Abstract—Energy Efficient are one of the most practical solutions in order to handle with the requirements of large-scale wireless sensor networks (WSN). Energy consumption is one of the basic problem of WSNs. In this paper we have compare the performance of (DEEC) Distributed Energy Efficient routing protocol in terms of energy consumption, alive nodes, and packet transmission. We propose a new approach to exploit efficiently the network energy, by increasing the network lifetime. We have used a clustering technique so that the energy consumption of the network decreases, packet transmission increases and alive nodes increases. Simulation results reveal that the lifetime of proposed algorithm is 40% longer than DEEC and shows the no of packets transmission increases as compare to DEEC.

Index Terms— Wireless Sensor Networks, Clustering Protocol, Energy Efficiency, Cluster-Head Selection, Network lifetime

I. INTRODUCTION

WSN faces a challenge in energy consumption [1,2] because the sensor nodes in WSN are provided energy by compact batteries and the data transmission is frequent, the energy could be used up in a short time. Therefore, to design a kind of routing protocol that can reduce the energy consumption, and prolong the lifetime of WSN is necessary. Clustering has proven particularly energy efficient in sensor network [3, 4]. The network is divided into clusters. Then each cluster is divided into cluster members and a cluster head. The cluster head collects the data from the cluster members and then send it to the base station. The cluster head transmit the data in two ways-inter communication and intra communication. The position of the base station is always in the center of the network so that less power is consumed in data transmission from CH to BS.

In this paper we study the distributed Energy efficient clustering protocol by evaluating alive nodes for network lifetime, energy consumption and packet transmission to cluster head and a new clustering protocol has been introduced which is the improvement on DEEC.

II. PURPOSE OF GROUNDING SYSTEM

In our work we assume a radio model [7] with energy dissipated in the transmitting and receiving modes, shown in fig.2.1. In radio energy model energy dissipates to operate the transmitter or receive circuitry $E_{elec} = 50\text{nJ/bit}$, $E_{AMP} = 100\text{pJ/data}$, aggregation energy $E_{DA} = 5\text{nJ/bit/message}$, $E_{mp} = 0.0013\text{pJ/bit/m}^2$, $E_{fs} = 1\text{pJ/bit/m}^2$.

In this work free space (d^2 power loss) and the multipath fading (d^4 power loss) channel models were used. If the distance is less than a threshold, the free space (fs) model is used; otherwise, the multipath (mp) model is used.

Thus, to transmit an k-bits message over a distance d, the radio expends as:

$$E_{TX}(k, d) = E_{TX_{elec}}(k) + E_{TX_{AMP}}(k, d)$$

and then:

$$E_{TX}(k, d) = \begin{cases} k E_{elec} + k E_{fs} d^2 & \text{if } d < d_0 \\ k E_{elec} + k E_{mp} d^4 & \text{if } d \geq d_0 \end{cases}$$

Where the threshold d_0 is defined by (3):

$$d_0 = \sqrt{\frac{E_{fs}}{E_{mp}}}$$

The electronics energy depends on many factors such as the digital coding, the modulation, the filtering, and the spreading of the signal, whereas the amplifier energy, E_{fsd^2} or E_{mpd^4}.
Comparative Analysis of Cluster Based Routing Protocols used in Heterogeneous Wireless Sensor Network

depends on the distance to the receiver and the acceptable bit-error rate. To receive this message the radio expends energy:

\[E_{\text{rx}}(k) = k E_{\text{elc}} \]

(4)

We have assumed that the radio channel is symmetric such that the energy needed to transmit a message from node 1 to node 2 is the same as the energy required to transmit a message from node 2 to node 1 for a given SNR.

Assumptions

Here in this section, heterogeneous network model has been assumed which exists practically. Let there are \(S \) total number of nodes which are distributed randomly within a \(N \times N \) square region as shown in Figure 2. Before we detail our protocol, we make the following assumptions:

1) All nodes in the network are Heterogeneous
2) Base station is fixed and located at the centre of the network area.
3) The data packet length is \(k \) bits.
4) All the network nodes can reach the base station.
5) CHs can transmit data to the BS
6) Cluster members send their data to the CHs to which they belong.
7) Every sensor node is having a data packet to transmit in a fixed time.
8) All the sensor nodes are assumed to be stationary.
9) Sensing range of node is a smaller than the transmission range.

III. DESCRIPTION OF DEEC PROTOCOL

DEEC [11] is a distributed energy efficient clustering protocol for heterogeneous wireless sensor networks. In this cluster-heads are selected by a probability based on the ratio between remaining energy of each node and the average energy of the network. The epochs of being cluster-heads for nodes are different according to their initial and remaining energy. The nodes which have high initial and remaining energy will have more chances to be the cluster-heads than the nodes with low energy. There are two types of heterogeneous networks i.e. two-level heterogeneous network and multi-level heterogeneous network. In this work we consider multi-level heterogeneous network model. In heterogeneous network there are two types of sensor nodes i.e. advanced nodes and normal nodes. Let \(E_0 \) is the initial energy of the normal nodes and \(m \) is the fraction of advanced nodes which own \(a \) (additional energy factor between advanced and normal nodes) times more energy than normal nodes. Thus there are \(mN \) advanced nodes equipped with \(E_0 (1 + a) \) initial energy and \(N (1 - m) \) normal nodes equipped with \(E_0 \) initial energy. Thus total initial energy for two-level heterogeneous network is given by:

\[E_{\text{total}} = N (1 - m) E_0 + m N E_0 (1 + a) = NE_0 (1 + am) \]

(5)

In multi-level heterogeneous network, initial energy of nodes randomly distributed over the close set \(\{E_0, E_0 (1 + a_{\text{max}})\} \). Thus total initial energy is computed as:

\[E_{\text{total}} = \sum_{i=1}^{N} E_r (1 + a_i) = E_0 (N + \sum_{i=1}^{N} a_i) \]

(6)

As in two-level heterogeneous networks, the clustering algorithm should consider the discrepancy of initial energy in multi-level heterogeneous networks.

A. Cluster-head selection

Let \(n_i \), denote the number of rounds to be a cluster-head for the node \(s_i \), and we refer to it as the rotating epoch. Let each node \(s_i \) \((i = 1, 2, . . ., N) \) becomes a cluster-head once every \(n_i = 1/p_{\text{opt}} \) rounds, we choose different \(n_i \) based on the residual energy \(E_i (r) \) of node \(s_i \), at round \(r \). Let \(p_i = 1/n_i \), is average probability to be a cluster-head during \(n_i \) rounds. Nodes have different amounts of energy; \(p_i \) of the nodes with more energy should be larger than \(p_{\text{opt}} \). Let \(\bar{E} (r) \) denote the average energy at round \(r \) of the network, which can be obtained by

\[\bar{E} (r) = \frac{1}{N} \sum_{i=1}^{N} E_i (r) \]

(7)

To compute \(\bar{E} (r) \) by Eq. (7), each node should have the knowledge of the total energy of all nodes in the network.

Using \(\bar{E} (r) \) to be the reference energy, we have

\[p_i = p_{\text{opt}} \left[1 - \frac{E_i (r) - \bar{E} (r)}{\bar{E} (r)} \right] = p_{\text{opt}} \frac{E_i (r)}{\bar{E} (r)} \]

(8)

This guarantees that the average total number of cluster-heads per round per epoch is equal to:

\[\sum_{i=1}^{N} p_i = \sum_{i=1}^{N} p_{\text{opt}} \frac{E_i (r)}{\bar{E} (r)} = p_{\text{opt}} \frac{\sum_{i=1}^{N} E_i (r)}{\bar{E} (r)} \]

(9)

It is the optimal cluster-head number which is to achieve. The probability threshold that each node \(s_i \) use to determine whether itself to become a cluster-head in each round, is as follows

\[T(s_i) = \begin{cases} \frac{p_i}{1 - p_i (r \mod n_i)} & \text{if } s_i \in G \\ 0 & \text{otherwise} \end{cases} \]

(10)

Where \(G \) is the set of nodes that are suitable to be cluster-heads at round \(r \). If node \(s_i \) has not been a cluster-head during the most recent \(n_i \) rounds, we have \(s_i \notin G \) If the number is less than threshold \(T(s_i) \), the node \(s_i \) becomes a cluster-head during the current round.
B. Coping with Heterogeneous Nodes

From Eq. 8, it is seen that \(p_{opt} \) is the reference value of the average probability \(p_i \), which determine the rotating epoch \(n_i \) and threshold \(T(s_i) \) of node \(s_i \). In the heterogeneous network, the reference value of each node should be different according to the initial energy. In the two-level heterogeneous networks, weighted probabilities (eq.11) are taken for normal and advanced nodes [4].

\[
\begin{align*}
\text{p_{adv}} &= \frac{p_{opt}}{1 + am}, \\
\text{p_{norm}} &= \frac{p_{opt}(1 + a)}{(1 + am)}
\end{align*}
\]

(11)

Therefore \(p_i \) is changed into

\[
p_i = \begin{cases}
\frac{p_{opt}E(r)}{(1 + am)E(r)} & \text{if } s_i \text{ is the normal node} \\
\frac{p_{opt}(1 + a)E(r)}{(1 + am)E(r)} & \text{if } s_i \text{ is the advanced node}
\end{cases}
\]

(12)

Substituting Eq. (13) for \(p_i \) in Eq. (10), we can get the probability threshold used to elect the cluster-heads. This model can be easily extended to multi-level heterogeneous networks. The weighted probability for any sensor node is expressed as

\[
p(s_i) = \frac{p_{opt}(1 + a_i)}{N + \sum_{i=1}^{N} a_i}
\]

(13)

This equation is used to replace \(p_{opt} \) of Eq. (8) and obtain the \(p_i \) for heterogeneous nodes as

\[
p_i = \frac{p_{opt}N(1 + a)E_i(r)}{(N + \sum_{i=1}^{N} a)E(r)}
\]

(14)

From Eqs. (13) and (14),

\[
I_i = \frac{(N + \sum_{i=1}^{N} a_i)}{p_{opt}N(1 + a)}
\]

(15)

Expresses the basic rotating epoch of node \(s_i \), and it is called as reference epoch.

C. Average Energy of the Network

From Eqs. (12) and (14), the average energy \(\bar{E}(r) \) is needed to compute the average probability \(p_i \), so that we have estimate the \(E(r) \). As shown in Eqs. (8) and (11), the average energy \(\bar{E}(r) \) is just used to be the reference energy for each node. We can estimate the average energy \(\bar{E}(r) \) of \(r \)th round as follow. Let \(E_{round} \) denote the energy consumed by the network in each round. \(R \) can be approximated as follow

\[
\bar{E}(r) = \frac{1}{N} E_{total} \left(1 - \frac{r}{R} \right)
\]

(16)

Where \(R \) denotes the total rounds of the network lifetime. Let \(E_{round} \) denote the energy consumed by the network in each round. \(R \) can be approximated as follow

\[
R = \frac{E_{total}}{E_{round}}
\]

(17)

Thus the total energy dissipated in the network during a round is equal to:

\[
E_{round} = K(2N E_{elec} + N E_{DA} + C \epsilon_{mp} d^4_{toBS})
\]

(18)

Where \(C \) is the number of clusters, \(E_{DA} \) is the data aggregation cost expended in the cluster-heads, \(d_{toBS} \) is the average distance between the cluster-head and the base station, \(d_{toCH} \) is the average distance between the cluster members and the cluster-head. Thus we get

\[
d_{toCH} = \frac{N}{\sqrt{2\pi k}}
\]

\[
d_{toBS} = 0.765 \frac{N}{2}
\]

(19)

By setting the derivative of \(E_{round} \) with respect to \(k \) to zero, we have the optimal number of clusters as

\[
k_{opt} = \frac{\sqrt{S}}{\sqrt{2\pi \epsilon_{mp}}} \frac{N}{d_{toBS}^2}
\]

(20)

Substituting Eqs. (19) and (20) into Eq. (18), we obtain the energy \(E_{round} \) dissipated during a round.

IV. PROPOSED ALGORITHM

The Algorithm proposed in this section is the improvement on DEEC protocol. It is named as Improved Distributed Energy Efficient clustering protocol for Routing in Wireless Sensor Network. The operation of iDEEC is divided in to two phases.

A. Setup Phase

In this phase cluster formation takes place. For every transmission round the node \(s_i \) calculate the probability threshold \(T(s_i) \) and choose random number between 0 and 1 same as DEEC. If the number is less than threshold \(T(s_i) \), the node \(s_i \) becomes a cluster-head during the current round. The CHs then broadcast the message to the network and declare themselves as cluster heads. After this message, each regular node chooses its closest cluster head with the largest received signal strength and then informs the cluster head by sending a JOIN_CLU (join cluster) message. If no message is broadcast from any cluster-head, it makes itself as cluster-head. The cluster head sets up a TDMA schedule and transmits it to the nodes in the cluster. After the TDMA schedule is known by all nodes in the cluster, the setup phase is completed and the next phase begins.
B. Steady State Phase

This is most important phase of our algorithm which differentiate i-DEEC from DEEC. Once the clusters are established, the nodes transmit their data messages towards the cluster-head. In this phase, before communication, the proposed algorithm checks whether the node is cluster-head or a cluster member which is not in DEEC. This helps the CH in preventing to pass the packet to itself because it is of no logic. Thus cluster-head communicates with its cluster members and BS only. Within the cluster, the communication uses TDMA, as described in the set up phase. When the cluster-head receives all the nodes data, it performs its compression, to form a new message that sent to the base station.

V. SIMULATION RESULTS

In this section, we compare the performance of DEEC and iDEEC using MATLAB in terms of energy consumption, packet transmission and alive nodes. The parameters values used for simulation are shown in table. The random network used in simulation has 200 nodes which are randomly distributed over 200m×200m square region. Base station is located in center of the network region.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Grid</td>
<td>From(0,0)to(200,200)</td>
</tr>
<tr>
<td>Base Station</td>
<td>100</td>
</tr>
<tr>
<td>Threshold Distance</td>
<td>87m</td>
</tr>
<tr>
<td>Data packet size</td>
<td>2000</td>
</tr>
<tr>
<td>Optimal probability</td>
<td>0.1</td>
</tr>
<tr>
<td>r (no. of rounds)</td>
<td>4000</td>
</tr>
<tr>
<td>Eo</td>
<td>0.5J</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

For analyzing the performance of any routing protocol lesser energy consumption is the main issue so that the network stays alive for longer period or for more number of rounds. iDEEC consumes less energy in comparison to DEEC which helps to extend the network lifetime. Fig 5.1 shows the approximately 20% of energy is saved by using iDEEC.

Fig 5.2 shows the comparison graph of DEEC and iDEEC showing number of alive nodes w.r.t no of rounds. The nodes which can participate in the communication and the nodes whose energy has not reduced to zero are referred as alive nodes. This parameter also helps in evaluating the network lifetime.

This graph shows the number of alive nodes during each transmission round for the iDEEC and DEEC routing protocol. Thus the graph shows that nodes alive upto round r = 1850 in DEEC and in iDEEC nodes remain alive up to 3250 round thus this shows that in iDEEC the nodes remain alive for longer time in comparison to DEEC routing protocol.

VI. Conclusion

In this paper, iDEEC has been proposed, examined and compared with the DEEC routing protocol. Although both the protocols perform well in multi-level heterogeneous networks but the proposed algorithm shows better performance in terms of energy saving, alive nodes and packet transmission. Through the simulation, it is demonstrated that the proposed algorithm allows a large stable network lifetime in comparison to the DEEC routing protocol.

References
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-1, Issue-5, November 2011

AUTHOR'S BIOGRAPHY

Ravindra Prakash Gupta
S/o Mr. S.P. Gupta was born on 27-10-1973. He completed his B. Tech Degree in Electronics and Communication Engineering from Marathwada University, Aurangabad in year 1998 and Master Degree in Electronic and Communication from Malviya National Institute of Technology, Jaipur, India in year 2004. Presently, he is a research scholar of Bhagwant University, Ajmer, India and working as Associate Prof. at Jaipur National University, Jaipur. His area of interests includes Signal Processing, Digital Communication, Wireless Communication, Wireless Sensor Networks and Design of Computer Network. He is presently working as Associate Professor in Electronic and Communication Department in Jaipur National University, Jaipur. He has more than 13 years Academic-Research experience. He has worked with the prestigious Military College of Telecommunication Engineering, Mhow, Indore, India. He is a Life-Member of Indian Society of Technical Education (ISTE), New Delhi and The Institution of Electronics and Telecommunication Engineers (IETE), New Delhi. Member of International Association of Engineers (IAENG), Computer Science Teachers Association (CSTA). He has guided several projects and dissertations in B. Tech and M. Tech courses. He had published numerous International papers in India and abroad.

Poornam Tyagi received her B.Tech Degree in 2007 from Department of Electronics & Communication Engineering N.C, College of Engineering, Israna Haryana, India and pursuing her M.Tech degree from JNU, Jaipur, India. She is currently working as research scholar in Department of Electronics and Communication, Jaipur National University, Jaipur, Rajasthan. Her research interest includes Wireless Communication and Digital Communication. She has over 4 Years of teaching experience and had guided several B. Tech project.

Mr. Rakesh Kumar Gill obtained Master of Science (M.Sc.) in Electronics Science from Kurukshetra University, Kurukshetra in 2004. He received Master in Technology (M.Tech.) in ECE from Kurukshetra University, Kurukshetra in 2007. Currently, working at Gurgaon Institute of Technology and Management (GITM), Gurgaon as an Assistant Professor since 2007. He has published 3 research papers in national journal and conferences. The area of research is communication and VLSI design. He is member of ISTE.