
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

380

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0248101511/2011©BEIESP

Establishing Job Scheduling and Checkpointing in

Multi-Cluster Systems

 K.Akshitha, B.V.S.S.R.S.Sastry, Dr. M.V.Vijaya Saradhi

Abstract— Multi-site parallel job schedulers can improve

average job turn-around time by making use of fragmented node

resources available throughout the grid. By mapping jobs across

potentially many clusters, jobs that would otherwise wait in the

queue for local resources can begin execution much earlier;

thereby improving system utilization and reducing average queue

waiting time. Recent research in this area of scheduling leverages

user-provided estimates of job communication characteristics to

more effectively partition the job across system resources. In this

paper, we address the impact of inaccuracies in these estimates

on system performance and show that multi-site scheduling

techniques benefit from these estimates, even in the presence of

considerable inaccuracy. While these results are encouraging,

there are instances where these errors result in poor job

scheduling decisions that cause network over-subscription. This

situation can lead to significantly degraded application

performance and turnaround time. Consequently, we explore the

use of job check pointing, termination, migration, and restart

(CTMR) to selectively stop offending jobs to alleviate network

congestion and subsequently restart them when (and where)

sufficient network resources are available. We then characterize

the conditions and the extent to which the process of CTMR

improves overall performance.

Keywords- parallel job scheduling; check pointing; migration;

clusters; grid scheduling

I. INTRODUCTION

As cluster computing becomes more commonplace,
industrial and academic research parks often purchase
several clusters to meet their computational needs. These
geographically co-located clusters can be connected via an
interconnection network to form a larger computational grid
resource known as a multi-cluster or super-cluster [2].

This configuration allows flexibility for distributing
parallel jobs among available clusters; however, it also
increases the complexity of managing both computing and
networking resources. As multi-cluster systems become more
prevalent, techniques for efficiently exploiting these
resources become increasingly significant. A critical aspect
of exploiting these systems is the challenge of job scheduling
[3], [4]. Intelligent schedulers can make use of information
related to job communication structure and inter-cluster
bandwidth availability to improve average job response time
by selectively mapping parallel jobs across potentially many
clusters in a process known as job co-allocation or multi-site
scheduling [5, 6, 7].

Manuscript Received October 27, 2011.
K.Akshitha, IT Department, Aurora’s Engineering College,

Bhuvanagiri, Andhra Pradesh, India(e-mail: koluguri.87@gmail.com).

B.V.S.S.R.S.SASTRY, IT Department, Aurora’s Engineering College,
Bhuvanagiri, Andhra Pradesh, India,(e-mail: sastry_38@yahoo.com).

Dr.M.V.Vijaya Saradhi, IT Department, Aurora’s Engineering

College, Bhuvanagiri, Andhra Pradesh, India (e-mail:
meduri_vsd@yahoo.co.in).

One of the caveats of this type of resource sharing is that
user-provided job communication estimates may be
inaccurate. Since multi-site scheduling techniques can
explicitly make use of job bandwidth requirements to
partition the job across clusters, any inaccuracies could have
adverse effects on the overall system performance. In fact,
the question becomes one of determining how sensitive the
job schedulers actually are to the quality of these estimates.
In addressing this question, one can begin to evaluate the
trade-off between the cost of providing more accurate
information, and the improvement obtained in doing so. The
notion of making use of user estimates for the purpose of job
scheduling and exploring the effects of their inaccuracies [8],
[9] is not new. If fact, many backfilling production
schedulers (Maui/Moab [10] and IBM's LoadLeveler) make
use of user-provided estimates of job runtime to determine
when and how to backfill jobs. However, in multi-site
parallel job scheduling, communication characterizations are
used in addition to runtime estimates to allow the scheduler
to partition the job across two or more clusters by
intelligently managing both node and network resources [5].
Specifically, our contributions are centered around exploring
system behavior in the presence of inaccurate user-predicted
bandwidth requirements as opposed to runtimes.
Understanding the resulting behavior is particularly
important in the context of bandwidth-aware multi-site
parallel job scheduling. Our initial research has shown that
the impact of these inaccuracies ranges from negligible to
severe, depending on a number of factors including the
relative intensity of inter-process communication [11]. It is
therefore equally important to identify mechanisms to
mitigate the negative impact of these inaccuracies when they
occur. One such technique is to checkpoint an offending job,
terminate its current execution, migrate it to a location where
more network resources are available, and to subsequently
restart its execution, a collective process we refer to as
CTMR. Job checkpointing is a process where the entire state
of the application is saved to traditionally persistent storage
so that it may be restarted at later time, typically after a fatal
error [12, 13]. While checkpointing is largely used in parallel
and distributed computing to recover from component
failures, we use it in conjunction with job migration, to
recover from scheduling decisions that lead to network over-
subscription. For example, if a user underestimates a job's
bandwidth requirements, the scheduler may co-allocate a job
that result in network over-subscription. This in turn causes
all jobs that are mapped across over-saturated links to slow
down. We focus on job checkpoint, termination, migration,
and restart (CTMR) to alleviate network over-subscription
and mitigate job slowdown. In this paper, we begin the
analysis by addressing the impact of inaccuracies in user-
provided communication requirement estimates on overall
system performance from several points of view.

Establishing Job Scheduling and Checkpointing in Multi-Cluster Systems

381

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0248101511/2011©BEIESP

Furthermore, we demonstrate that multi-site job
scheduling techniques benefit from these estimates, even in
the presence of considerable inaccuracy. Additionally we
quantify the difference in the impact that overestimation
causes versus underestimation. We also demonstrate that the
extent to which estimate error impacts co-allocation is
strongly correlated to the intensity of inter-processor
communication. We then continue the analysis by describing
an agent that autonomously decides when to checkpoint,
terminate, migrate and subsequently restart jobs to mitigate
network over-subscription due to estimate inaccuracies and
we provide a rationale behind its parameterization. We
subsequently characterize the conditions and the extent to
which check pointing, migration and ultimate the restart
improves multi-site parallel job scheduling performance. We
demonstrate that check pointing improves performance even
when the overhead of doing so is very costly. Finally we
show that at moderate levels of overhead, CTMR can be used
to mitigate the negative impact of estimate inaccuracies.

II. THE MODEL

In this section we describe the parallel job model as well as

the multi-cluster architecture. We provide a very brief

explanation of the communication model used, as well as a

strategy to account for the time-varying inter-cluster network

utilization. This general technique is based on the work

presented in [5].

A. Multi-cluster and Parallel Job Models

As a first step, we consider a multi-cluster to be a
collection of arbitrarily-sized clusters with globally
homogeneous node. Each cluster has its own internal switch.
Additionally, the clusters are connected to one another with a
single dedicated link to a central switch. Each node in the
multi-cluster has a single processor and a single network
interface card. Jobs can be coallocated in a multi-cluster by
allocating nodes from different clusters to the same job to
better meet collective needs across the multi-cluster. The
model used assumes that jobs are non-malleable. In other
words, each job requires a fixed number of processors for the
life of the job, and the scheduler may not adjust this number.
A job's execution time, TE, is a function of two components,
the computation time, TP, and the non-overlapped
communication time, TC. The initial value of these two
quantities is considered to represent the total execution time
that the job would experience on a single dedicated cluster.
They therefore form a basis for the best-case execution time
of a given job when it is co-allocated in the multi-cluster.
The computation portion of the execution time does not vary,
however the communication time is considered dynamic,
since the communication time of simultaneously co-allocated
jobs may be lengthened due to the utilization of any shared
inter-cluster network links.

B. Communication Characterization

In order to capture both local and global communication
characteristics, each job modeled in this paper is assumed to
perform both nearest neighbor (2D mesh) and all-to-all
personalized communication patterns throughout its
execution. Jobs are further characterized by their
preprocessor bandwidth (PPBW), i.e. the network bandwidth
required by each node in the job. During co-allocation, nodes
must communicate across cluster boundaries. This
communication requires a certain amount of bandwidth in the
inter-cluster network links. A job's performance will
deteriorate if it does not receive the amount of bandwidth it

requires to run at full speed. Each time a new job is co-
allocated or a co-allocated job terminates, an algorithm is
applied to determine the amount of bandwidth ultimately
allotted to each job on each link. The amount of bandwidth
each job receives is limited by the most saturated link over
which it spans. As these inter-cluster state changing events
occur, the remaining execution and communication times are
recalculated based on a number of factors, including
available network bandwidth. Due to these recalculations, the
job's end-event can slide forward (later) or backward (earlier)
in time, reacting either a degradation or improvement in
saturation levels of the inter-cluster links over which it spans.
The full description is rather lengthy and can be found
described in detail in [5]. This procedure provides a dynamic
view of job communication by accounting for the slowdown
a job experiences due to the time-varying utilization of the
inter-cluster network links. This is particularly important
when considering inaccurate user estimates of bandwidth
since they can cause the scheduler to perform co-allocation
when su_cient inter-cluster network resources are not
available.

C. Job Checkpointing And Migration

Check pointing is largely used in parallel and distributed
computing as a mechanism to recover from failures in system
components [15] and has recently been used to improve
application and system resilience [16]. As the size of parallel
systems increases, the mean time between failures (MTBF)
typically decreases [17] . Without check pointing, a job
mapped across a failed component would likely need to be
restarted from the beginning, thus resulting in longer
turnaround times, and redundant usage of system resources.
While this is an extremely important use of check pointing, it
is not the focus of this paper. Migration is the process where
a job is moved from one set of computational and network
resources to another. In this case, the job would be migrated
to a location where more network resources are available,
and if need be, pause the job until sufficient resources
become available. By combining the utility of job
checkpointing with the exibility of job migration, we are able
to recover from initially poor scheduling decisions by
alleviating network congestion, and therefore mitigating job
slowdown. In this section, we describe the
checkpoint/migration agent and the motivation behind certain
decisions regarding its implementation.

D. Agent Motivation

Determining how and when to checkpoint, terminate,
migrate, and restart a job to alleviate network saturation is a
difficult question. A naive approach may simply checkpoint
and restart a co-allocated job any time an interconnection
network link is over-subscribed. This aggressive approach
does not take into account several important factors. In this
section we describe a few scenarios that will serve as
motivation for the CTMR agent implementation we
ultimately use. First, previous research has shown that
occasional over-subscription can actually improve overall job
throughput (refer to [5], Section 6.3). For example, the
reduction in queue waiting time can outweigh the increase in
execution time caused by network saturation. Second, there
is the issue of capacity loss. Suppose a co-allocated job were
checkpointed to alleviate oversubscription,

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

382

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0248101511/2011©BEIESP

but there are no jobs waiting in the queue that can
immediately make use of the resources freed by the
checkpointed job. This is due to two primary reasons: there
are no jobs that can fit within the number of nodes freed, or
there are jobs that could fit; but other scheduling constraints
exist prevent job dispatch, such as priorities, backfill
reservations, bandwidth requirements, etc. In this case, the
decrease in system utilization can lead to a decrease in
performance that outweighs the improvement in network
saturation. Lastly, it is important to consider the additional
time required to checkpoint, terminate, migrate, and restart.
If this time is sufficiently long compared to the remaining
execution time of the collocated jobs, check pointing can
lead to an increase in the jobs' execution times that outweighs
the benefit of reducing network over-subscription.

E. CTMR Agent Implementation

Each of the above factors, among others, plays an
important role in the implementation of our checkpoint,
termination, migration, and restart (CTMR) agent. The basic
agent iteration is as follows:

Step 1: Identify congestion - If network saturation exists
AND candidate jobs remain, identify the cluster with the
most saturated link, L, and proceed; else schedule CTMR
agent to run in the future and exit.

Step 2: Find a candidate job - Inspect all jobs co-allocated
across link L. Find the job with the largest subscription on
link L, subject to three constraints: (1) the job underestimated
its bandwidth requirements, (2) the time required to CP (if
known) the job is less than some fraction of the job's
remaining execution time. (The determination of this
parameter is described below.), and (3) at least one waiting
job could immediately make use of freed resources if
candidate job were checkpointed.

Step 3: Checkpoint job - If a suitable candidate is found,
checkpoint and place at head of local waiting queue; else
exit.

Step 4: Run scheduler - After checkpoint is complete, run
parallel job scheduler to identify and dispatch jobs that can
now run using the freed resources.

Step 5: Re-evaluate system - Goto step 1.

In addition, a job that initially underestimates its
bandwidth requirements is immediately marked as such prior
to the first checkpoint / migration. The scheduler then assigns
the job a new bandwidth estimate based on observed runtime
behavior. If the job causes network over-subscription a
second time, it will be checkpointed and restarted again;
however it will no longer be considered for job co-allocation.
This ensures that its inter-process communications will not
traverse any network trunks connecting the participating
clusters to the grid. Note, we assume that the communication
bottlenecks in such a multi-cluster are in the inter-cluster
trunks, i.e., not in the backplane bandwidth of the internal
cluster switches. In Step 2, we make use of a configurable
parameter, CPfrac, that serves as one factor to determine the
suitability of a job as a checkpointing / migration candidate.
In particular,CPfrac is used to prevent a job from being
checkpointed if the overhead in doing so is sufficiently" long
compared to the remaining execution time. A natural
question is how to choose its value. We initially conducted a
parameter sweep to determine the value of CPfrac that
minimizes average job turnaround time in a number of
different scenarios. Specifically, we needed to determine
how sensitive this parameter is to other system

characteristics. We found that in almost every case we tried,
a value of around 4% resulted in the best performance. This
was a surprising result and greatly simplified the logic
applied in finding a checkpointing candidate. Note, if the
time required to checkpoint/restart is not known or
unavailable, we assume a generous overhead of 30 minutes.

III. RESULTS AND OBSERVATIONS

As mentioned before, determining the effect of inaccurate
user predictions on performance ultimately becomes a
question of how sensitive the scheduling strategy is to the
bandwidth parameter itself. Clearly, co-allocation is affected
by the amount of inter-process communication that takes
place; therefore, we have setup three experiments to illustrate
the effect of different per processor bandwidths (PPBWs). In
addition to varying the amount of error in the estimates (and
average PPBWs), we also wish to show the difference
between making use of estimates that are inaccurate versus
not making use of the information in the first place.
Therefore we also conducted experiments in which varying
percentages of jobs expose their communication requirement
to the scheduler. We call this information availability", i.e.
the percentage of jobs in the workload stream that reveal
their PPBW to the scheduler. When this information is not
available, the scheduler simply resorts to local and remote
(via migration) job dispatching and does not attempt to co-
allocate the given job. In Figures 1, 3, and 5 we have
explored both the error and information availability
parameter space for three distinct PPBW intensities,
specifically at 150 (low), 300 (medium), and 400 (high)
Mbps. Figures 2, 4, and 6 help to complement the 3D plots
by focusing on the behavior at four distinct error levels,
namely, 0, 50, 80, and 100%. Note that in each of the 2D
plots, the horizontal line Migration Only" denotes the
performance when co-allocation is disabled.

A. Initial Impact of Inaccuracy

From these results, we can make several interesting
observations. The level of acceptable" error in user estimates
is highly dependent on the intensity of inter-process
communication. When the parallel job workload exhibits on
average per-processor bandwidth of 150 Mbps (Figures 1, 2),
even a 100% error (57.7 RMSPE) in user-predicted
bandwidth results in a significant improvement in job
turnaround time beyond that of
Migration Only.

Establishing Job Scheduling and Checkpointing in Multi-Cluster Systems

383

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0248101511/2011©BEIESP

For example, when at least 20% of the workload arrives
with user-estimates provided to the scheduler, a 16%
improvement over Migration Only is obtained. This is not
much less than the 22% improvement z obtained in the ideal
case, where 100% of the jobs arrive with perfectly accurate
PPBW estimates. In fact, even at error levels up to 100%, the
average job turnaround times are essentially monotonically
non-increasing functions of information availability. This
would correspond to the notion that more information is
always" better, even in the presence of large errors in user
predictions of per-processor bandwidth. However, as the
PPBW increases to 300 Mbps (Figures 3, 4), the impact of
error in user estimates becomes more severe. In this case, an
error larger than roughly 75% actually begins to degrade
performance as more information is made available (note the
@ 80% Error" curve in Figure 4). Note that the increase in
PPBW results in a max improvement over Migration Only of
16% (in the ideal case) versus the 22% in the 150 Mbps case.
Therefore, at the 80% error level, the improvement over
Migration Only" is 8%, representing only 50% of the max
improvement possible. This is in contrast to the 73%2 of max
improvement obtained when the PPBW is 150 Mbps. At the
higher PPBW intensity of 400 Mbps (Figures 5, 6), the same
error level of 80% referenced above results in only a 4%
improvement over Migration Only. This represents roughly
33% of the max improvement obtainable in the ideal case
(12% in this instance). However, modest error in user
estimates (below 50%) results in improvement that is nearly
as good as the ideal case.

IV. ADDRESSING CHECKPOINT/RESTART

OVERHEAD

Checkpointing a job requires time to save the state of the
application to disk. The amount of time checkpointing
requires depends on a large number of interacting factors, but
is primarily bound by the amount of memory that needs to be
saved and the speed at which it can be written to disk. Later,
when the job is to be restarted, time is spent restoring the
application image from secondary storage to memory.
Altogether, this additional time constitutes an overhead
associated with performing checkpointing that would not
otherwise be present. In order to provide additional realism,
we take this overhead into account when modeling the
execution times of checkpointed jobs. In particular, we make
this checkpoint/restart time a con_gurable parameter in order
to study the benefit of checkpoint-enabled multi-site
scheduling as a function of increasing overhead. In this way,
we can determine the extent to which checkpointing is a
meaningful tool in recovering from poor scheduling
decisions. In our simulations, we have used
checkpoint/restart overhead ranging from 0 minutes
(effectively no overhead) to as much as 90 minutes. Most
systems with a large amount of RAM and relatively slow
disk I/O should be able to write out the entire contents of
memory (in the worst case) to disk and read it back in under

90 minutes [20]. For example, 12 minutes is used as an upper
bound in [15].

V. CONCLUSIONS

In this paper, we have explored the impact of user-
provided bandwidth estimate inaccuracies on overall system
performance. We demonstrated that multi-site job scheduling
techniques benefit from these estimates, even in the presence
of considerable inaccuracy. Furthermore, we have shown that
the extent to which these errors impact performance is highly
correlated to the inter-process communication intensity.
Additionally, we have illustrated that underestimation is
more costly than overestimation with respect to average job
turnaround time. Furthermore, we have examined the use of
check pointing followed by job migration in an effort to
mitigate the negative impact of user-provided estimate
inaccuracy during periods of intense inter-process
communication. We have developed a relatively simple
checkpoint, termination, migration, restart (CTMR) agent
that autonomously decides when to selectively checkpoint
jobs to reduce network over-subscription. We subsequently
characterize the conditions and the extent to which CTMR
improves multi-site parallel job scheduling performance. We
demonstrate that CTMR improves performance even when
the overhead of doing so is very costly. We show that at
moderate levels of overhead, CTMR can be used to greatly
mitigate the impact of estimate inaccuracies. As multi-cluster
job scheduling matures, the search for increasingly accurate
user estimates will undoubtedly turn to alternative methods
of improvement [19, 4]. Users of parallel machines often
repeatedly execute the same (or similar) programs; [21];
therefore, future efforts may focus on making use of
historical data to predict bandwidth requirements.

ACKNOWLEDGMENT

 We would like to thank Dr.M.V.Vijaya Saradhi, HOD,
Department of Information Technology for providing his
utmost support in preparing the paper

REFERENCES

1. Jones WM. Using checkpointing to recover from poor multi-site
parallel job scheduling decisions. The 5th Workshop on Middleware

for Grid Computing at the ACM/IFIP/USENIX 8th International

Middleware Conference, 2007.
2. Bucar AID, Epema DHJ. The performance of processor co-allocation

in multicluster systems. 3rd International Symposium on Cluster

Computing and the Grid, 2003; 302-309.
3. Ernemann C, Hamscher V, Streit A, Yahyapour R. Enhanced

algorithms for multi-site scheduling. Grid Computing - GRID 2002,

Third International Workshop, Baltimore, MD, USA, November 18,

2002, Proceedings, 2002; 219-231.

4. Qin J, Bauer MA. An improved job co-allocation strategy in multiple

HPC clusters. 21st International Symposium on High Performance
Computing Systems and Applications (HPCS 2007), 2007.

5. Jones WM, Pang LW, Stanzione D, Ligon III WB. Characterization

of bandwidth-aware meta-schedulers for co-allocating jobs across
multiple clusters. Journal of Supercomputing, Special Issue on the

Evaluation of Grid and Cluster Computing Systems, vol. 34, Springer

Science and Business Media B.V, 2005; 135-163.
6. Ngubiri J, van Vliet M, Nijmegen RU. Group-wise performance

evaluation of processor co-allocation in multi-cluster systems. Job
Scheduling Strategies for Parallel Processing. Springer Verlag, 2007.

To appear in Lect. Notes Comput. Sci.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1 Issue-5, November 2011

384

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E0248101511/2011©BEIESP

7. Weizhe Z, Binxing F, Mingzeng H, Xinran L, Hongli Z, Lei G.

Multisite co-allocation scheduling algorithms for parallel jobs in
computing grid environments. Science in China Series F: Information

Sciences 2006; 49(6):906-926, doi:10.1007/s11432-006-2034-2.

8. Lee CB, Schwartzman Y, Hardy J, Snavely A. Are user runtime
estimates inherently inaccurate? Job Scheduling Strategies for Parallel

Processing. Springer Verlag, 2004; 253-263. Lect. Notes Comput.

Sci.vol. 3277.
9. Chiang SH, Arpaci-Dusseau A, Vernon MK. The impact of more

accurate requested runtimes on production job scheduling

performance. Job Scheduling Strategies for Parallel Processing.
Springer Verlag, 2002; 103- 127. Lect. Notes Comput. Sci. vol. 2537.

10. Jackson D, Snell Q, Clement M. Core algorithms of the Maui

scheduler. Job Scheduling Strategies for Parallel Processing. Springer
Verlag, 2001; 87-102. Lect. Notes Comput. Sci. vol. 2221.

11. Jones WM. The impact of error in user-provided bandwidth estimates

on multi-site parallel job scheduling performance. The 19th IASTED
International Conference on Parallel and Distributed Computing and

Systems (PDCS 2007), 2007.

12. Koo R, Toueg S. Checkpointing and rollback-recovery for distributed
systems. IEEE Transactions on Software Engineering 1987; 13:23-31.

13. Deconinck G, Vounckx J, Lauwereins R, Peperstraete JA. Survey of

backward error recovery techniques for multicomputers based on

checkpointing and rollback. International Journal of Modeling and

Simulation 1998; .

14. Oliner AJ, Sahoo RK, Moreira JE, Gupta M. Performance
implications of periodic checkpointing on large- scale cluster systems.

IPDPS '05: Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS'05) - Workshop 18, IEEE

Computer Society:Washington, DC, USA, 2005;299.2,

doi:http://dx.doi.org/10.1109/IPDPS.2005.337.
15. Jones WM, Daly JT, DeBardeleben NA. Application resilience:

Making progress in spite of failure. The Workshop on Resiliency in

High-Performance Computing held in conjunction with the 8th IEEE
International Symposium on Cluster Computing and the Grid

(CCGrid2008), 2008.

16. Daly JT. A higher order estimate of the optimum checkpoint interval
for restart dumps. Future Generation Computer Systems Janurary

2006; 22:303-312.

17. Weil AM, Feitelson DG. Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with back_lling.

IEEE Transactions Parallel Distributed Systems 2001; 12(6):529-543.

18. Tsafrir D, Etsion Y, Feitelson DG. Back_lling using system-
generated predictions rather than user runtime estimates. IEEE

Transactions on Parallel and Distributed Systems 6 2007; 18:789-803.

19. Plank JS, Thomason MG. Processor allocation and checkpoint
interval selection in cluster computing systems. J. Parallel Distrib.

Comput. 2001; 61(11):1570-1590,

doi:http://dx.doi.org/10.1006/jpdc.2001.1757.
20. Feitelson DG, Nitzberg B. Job characteristics of a production parallel

scienti_c workload on the NASA Ames iPSC/860. Job Scheduling

Strategies for Parallel Processing. Springer-Verlag, 1995; 337-360.
Lect. Notes Comput. Sci. vol. 949.

AUTHORS PROFILE

K.Akshitha has been graduated with B.Tech in

2009 from Royal Institute of Technology and

Science, Chevella, R.R.Dist, Andhra Pradesh, India.

She is currently pursuing M.Tech from Aurora’s

Engineering College, Bhongir, Andhra Pradesh,

India. Contact her at Koluguri.87@gmail.com

B.V.S.S.R.S.Sastry has been graduated with

B.Tech in 2009 from Aurora’s Engineering College,
Bhongir, Andhra Pradesh, India. He is currently

pursuing M.Tech from Aurora’s Engineering

College, Bhongir, Andhra Pradesh, India. Contact
him at sastry_38@yahoo.com

Dr. M.V.Vijaya Saradhi received his Ph.D
degree from Faculty of Engineering, Osmania

University (OU), Hyderabad, Andhra Pradesh,

India. He is Currently Working as Professor in the
Department of Information Technology (IT) at

Aurora's Engineering College, Bhongiri, Andhra

Pradesh, India. His main research interests are Software Metrics,

Distributed Systems, Object-Oriented Modeling, Data Mining, Design
Patterns, Object- Oriented Design Measurements and Empirical Software

Engineering. He is a life member of various Professional bodies like

MIETE, MCSI, MIE, MISTE. Contact him at

 meduri_vsd@yahoo.co.in

