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Abstract—In this work, we propose to apply the conjugate 

gradient algorithm to the sparse systems; we encounter these in the 

system admittance matrices, and we will search for a numerical 

solution to this system using the locally optimal steepest descent 

method. The system admittance matrices for an IEEE 30-bus or 

57-bus system(s) are too large to be handled by direct methods like 

the Cholesky decomposition method. Hence, we will make use of 

the flexible preconditioned conjugate-gradient method, which 

makes use of sophisticated preconditioners, leading to variable 

preconditioning that change between successive iterations. 

The Polak–Ribière formula, a highly efficient preconditioner, is 

applied to the system, to yield drastic improvements in 

convergence. 

Our experimental results include a comparison of the Krylov 

subspace method with traditional methods, assuming the IEEE 

five-busbar, seven-line reference system as the common basis for 

all load-flow analysis. The system base quantities are VAbase= 100 

MVA and Vbase= 132 kV. The results show an overall better 

assurance of convergence for all general systems, a lesser 

dependence on starting voltage profiles assumption and a 

robustness and efficiency of computation for well-conditioned 

systems. 

Keywords- Krylov subspace methods, conjugate gradient 

algorithm, preconditioners, Polak–Ribière formula, assured 

convergence. 

I. INTRODUCTION 

Power system load flow analysis mainly utilizes the 

Gauss-Seidel method, the Newton-Raphson method, and the 

Fast Decoupled Load Flow method. All these stationary 

iterative algorithms assure convergence for a limited class of 

well-conditioned matrices, and require a good enough estimate 

of nodal voltages at all system busbars under consideration, to 

provide assured convergence. The Krylov subspace methods 

are widely generalized in their approach, and work by forming 

an orthogonal basis of the sequence of successive matrix 

powers times the initial residual (the Krylov sequence). The 

prototypical method in this class is the conjugate gradient 

method (CG).   

The Krylov subspace power flow (KSPF) method 

presented in this paper uses a newer, very successful 

approach-the Krylov subspace methodology-developed in 

applied linear algebra for the  iterative solution of large, sparse 

systems of linear equations[8,10]. The method has been 

adapted to nonlinear equations and used for the solution of the 
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power flow problem with the method of steepest 

descent[1,2,7]. Our work takes into account a test system, 

albeit well-conditioned, and compares an existing method to 

the proposed Krylov method of calculations [6,7,9].     

In numerically challenging applications such as these, 

sophisticated preconditioners are used, which might lead to 

variable preconditioning that change between successive 

iterations. The bus admittance matrix Y is symmetric, as stated 

earlier and positive definite for all systems under 

consideration. Hence, the stage is set for the Krylov subspace 

method to be applied.[1,3,7] 

II. CALCULATION PROCEDURE  

The conjugate gradient method has two modes of 

application:- 

1. The direct method of application (where Y matrix is not 

too large) 

2. The iterative method of application (where Y matrix is 

quite large) 

A. The Direct Method Of Application 

We say that two non-zero vectors u and v are conjugate (with 

respect to A) if, 

0AvuT
                                     (1) 

Since A is symmetric and positive definite, the left-hand side 

defines an inner product [13], 

AvuAvuvAuvAuvu TT

A
 ,,,:,      (2) 

So, two vectors are conjugate if they are orthogonal with 

respect to this inner product[1,2,4]. Being conjugate is a 

symmetric relation: if u is conjugate to v, then v is conjugate 

to u.  

Suppose that {pk} is a sequence of n mutually conjugate 

directions [13]. Then the pk form a basis of R
n
, so we can 

expand the solution x* of Ax = b in this basis: 
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This result is perhaps most transparent by considering the 

inner product defined above. 

This gives the following method for solving the 

equation Ax = b. We first find a sequence of n conjugate 

directions and then we compute the coefficients [1,5,2] αk. 

B. The Iterative Method Of Application 

If we choose the conjugate vectors pk carefully, then we may 

not need all of them to obtain a good approximation to the 

solution x*. 

We denote the initial guess for x* by x0. We can assume 

without loss of generality that x0 = 0. Starting with x0, we 

search for the solution and in each iteration we need a metric 

to tell us whether we are closer to the solution x* (that is 

unknown to us). This metric comes from the fact that the 

solution x* is also the unique minimizer of the 

following quadratic function [1,7,9]; so if f(x) becomes 

smaller in an iteration it means that we are closer to x*. 

          nTT RxbxAxxxf  ,
2

1
                  (6) 

This suggests taking the first basis vector p1 to be the 

negative of the gradient of f at x = x0. This gradient 

equals Ax0−b. Since x0 = 0, this means we take p1 = b[7,9]. 

The other vectors in the basis will be conjugating to the 

gradient, hence the name conjugate gradient method. 

Let rk be the residual at the kth step: 

          kk Axbr                                     (7) 

Because rk is the negative gradient of f at x = xk, so now 

using the gradient descent method would be to move in the 

direction rk. Here, we insist that the directions pk be 

conjugate to each other. We also require the next search 

direction is built out of the current residue and all previous 

search directions, which is reasonable enough in practice. 

The conjugation constraint is an orthonormal-type constraint 

and hence the algorithm bears resemblance to Gram-Schmidt 

orthonormalization.[1,7] 

This gives the following expression: 
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The next optimal location is given by: 
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In this work, we propose our Krylov subspace algorithm 

incorporated in the load flow solution. 

III. OUR APPROACH 

The load flow system is given by:- 

I = Y.V, where Y= the nodal bus admittance matrix. 

                         V= the nodal busbar voltage matrix. 

Thus, 

 

Y.V=I is analogous to the linear system A.x=B, and so we can 

start our calculations by calculating the residual vector matrix 

R0 associated with the voltage matrix V. 

 

This residual vector is computed from the formula, R0 = I – 

Y.V0, where V0 is the initial guess matrix on nodal busbar 

voltage matrix. 
 

Let us start with the initial guess: - (for V0 matrix) 

 

V0=                                 I0=                                                                    
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0.991808 
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The initial guess matrix can be obtained from the iterative 

load flow equations, namely:- 
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R0 = I – Y.V0 

 
 

 

0.6216+j0.1251 

 

 

-0.2597+j0.0974 

 

 

-0.3058+j0.132 

 

 

-0.2298+j0.0802 

 

 

-0.379+j0.1646 

 
 

Thus, the residual matrix R0 is evaluated. 
Since this is the first iteration, we use the residual vector R0 as 

our initial search direction P0.  

 

We now compute the scalar α0, and the result, obtained from 

previous relationships, as:- 
α0 = (0.66743 – j0.1365) / (0.9876 – j0.0098) 

 

 

 

 

  1.000000000 

+j0.0000000 

 

-0.400000 

+j0.20000 

 

-0.25000000 

+j0.150000 

 

-0.40000000 

+j0.2000000 

 

-0.5000000 

+j0.200000 
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We can now compute X1 using the formula- 

X1 = X0 + α0P0. 

 

This result completes the first iteration, the value of X1 giving 

us an improved approximate solution to the system under 

consideration. 

Successive iterations give us the desired result to the system 

solution, to the required degree of accuracy. 

IV. CODING ALGORITHM 

The resultant algorithm gives an explanation towards the 

conjugate gradient method. However, it requires storage of all 

the previous searching directions and residue vectors, and 

many matrix vector multiplications, thus could be 

computationally expensive. In practice, one modifies slightly 

the condition obtaining the last residue vector, not to minimize 

the metric following the search direction, but instead to make it 

orthogonal to the previous residue. Minimization of the metric 

along the search direction will be obtained automatically in 

this case.  
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If  rk+1 is sufficiently small then exit loop end if 
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The result is 
1kx . 

 

As previously stated, the Polak–Ribière formula needs to be 

incorporated within the existing framework to yield faster 

convergence of the Krylov Subspace method. The modified 

algorithm thus is presented below:- 
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If rk+1 is sufficiently small then exit loop end if 
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The result is 
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These two algorithms, coupled together bring about drastic 

improvement in the load flow analysis of any ill-conditioned 

system. 

V. RESULTS 

The results show a marked improvement in the convergence 

time T taken for the iterations to converge. The time taken for 

the Krylov subspace method is found to be much lesser than 

the popular iterative method, the Gauss-Seidel method. The 2 

tables presented below, gives us a clearer assumption about the 

nature of the degree of convergence, obtained via the locally 

optimal path of steepest descent incorporated in the Krylov 

subspace method, as compared to the Gauss-Seidel method. 

 
     Iteration          ∂2

0          |V3|           ∂3
0 

          0.      8.0000      0.7000       -16.0000 

          1.      -0.228       1.024        -8.210 

          2.      -0.226       1.028        -4.235 

          3.      -0.226       1.028        -4.233 

 

The above results have been obtained via the Krylov 

Subspace algorithm. 

 
     Iteration         ∂2

0         |V3|          ∂3
0  

          0.      8.0000      0.7000      -16.0000 

          1.     -6.2340      0.8500      -12.0876 

          2.     -3.2786      0.8800      -10.0983 

          3.     -2.0986      0.9347      -8.9073 

          4.     -1.2563      0.9876      -6.2103 

          5.     -0.8792      1.0023      -4.2874 

         6.    -0.3567      1.0467      -4.3980 

         7.    -0.220      1.033      -4.2980 

         8.    -0.220      1.035      -4.2450 

 

The above results have been obtained via the Gauss-Seidel 

algorithm. 

 

 

The results clearly show a marked improvement of 

computational efficiency, when the Krylov subspace method is 

used over the Gauss-Seidel algorithm. 
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Figure 1: Convergence Analysis of the two methods 

 

A graphical representation of the load flow convergence 

schema presented above has been illustrated for the sake of 

clarity of perception. Series 1 depicts the convergence of the 

proposed Krylov subspace method, whilst Series 2 depicts 

the convergence of the Gauss-Seidel method. 

VI. CONCLUSION 

The recent developments in power system load flow 

analysis have directed attention away from iterative methods, 

and towards stochastic search methods. The general 

stochastic methods, namely, Genetic Algorithms and 

Simulated Annealing offer better computational 

complexity-storage space trade-off. Nevertheless, the 

Conjugate Gradient method utilizes the sparsity of the Nodal 

Admittance matrix to near perfection, thus keeping the 

number of iterations at the lowest possible level, whilst not 

consuming too much computer storage space. 

Pre-conditioning, using the Polak–Ribière formula, helps to 

reduce the condition number of most well conditioned system 

matrices. Thus, we conclude that the results show an overall 

better assurance of convergence for all general systems, a 

lesser dependence on starting voltage profiles assumption 

and a robustness and efficiency of computation for 

well-conditioned systems. 
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