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Abstract — In recent years, Kernel based learning algorithm 

has been receiving increasing attention in the research domain. 

Kernel based learning algorithms are related internally with the 

kernel functions as a key factor. Support Vector Machines are 

gaining popularity because of their promising performance in 

classification and prediction. The success of SVM lies in suitable 

kernel design and selection of its parameters. SVM is theoretically 

well-defined and exhibits good generalization result for many real 

world problems. SVM is extended from binary classification to 

multiclass classification since many real-life datasets involve 

multiclass data. In this paper, we propose an optimal kernel for 

one-versus-one (OAO) and one-versus-all (OAA) multiclass 

support vector machines. The performance of the OAO and OAA 

are evaluated using the metrics like accuracy, support vectors, 

support vector percentage, classification error, and speed. The 

empirical results demonstrate the ability to use more generalized 

kernel functions and it goes to prove that the polynomial kernel’s 

performance is consistently better than other kernels in SVM for 

these datasets. 

 

Index Terms— Support Vector Machine, Multiclass 

Classification, Kernel function, One versus One, One versus All.  

I. INTRODUCTION 

  Improving efficacy of classifiers have been an extensive 

research area in machine learning over the past two decades, 

which led to state-of-the-art classifiers like support vector 

machines ,neural networks and many more. Support Vector 

Machine is a robust classification tool, effectively overcomes 

many traditional classification problems like local optimum 

and curse of dimensionality. Three major issues of SVM are 

Kernel Mapping, Quadratic Optimization and Maximum 

Margin Classifiers. This paper focuses in the first issue. 

Multiclass SVM decomposes multiclass labels into several 

two class labels and it trains a svm classifier to solve the 

problems and then reconstruct the solution of the multiclass 

problem from outputs of the classifiers [9], such as 

OAO-SVM and OAA-SVM.  

The paper is organized as follows. Section 2 and 3 describe 

SVM and Multiclass SVM. Section 4 explains the kernels and 

its parameters. Section 5 elucidates the experimental results. 

Lastly, Section 6 concludes with future work. 
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II. SUPPORT VECTOR MACHINES [12, 13] 

Support Vector Machine has been a new and important tool 

for classification and regression. In dealing with large data 

classification, traditional optimization algorithms such as 

Newton Method or Quasi-Newton Method cannot work any 

more due to the memory problem. SVMs belong to a family of 

generalized linear classification. A special property of SVM 

[3-6] is it simultaneously minimizes the empirical 

classification error and maximizes the geometric margin. So 

SVM is called as Maximum Margin Classifiers. SVM maps 

input vector to a higher dimensional space where a maximal 

separating hyperplane is constructed. Two parallel 

hyperplanes are constructed on each side of the hyperplane 

that separates the data. The separating hyperplane is a 

hyperplane that maximize the distance between the two 

parallel hyperplanes. An assumption is made that the larger 

the margin or distance between these parallel hyperplanes 

then better the generalization error of the classifier.  

Consider the problem of separating the set of training 

vectors belonging to binary classes or dichotomization (xi, yi), 

i = 1,…. l, xi   R
n
, yi   {+1, −1}, where the R

n
 is the input 

space, xi is the feature vector and yi is the class label of xi. The 

separating hyperplanes are linear discriminating functions as 

follows, 

                     bxwxf T )(  ,                          (1) 

where w is a weight vector and b is called the bias value. One 

of the hyperplanes that maximizes the margin 
2

2

w

is 

named as the optimal separating. The optimal separating 

hyperplane [4] can be found by solving the following 

optimization problem: 
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       0,,...,1,0   T

i yliC ,            (5) 

where e is the vector of all ones, C is the penalty of error 

which is positive; Qij is yiyj ji xx ,  and i is the 

relaxation parameter. Thus if we obtain α and b then we can 

classify the decision function as follows 

       bxxyxf
l

i

jiii 
1

.)(            (6) 

Most optimization problems involve terms that are 

unknown and are usually not directly obtainable from the 

training data and they are not easy to guess, e.g., ξi in above 

equation. Thus, it becomes convenient to formulate an 

equivalent optimization problem that has the same solution as 

the original one, but does not involve any other information 

than what is provided by the training samples. This involves 

the use of Karush-Kuhn-Tucker conditions. The former 

problem is then called the Primal problem, and the latter is 

called as Dual. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 Flow of Proposed work. 

III. MULTICLASS SUPPORT VECTOR MACHINES 

[15] 

Support Vector Machines are based on variational-calculus 

which constrained to have structural risk minimization (SRM) 

principle and it uses convex optimization with unique 

optimum solution. In SVM, hyperplanes are derived to 

separate the class labels in feature space. One of the 

hyperplanes that maximizes the margin is an optimal 

separating hyperplane. Binary classification is explicated in 

[12, 13]. 

Figure 1 represents the flow of the proposed work. 

Multiclass SVM can be solved by combining the binary 

classification decision functions. Multiclass SVM is of two 

types namely, One versus One decomposition and One 

versus All decomposition. The OAA decomposition [10] 

transforms the multiclass problem into a series of c binary 

subtasks that can be trained by the binary SVM. Let the 

training set ),(),....,,{( '

}

'

11 ll

y

XY yxyxT  contain the 

modified hidden states defined as 
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The discriminant functions
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are trained by the binary SVM solver from the 

set YyT y

XY ,

 The OAO decomposition [10] transforms the multi-class 

problem into a series of g = c(c −1)/2 binary subtasks that can 

be trained by the binary SVM. Let the training set 
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contain the training 

vectors xi Є  I
j
={i: yi = y

1
 V yi = y
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} and the modified the hidden 

states defined as 
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The training set gjT j

XY ,...2,1,  is constructed for all 

g=c(c−1)/2 combinations of classes 

 121 \& jjj yYyYy 
.
The binary SVM rules                                   

qj , j = 1, . . . , g are trained on the data .j

XYT
 

IV. KERNELS IN MULTICLASS SUPPORT VECTOR 

MACHINES 

Kernel functions establish the characteristics of SVM 

model and level of non linearity. A necessary and sufficient 

condition for a simple inner product kernel to be valid is that it 

must satisfy Mercer’s theorem [11]. In general, kernels are of 

two types namely Local and Global kernels. Data that are 

close to each other in local kernels influence on the kernel 

points and data that are far away from each other in global 

kernels influence on the kernel points. Commonly used 

kernels like polynomial, RBF, linear are used in this paper. 

Few other kernels are shown in Table1. 

In existing statistical learning theory, when kernels are 

positive definite, there is one approach to obtain the mapping 

from original data set to feature space i.e. the kernels are 

demanded to satisfy Mercer’s condition [16] and as a result 

they can be seen as dot product in some Hilbert space. 

Mercer’s conditions seriously confine the wider application 

of SVM. Almost all the current review on kernel methods in 

machine learning focuses on kernels which are positive 

definite.  
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A. Theorem. (Mercer’s) 

Suppose that RXK : is symmetric and 

satisfies supx,y K(x, y) < ∞,and define 

 

        
x

K dyyfyxKxfT )(),()(                        (10) 

suppose that )()(: 22 XLLTK   is positive 

semi-definite; thus, 

                                       

  
 

0)()(),( dxdyyfxfyxK              (11) 

for any, )(2 Lf   . Let λi, ψi be the Eigen 

functions and Eigen vectors of TK, with 
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where the convergence is uniform in x, y. 

Such a kernel defines a Mercer Kernel according to Mercer 

theorem given in [16]. This gives the mapping in to feature 

space as  

       
Tyxxx ),...)(),(()( 2211       (13) 

B. Reproducing Kernel Hilbert Spaces [16] 

Let us consider an inner product vu,  as 

1. A usual dot product: 
ii iwvwvvu  ',  

2. A kernel product: )()(),(, ' wvwvkvu   

where )(u  may have infinite dimension. 

However, an inner product .,. must satisfy the 

following conditions 
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3. Positive definiteness 
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Definition 1 

A Hilbert Space is an inner product space that is complete 

and separable with respect to the norm defined by the inner 

product. 

 

Definition 2 

K (,.) is a reproducing kernel Hilbert spaces H if  f  H, 

(.),.),()( fxkxf  .A Reproducing Kernel 

Hilbert Space (RKHS) is a Hilbert space H with a reproducing 

kernel whose span is dense in H. We could equivalently 

define an RKHS as a Hilbert space of function with all 

evaluation functionals bounded and linear. 

From the above definition and theorem, kernel function K 

must be continuous, symmetric, and have a positive definite 

gram matrix. Such a K means that there exists a mapping to a 

reproducing kernel Hilbert space such that the dot product 

there gives the same value as the function K. If a kernel does 

not satisfy Mercer's condition, then the corresponding 

Quadratic Problem has no solution. Hence, if any new kernel 

is proposed it should be checked with mercer kernel. 

Table 1. Types of Kernels 
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Table 2. Data Sets Used 

Datasets Size Features Class 

Pentagon 99 2 5 

Iris 150 4 3 

Wine 270 13 3 

V. RESULTS AND DISCUSSIONS 

In this section, OAO and OAA SVM’s kernel functions are 

evaluated using the metrics like accuracy, support vectors, 

support vector percentage, training error, classification error 

and time taken .For experimentation, two benchmark datasets 

(Iris, Wine) are taken from the UCI machine learning 

repository and one synthetic dataset from [10]. 
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Brief sketch of the datasets is given in table 2. In multiclass 

SVM, the optimal regularization parameter C and the kernel 

parameters are estimated by repeating classifications.  

Linear kernel 
j

T

iji xxxxK 1),(  is a simple kernel 

function based on the penalty parameter C, since parameter C 

controls the trade-off between frequency of error c and 

complexity of decision rule [7]. Also, it reduces the support 

vectors, training error and classification error by incrementing 

the parameter C.But it is not suitable for large datasets. 

Polynomial kernel 
p

j

T

iji xxxxK )1(),(   also known 

as global kernel, is non-stochastic kernel estimate with two 

parameters i.e. C and polynomial degree p. Each data from the 

set xi has an influence on the kernel point of the test value xj, 

irrespective of its the actual distance from xj [14], It gives 

good classification accuracy with minimum number of 

support vectors and low classification error. 

Radial basis function )exp(),(
2

jiji xxxxK  
 
also 

known as local kernel, is equivalent to transforming the data 

into an infinite dimensional Hilbert space .Thus, it can easily 

solve the non-linear classification problem. It has an effect on 

the data points in the neighborhood of the test value [14]. RBF 

gives similar result as polynomial with minimum training 

error but for some cases the number of support vector and 

classification error increases. 

Exponential radial basis function 

)
2

exp(),(
2

ji

ji

xx
xxK


  gives piecewise linear solution. 

Gaussian radial basis function )
2

exp(),(
2

2



ji

ji

xx
xxK


   

deals with data that has conditional probability distribution 

approaching gaussian function. RBF kernels perform better 

than the linear and polynomial kernel. However, it is difficult 

to find an optimum parameters σ and equivalent C that gives 

better result for a given problem.  

Sigmoid kernel )tanh(),(  j

T

iji xkxxxK
 
is not efficient 

as other kernel function, because it lacks the necessary 

condition of a valid kernel. Parameters κ and δ must be chosen 

properly to obtain high classification accuracy.  

The performance metrics of several kernels are compared 

to find an optimal and efficient kernel and it is carried out 

using MATLAB and C++. The tables 3.1, 3.2, 3.3 show 

training error, classification error and time taken for different 

kernels in OAO and OAA SVM on three datasets. 

And, they are graphically depicted in figures 2, 3, 4 for OAO 

and figures 5, 6, 7 for OAA using kernel parameters in              

X axis and range of values in Y axis. Similarly support 

vectors, support vector percentage, accuracy are illustrated in 

tables 4.1, 4.2, 4.3. Also, they are visually portrayed in figures 

8, 9, 10 for OAO and figures 11, 12, 13 for OAA. 

In table 3.1 (i) Exponential RBF kernel’s training error, 

classification error rate and time are lesser than the other 

kernels for OAO SVM, (ii) Polynomial and Exponential RBF 

Kernels training time, error rate and time are lesser than the 

other kernels for OAA SVM. In table 3.2, Polynomial, ERBF 

and RBF kernels training error, classification error and time 

are better compared to other kernels for OAO and OAA. In 

table 3.3,Polynomial, ERBF and RBF kernels training error, 

classification error and time are better compared to other 

kernels for OAO and OAA.Similarly, from tables [4.1- 4.3] 

Polynomial kernel and RBF kernels give better result. In 

kernel function, number of support vector increases then the 

classification accuracy diminishes. After analyzing all the 

features of the kernel function, appropriate and optimal 

kernels for our datasets are polynomial kernel and RBF 

kernels. They have minimum number of support vectors, 

minimum value as classification error and good classification 

accuracy which is shown in Figure 2-13. 

VI. CONCLUSION 

Classification time and Computational complexity for the 

multiclass SVM classifier depend on the number of support 

vectors required. In SVM classification, the required memory 

to store the support vectors is directly proportional to the 

number of support vectors. Hence, support vectors must be 

reduced to speed up the classification and to minimize the 

computational and hardware resources required for 

classification. Here, performance metrics of different kernels 

in multiclass SVM on three datasets are compared. As a 

result, the efficient kernel for multiclass SVM classifier is 

polynomial kernel for these datasets. Hybrid kernels can be 

created using systematic methodology and optimization 

technique. Therefore, the best method to combine the optimal 

feasible kernels would be our research work in future. 
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APPENDIX 

Table 3.1 Training and Test Error Rate for Iris Dataset 
 

 

Table 3.2 Training and Test Error Rate for Pentagon Dataset 
 

 

 

Table 3.3 Training and Test Error Rate for Wine Dataset 

Kernels  Parameter 
One versus One 

Parameter 
  One versus All 

TE CE Time(s) TE CE Time(s) 

Linear C=10 0.0167 0.5 0.03 C=10 0.0583 0.3333 0.14 

C=100 0.0 0.6333 0.01 C=10000 0.0167 0.3000 28 

Polynomial C=1, p = 1.5 0.0167 0.3333 0.04 C=10,p=2 0.08 0.1 0.34 

C=1,p=2.5 0.1416 0.4333 0.125 C=100,p=2 0.0 0.2 0.09 

RBF C=1,  γ = 0.5 0.058 0.2667 0.03 C=10, γ =1.5 0.033 0.0667 0.04 

C=1, γ =1.5 0.025 0.5333 0.05 C=10, γ =1 0.025 0.1333 0.04 

ERBF C=1,σ=1.5 0.0167 0.0333 0.031 C=1, σ =0.5 0.008 0.0667 0.015 

C=10, σ =2.5 0.0167 0.2667 0.03 C=100, σ =2 0.1667 0.1 0.06 

GRBF C=10, σ =2 0.025 0.1333 0.03 C=10, σ =0.05 0.008 0.2333 0.12 

C=10, σ =1.5 0.0167 0.4 0.03 C=100, σ =0.05 0.008 0.2 0.28 

Sigmoid C=1, k=1,δ=2 0.0583 0.2667 0.063 C=1000, k=1, δ =3 0.0 0.2 0.218 

C=1000, k =5, δ =2 0.3083 0.0333 0.016 C=1000,k=2, δ =5 0.0 0.2667 0.313 

Kernels  Parameter 
One versus One 

Parameter 
One versus All 

TE CE Time (s) TE CE Time (s) 

Linear C=10 0.0 0.25 0.015 C=10 0.013 0.05 0.109 

C=100 0.0 0.25 0.03 C=1000 0.0 0.05 0.078 

Polynomial C=1000,p=3 0.0 0.25 0.0 C=100,p=1.5 0.0 0.1 0.1 

C=1000,p=6 0.0 0.25 0.031 C=1000,p=1.5 0.0 0.1 0.171 

RBF C=10,  γ  = 0.005 0.0 0.4 0.0 C=100, γ =0 .5 0.367 0.3 0.156 

C=100, γ =0.5 0.0 0.3 0.12 C=100, γ =6 0.025 0.1 0.09 

ERBF C=100, σ =1.5 0.0 0.25 0.02 C=100, σ =0.5 0.0 0.05 0.046 

C=1000, σ =0.5 0.02 0.8 0.016 C=inf, σ =2 0.0 0.1 0.109 

GRBF C=100, σ =0.05 0.0 0.5 0.031 C=10, σ =0.5 0.101 0.45 0.031 

C=1000, σ =2 0.04 0.3 0.015 C=inf, σ =0.5 0.316 0.25 0.031 

Sigmoid C=10, k=1, δ =2 0.01 0.3 0.0 C=100,k=1,δ=1 0.0 0.1 0.046 

C=100, k=0.5, δ=1 0.03 0.25 0.031 C=inf, k=2,  δ =0.5 0.0 0.1 0.187 

Kernels  Parameter 
One versus One 

Parameter 
One versus All 

TE CE Time(s) TE CE Time(s) 

Linear C=1 0.0625  0.9412 1.288 C=10 0.528 0.8542 2.676 

C=100 0.0694 0.9118 1.355 C=100 0.253 0.8574 2.897 

Polynomial C=10,p=2 0.1458 0.1471 0.687 C=10,p=2 0.319 0.0882 0.156 

C=100,p=3 0.2656 0.1471 0.153 C=100,p=2 0.319 0.0882 0.171 

RBF C=100, γ =0.0005 0.0486 0.4118 0.703 C=100, γ = 0.00005 0.09 0.6765 2.359 

C=100, γ =0.05 0.0069 0.0588 0.859 C=1000, γ=0.00005 0.09 0.6765 2.567 

ERBF C=100, σ =8 0.0277 0.5588 0.812 C=100, σ =6 0.006 0.705 1.987 

C=100, σ =2.5 0.0138 0.2647 0.328 C=100, σ =10 0.006 0.6765 2.555 

GRBF C=1000, σ =8 0.0277 0.1765 0.593 C=1000, σ =8 0.013 0.8529 2.234 

C=1000, σ =6 0.0208 0.0882 0.965 C=1000, σ =6 0.0 0.8876 1.187 

Sigmoid C=100, k=2, δ =4 0.9 0.5902 0.562 C=100, σ=2,δ=4 0.58 0.8532 1.234 

C=100, k=2,δ =2 0.91 0.5902 0.531 C=100 k=2,δ=2 0.59 0.8532 1.25 
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Table 4.1 Accuracy, Support Vector and Support Vector % for Iris Dataset 
 

 

 

Table 4.2 Accuracy, Support Vector and Support Vector % for Pentagon Dataset 
 

 

Table 4.3 Accuracy, Support Vector and Support Vector % for Wine Dataset 
 

 

Kernels  Parameter 
One versus One 

Parameter 
  One versus All 

SV SV% Accuracy% SV SV% Accuracy % 

Linear C=10 16 13.33 50 C=10 70 58.33 66.67 

C=100 11 7.5 36.67 C=10000 63 52.5 70 

Polynomial C=1, p = 1.5 23 19.1 66.67 C=10,p=2 15 12.5 90 

C=1,p=2.5 16 13.33 56.67 C=100,p=2 10 8.3 80 

RBF C=1,  γ = 0.5 40 33.33 73.33 C=10, γ =1.5 20 16.67 93.33 

C=1, γ =1.5 31 25.8 46.67 C=10, γ =1 23 19.1 86.67 

ERBF C=1,σ=1.5 47 39 96.67 C=1, σ =0.5 31 25.8 93.33 

C=10, σ =2.5 28 23.33 73.33 C=100, σ =2 17 14.16 90 

GRBF C=10, σ =2 31 25.8 86.67 C=10, σ =0.05 45 37.5 76.67 

C=10, σ =1.5 26 21.6 60 C=100, σ =0.05 44 36.67 80 

Sigmoid C=1, k=1, δ=2 46 38.3 73.33 C=1000, k=1, δ =3 12 10 83.33 

C=1000,  k =5, δ =2 40 33.33 96.66 C=1000,k=2, δ =5 11 9.16 76.67 

Kernels  Parameter 
One versus One 

Parameter 
One versus All 

SV SV% Accuracy% SV SV% Accuracy% 

Linear C=10 25 31.65 75 C=10 50 63.3 95 

C=100 20 25.32 75 C=1000 40 50.63 95 

Polynomial C=1000,p=3 18 22.78 75 C=100,p=1.5 19 24.05 90 

C=1000,p=6 15 18.98 75 C=1000,p=1.5 17 21.51 90 

RBF C=10,  γ  = 0.005 15 18.98 60 C=100, γ =0 .5 43 54.43 70 

C=100, γ =0.5 20 25.32 70 C=100, γ =6 21 26.58 90 

ERBF C=100, σ =1.5 21 26.58 75 C=100, σ =0.5 30 37.97 95 

C=1000, σ =0.5 28 35.44 20 C=inf, σ =2 19 24.05 90 

GRBF C=100, σ =0.05 38 48.1 50 C=10, σ =0.5 32 40.5 55 

C=1000, σ =2 18 22.78 70 C=inf, σ =0.5 17 21.51 75 

Sigmoid C=10, k=1, δ =2 28 35.44 70 C=100,k=1,δ=1 20 25.32 90 

C=100, k=0.5, δ =1 20 25.32 75 C=inf, k=2, δ =0.5 19 24.05 90 

Kernels  Parameter 
One versus One 

Parameter 
One versus All 

SV SV% Accuracy% SV SV% Accuracy% 

Linear C=1 33 22.91 5.88 C=10 35 24.3 14.58 

C=100 31 21.52 8.882 C=100 39 27.08 14.26 

Polynomial C=10,p=2 44 30.55 85.29 C=10,p=2 8 5.55 91.18 

C=100,p=3 45 31.25 85.29 C=100,p=2 8 5.55 91.18 

RBF C=100, γ =0.0005 68 47.22 58.82 C=100, γ = 0.00005 65 45.13 32.35 

C=100, γ =0.05 75 52.08 94.12 C=1000, γ =0.00005 55 38.19 32.35 

ERBF C=100, σ =8 70 48.6 44.12 C=100, σ =6 78 54.16 29.45 

C=100, σ =2.5 85 59.02 73.53 C=100, σ =10 72 50 32.35 

GRBF C=1000, σ =8 80 55.55 82.35 C=1000, σ =8 90 62.5 14.71 

C=1000, σ =6 80 55.55 91.18 C=1000, σ =6 100 69.44 11.24 

Sigmoid C=100, k=2, δ =4 112 77.77 40.98 C=100, σ=2,δ=4 122 84.72 14.68 

C=100, k=2,δ =2 110 76.38 40.98 C=100 k=2,δ=2 122 84.72 14.68 
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Fig.2 OA O- Error Rate for Iris dataset.                                     Fig.3 OAO- Error Rate for Pentagon dataset 

 

     
Fig.4 OAO- Error Rate for Wine dataset.                             Fig.5 OAA- Error Rate for Iris dataset. 

 

      
Fig.6 OAA- Error Rate for Pentagon dataset.                              Fig.7 OAA- Error Rate for Wine dataset 

 

Figure (2-4) represent OAO multiclass SVM Error Rate for Iris,Pentagon and Wine.Figure (5-7) represent OAA multiclass SVM 

Error Rate for Iris,Pentagon and Wine. 
 

     
             Fig.8 OAO- Accuracy for Iris dataset.                                        Fig.9 OAO- Accuracy for Pentagon dataset 
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Fig.10 OAO- Accuracy for Wine dataset.                           Fig. 11 OAA- Accuracy for Iris dataset. 

 

     
Fig.12 OAA- Accuracy for Pentagon dataset.                       Fig.13 OAA- Accuracy for Wine dataset 

 

Figure (8-10) represent OAO multiclass SVM Accuracy for Iris,Pentagon and Wine.Figure (11-13) represent OAA multiclass SVM 

Accuracy for Iris,Pentagon and Wine. 
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