communication

channel, which is established using mechanisms is used to

provide the secure communication between the host and

other parties. The third category that is host against agents

is very difficult to prevent. It is evident that if a host wants

to execute an agent, it must have complete access to the

agent state, code, and data. It is difficult to prevent the host

to analyze the agent code, corrupting its state or data,

modifying its execution environment, or execute it multiple

times, for example, generate multiple purchases in a

shopping scenario.

mailto:neeti.kapoor87@gmail.com

A Consistent Protected Structural Design for Mobile Agents in Open Network Systems

133

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0167091511/2011©BEIESP

If we want to keep an agent’s data secret to prevent it from

the host, then it must be stored in a way that even the agent

itself cannot directly access it encrypted with the key of a

different host platform.

To deal with the malicious host server problem several

mechanisms have been projected. Few of the solutions of

the malicious host problem are impractical. They have been

designed for particular situation that are actually rarely

found in real-life applications. Some of the better known

ones are:

 Execution tracing

 Obfuscation

 Computing with encrypted functions

 Tamper-proof devices

A. Execution Tracing

Execution tracing [13] is a procedure that allows

unauthorized modifications of an agent to be detected upon

completion of the agent execution. The protocol proposed in

[14] records the agent’s behavior on each platform to trace

its execution. The trace consists of a sequence of identifiers

according to the operations executed by the agent. Platforms

maintain and produce traces of all executed agents, and after

the termination of agent’s execution agent owners can

request these traces and from this it can be verified that the

agent code or state is maliciously modified or not. But this

approach has several drawbacks, such as the number of logs

and size to be reserved by platforms, or once the agent has

returned to the home platform there is a lack of connection

between the owner and the platforms. Moreover, the

verification mechanism is only used when the owner has a

disbelief that the agent execution has been corrupted and

this mechanism is too expensive to be applied

systematically.

B. Obfuscation

The aim of Code obfuscation [13] is to generate executable

agents who cannot be attacked by manipulating or reading

their code. This procedure transforms the agent code in such

a way that it is functionally identical to the original one.

There is also a time interval during which the agent and its

sensitive data are applicable. After this time elapses, any

attempt to attack the agent becomes useless. The main

limitation of these techniques is that an attacker gets

difficulty in establishing the time to understand an

obfuscated code. Likewise, there is no mechanism currently

known by which an agent quantify time to accomplish its

task, especially in heterogeneous environments. As a result,

restricting the lifetime of a mobile agent is not feasible in

practice.

C. Computing with Encrypted Functions

It is a technique proposed by Sander and Tschudin [12] to

achieve code integrity and code privacy. In this technique

encrypted programs are created that can be executed without

decrypting them. If a mobile agent execute a certain

function f then that function f is encrypted to obtain E (f)

and a program is created that implements E (f). Platforms

execute E (f) on a clear text input value x, without knowing

what function they actually computed. The execution yields

E (f(x)), and only the agent owner can decrypted this value

to obtain the desired result f(x). The main limitation of this

technique is that the encryption schemes are applicable for

polynomials, using function composition techniques and

homomorphism encryption. Thus, their proposal is not

suitable for general programming.

D. Tamper-Proof Devices

A tamper-proof device is based on the entire agent execution

on a physically sealed environment, which can be trusted to

execute the agent correctly. Tamper-proof devices are

provided by a trusted third party and they can be checked

from time to time to verify that their security has not been

compromised. It can be used to perform cryptographic

operations with a private key that must be kept secret from

the remote host. They can also have their own private key,

for example, to sign partial results generated by the agent.

This approach has two limitations: the costing of tamper-

proof device on every platform. Secondly, the approach is

only suitable for closed environments, such as corporate

networks such as within in a group of banks in a geographic

political area. As a result, the technique implies a loss of

agent sovereignty. Hence this paper focuses

on pragmatic protocol that solves the malicious host

problem.

III. OVERVIEW OF MOBILE AGENT

ARCHITECTURE

Figure 1 to 5 given below specifies the structure of mobile

agent systems. In a network environment Mobile agents

move around it and visit every computer, hopping from one

host to others. Mobile agent servers handle the execution of

the program code and dispatch agents to different

computers. each agent has its own thread and host severs

execute it. Through message any communication is done

between agents of different servers.

A. Mobile Agents Interactions an a Server

Figure 1 specifies the relationships between various agents

and also show that how they complete the execution tasks

through communicating using messages. The resources

needed by visiting agents is provided by host

Fig. 1

B. Mobile Agent Server Architecture

 The structure of a mobile agent server is shown in Figure 2.

The activities of the visiting quest agents are coordinated by

the server.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

134

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0167091511/2011©BEIESP

Fig 2

C. Transfer of Mobile Agents between Servers

 Fig 3

Fig. 4

Fig. 5

When an agent completes its task on a host, it either switch

to another host platform or returns to its home host. The

figure 3 given below shows how object serialization/de-

serialization is used in dispatching agents from one host to

another .The process of converting a data structure or object

into a format that can be stored (for example, in a file or

memory buffer, or transmitted across a network connection

link) and "resurrected" later in the same or another computer

environment [14] is called Object serialization. In the

mobile agent communication Messages passing form an

important component; semantically identical clone of the

original object is created by message passing. De-

serialization is the process of restoring the object.

D. Message Exchange between Agents on the Same

Server

The exchange of messages between two or more agents on

the host and between different hosts is facilitated by the host

platform .The roles of the server in intra/inter server agents’

communication is shown in Figure 4 shows while figure 5

illustrates message exchange between agents on different

servers.

E. Agent’s Security Challenge

The mobile agent architecture given in figures 1 to 5 shows

that agent has to face many security challenges while

moving through the network to perform its duties. A lot of

research has been done to solve the security problems in

mobile agent systems. This research differs in its aim,

emphasis, base, and technique. Some works concentrates on

building the foundations for the security of a mobile agent

system; some offer security mechanisms following different

approaches; some work introduce security mechanisms into

the architectures of mobile code systems; and others

implement real applications with security features.

Nevertheless, these research works didn’t provide any

protection framework for protecting mobile agents on the

host server they execute on. This is the problem that this

work addressed.

IV. THE APPROACH

A. Agent’s Itinerary

There are several protocols which protect theagent’s

itinerary. In these protocols the itinerary information is

stored in a separate data structure, and after that

cryptographic mechanism is used to protect this data

structure. If this information is maintained and stored

outside the main agent code, it is said to be explicit, and its

protection is considerably simplified.

However these protocols do not support the protection of

free-roaming agents. Agents then enforced to travel static

itineraries, in which all host are known in advance. On the

other hand, for free roaming agents the most functional and

realistic mobile agent-based applications should be based on

using dynamic itineraries, where some host platforms are

discovered at runtime.

B. Securing Dynamic Itineraries

 To support free-roaming agents, we use a protection scheme

in which trusted locations are introduced into the agent’s

route. The information associated with dynamically located

host can be stored by introducing some trusted hosts into the

itinerary in our architecture.

A Consistent Protected Structural Design for Mobile Agents in Open Network Systems

135

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0167091511/2011©BEIESP

Platform Registries

Platform registries are digital security infrastructures,

maintained by trusted certificate authorities, such as Entrust

Secure Server Certification Authority, RSA Data Security

Inc, Baltimore Cyber Trust, , Equifax Secured Certificate

Authority, , e.t.c. It is use for the registration and insurance

of trusted digital certificates to public mobile agents’ host

platforms

Assumptions Made with Regard to Trusted Platforms

The main purpose to introduce trusted platform registries

into agent’s itinerary was to execute the agent task on the

expected platform. The structural design presented in this

scheme assumes that a agent’s task is executed by trusted

platform honestly. Furthermore, it is assumed that to prevent

attacks from third parties who alter the agent execution the

trusted agent platforms are protected with appropriate

mechanisms. In this scenario, security depends on the

mechanisms provided by good design of associated

protocols and the operating system .These protocol also

assumes the existence of a security infrastructure that allows

users and agent developers to conclude whether a platform

is reliable or not. An example of this security infrastructure

can be found in [14]. In this work, the authors illustrate a

security structure for a mobile agent system which

incorporates a simple trust model. Such model establish

trust relationships in a way similar to that used to handle

distributed authentication in public key infrastructures

The identification of reliable platforms can also be ashore on

simpler mechanisms, such as relying on real world trust

relationships. For example, the platform from which the

agent was first launched or the platform associated with a

bank where the user has an account, can be safely

introduced into the agent’s itinerary as trusted platforms.

C. The Protection Architecture

This protection architecture intended to protect flexible

dynamic mobile agent itineraries. There are three main

objectives of architecture:

 Integrity: Platforms is not able to modify the

agent’s itinerary gradually.

 Authenticity: Platforms is not able to verify the

identity of the agent owner.

 Confidentiality: Platforms is not able to access

itinerary information of other platforms.

The Idea

The general initiative of this protection architecture is to

construct a chain of digital envelopes, which contain two

elements: the data, and the encrypted key which allows the

decryption the following envelope. The proposal is

illustrated in figure 6 below.

The entry of the protected itinerary is shown in this figure 6

envelopes. Each envelope, (ej) is encrypted using a random

symmetric key (kj), and further this symmetric key is

encrypted using the public key, (pj) of the host j, permitted

to open the envelope. Thus, only the intended host can

decrypt each envelope. Moreover, the symmetric key used to

decrypt an envelope is protected inside the previous

envelope so the envelope is only opened in the correct order.

Fig. 6

D. Supports for Dynamic Itinerary

It is impossible to build a chain of digital envelopes if in the

problem of protecting dynamic itineraries all public keys are

not known in advance. In particular, the agent discovered the

hosts that will be visited to execute an itinerary dynamically

at runtime. Therefore, when the itinerary is created, the

public keys of such platforms are not obtainable. So to solve

this problem, a novel protection scheme is developed based

on the agent itinerary protection, on the dynamically

discovered platforms, using the public keys obtained from

their corresponding platform registries. This proposal use

platform registries discussed above by changing the chain of

digital envelopes, as shown in figure 7.

When an agent asks a dynamically located platform for the

purpose of obtaining its public key, for its platform registry

identifier, and this host fallaciously gives a wrong id, then it

is either the host itself will be unable to decrypt the message

meant for it or the registry will be unable to supply its id. In

either of the two cases, the agent is protected from this

malicious host.

Fig. 7

E. Securing Itinerary

For every itinerary host, a random symmetric key k1, k2, kn

is created to secure an itinerary. From a host i to j, each

possible migration is denoted by tij is constructed as

 t i j = aj P i (si (id kj aj)) (1)

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

136

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0167091511/2011©BEIESP

Where pi refer to an asymmetric encryption function using

the public key of platform i, aj refer to the address of host j ,

si refer to a digital signature function using the private key

of host i

From the equation, the transition from host i to host j

contain the random symmetric key Kj associated with host j.

When going to host j this key is used to encrypt the

envelope of the protected itinerary. Platform j is encrypted

using the public key of host j to ensure that it has access to

Kj . Finally, tij consist of a unique agent identifier id that is

used to thwart from replay attacks. Both id and Kj are signed

by the agent’s owner so that host j will be able to verify the

agent’s identity and integrity of the information it carries.

The equation 1which is used to build agent transitions tij

from host i to j is useful only when the host j is not

dynamically located at runtime, that is aj and the public key

of host j is known at the agent home before the start of

migration. When host j is located at runtime, then

t i j = aj? (2)

Therefore P i (si (id kj aj)) is replaced with ?, an unknown

value. This is because at the time of creating the itinerary aj

is not known and the public key needed to compute (si (id kj

aj)) is not available. In this scenario, when the host is located

at runtime, its

address aj and its corresponding agent Platform Registry

Identifier (regIdj) will be obtained from this host for the

reason of getting its equivalent public key needed to

calculate kj

The transition from the current host i to the dynamically

located host j is now calculated as

Pj = platformReg(aj regId)

t i j = aj P i (si (id kj aj)) (3)

The equation 3 is correspondent to equation 1 above. The

main difference is that kj is replaced with the random

symmetric key for the new host, aj , generated from the

public platform registry access function that takes an agent

host address and its corresponding platform registry

identifier and return the host public key, if the host is

registered with the registry and null otherwise. To obtain a

host’s public key, pj from the host directly is not safe.

The agent owner digitally signed the symmetric keys k1, k2.

kn , which are used to encrypt the entries of the protected

itinerary. It ensures that attackers can neither modify

existing ones nor generate their own itinerary entries.

Also, the entries previously generated by the same owner

are prevented for reuse by the unique agent identifier id.

Therefore the integrity of the protected itinerary is

guaranteed. Moreover, every transition to a host j includes

address aj of the host. Consequently the hosts can verify

that they were really part of the itinerary.

F. Simulation

We performed and implement two multi-phased experiments

to prove the viability of the proposed structural design.

Experiments first part was based on the proposed security

architecture, simulating a simple mobile agent-based

application on a hotel search and reservation system, using a

local area network (LAN) of thirteen computers, with three

serving as platform registries and ten serving as host servers.

Each of the ten computers was setup to act as mobile agent

server to their respective hotels and configured with

appropriate programs to make them malicious and very

hostile to visiting mobile agents. The user preferences are

considered with regard to room facilities and guest services

and according to that the system allows an individual to find

the cheapest hotel in a given destination. The application

allows the user to define search criteria. After defining the

search criteria, to obtain a list of the five cheapest hotels in

the destination, a mobile agent is started querying a remote

hotel search engine.

The agent then visits each one of these hotels and then the

room availability is checked for the desired rates, as well as

their room facilities; services, etc are also checked. Besides

this, a special discount is also negotiated by the agent for

long stays. Our dispatched agent randomly visited eight of

the ten servers and after execution log on each server visit it

eventually returned to home.

Experiment second part was the same to the first except that

the dispatched agent employed obfuscation methods for its

itinerary without the proposed new protection scheme.

Table 1

G. Analysis of the Log Files

In our experiments the agent code was designed to return its

execution log on each server visited. By this we can analyze

its venerability to attacks by its hosts. Using this same

proposed protocol the execution log files at each server were

encrypted with the public key of the agent home platform.

By analyzing the log files showed it is clear that no

successful attempts were prepared to read the agent’s

itinerary which included the packets for the next host to be

visited from the current server and packets from the agent’s

previously visited servers. The packet that was previously

encrypted with its own public key obtained from one of the

platform registries could only open by the current host

server. While, in our second experiment, where we don’t

used obfuscation methods with our proposed protection

architecture, the analysis of the returned log files show that

four of the host servers visited was able to access the agent’s

data packets that were not meant for these hosts. Table 1

show mobile agents with and without platform registry

protection scheme. As shown in table 1, our proposal made

it difficult for the host to alter the packet.

In relation to time performance factor, the execution time of

the agents with our proposed scheme was compared to the

execution time of the agents in our second experiment, that

is, the roaming agents without our proposed protection

framework, to determine if the proposed protection

architecture increased the execution times considerably. We

find that approximately 40.6%, the execution time of the

agents with our protocol is increased in comparison of the

unprotected agent’s execution time as shown in figure 8.

Number of

Mobile Agents

on Hotel

Reservation

Assignment

Mobile-agent

without Platform

Registry Protection

Protocols

Mobile agent

with Platform

Registry

Protection

Protocol

13 Altered

Unaltered

Killed

Altered

Unaltered

Killed

A Consistent Protected Structural Design for Mobile Agents in Open Network Systems

137

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0167091511/2011©BEIESP

This increase is largely due to the time required to execute

complex cryptographic protection protocol at platform

registries and on each of the host platforms visited. We also

found out that the time increase is a linear function of the

number of hosts visited. If the actual task to be performed

by an agent on each server is itself complex and time

consuming then the increase in time would be negligible.

V. CONCLUSION

In open network environment this paper proposes the use of

a chain of digital envelopes with platform registries to

support dynamic agents’ itineraries. This proposal prevents a

host server to gain access to the information carried by a

mobile agent that is not meant for it, that is, the current host.

In terms of data integrity and security ,this proposal display

better performance when compared to the results obtained

from obfuscation methods. However, in comparison to

obfuscation methods this offer consume a little more time in

visiting platform registries and to execute complex

cryptographic functions .

REFERENCES

1. Wahbe R., S, Lucco, T.E. Anderson and Graham S.L., 1993, Efficient
Software Based Fault Isolation, In Proceedings of the 14th ACM

Symposium on Operating Systems Principle, pp 203-216, ACM
2. Jacob Y. Levy, John K. Ousterbhout and Brent B Welch, 1997, The

safe Tcl Security Model Technical Report, Sun Microsystems

3. Sreekanth V., S Ramchandram and A. Govardhan, 2010, Mobile
Agent Security and Key Management Technique, Journal of

Computing, Vol. 2, Issue 9, ISSN 2151-9617

4. Neelesh Kumar Panthi and Chaudhari Neelesh Kumar Panthi, 2010,
Securing Mobile Agent using Dummy and Monitoring Mobile Agent,

International Journal of Computer Science and Information

Technologies, Vol 1 (4), pp 208-211
5. Sarvarnl Islam Rizvi, Zinat Sultana, Bio Sun and Mid Washiqul Islam,

2010, Security of Mobile Agent in Ad Hoc Network using Threshold

Cryptography, World Academy of Science, Engineering and
Technology, Vol 30, pp 424-427

6. Sreekanth V., Ranchandra S., and Gavardhan A.,2008, A Novel

Approach for Securing and Integrity of Mobile Agents, ICCBN, IISC,
Bangalore

7. Tomas Sander and Christian F. Tschudin, 1998, Protecting Mobile

Agent against Malicious Hosts, In Giovanni Vigna, Mobile Agent
Security, pp. 44-60, Springer-Verlag, Herdeberg Germany

8. Gray R.S., 1995, A Transportable Agent System, In proceedings of

CIKM 95 Workshop on Intelligent Information Agents 14
9. Dierks T. and Rescorla E., 2006, The Transport Layer Security

Protocol Version, In RFC 4344, IETF

10. Vigna G., 1998, Cryptographic Traces for Mobile Agents, In Mobile
Agent and Security, Vol., 1419 of Lecture Notes in Computer Science,

pp 137-153, Springer Verlag

11. Hohl F., 1998, Time Limited Blackbox Security: Protecting Mobile
Agent from Malicious Hosts, In Mobile Agent and Security, Vol.,

1419 of Lecture Notes in Computer Science, pp 92-113, Springer

Verlag
12. Sander T. and Tschudin C.F., 1998, Protecting Mobile Agents against

Malicious Host, In Mobile Agent and Security, Vol., 1419 of Lecture

Notes in Computer Science, Springer Verlag
13. Tan H.K. and Morean L 2001, Trust Relationships in a Mobile Agent

System, In Mobile Agent, Vol., 2240 of Lecture Notes in Computer

Science, pp 15-30, Springer Verlag
14. Carles Garrigne Ollivera Bellaterra, 2008, Contribution to Mobile

Agent Protection, PhD Thesis, Universtat Ant Onoma, De Barcelona

15. Wikipedia the Free Encyclopedia Serialization,
http://en.wikipedia.org/wiki/serialization

AUTHORS PROFILE

Mr. Arihant Khicha, M.Tech , Mca from MSRIT ,
Bangalore, Pursuing his Ph.d , written 5 books on

Database management system, Operating system and

Advance Database management system. He has also
attended various seminar on Networking.

Neeti Kapoor, Btech done her Engineering from RCEW
Engineering college Jaipur and Pursuing her M.Tech

from Arya college of Engineering and Technology. She

has written various books on Database Management
system , operating system .

http://en.wikipedia.org/wiki/serialization

