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Abstract— This paper presents an approach for shape and 

position reconstruction of a scattering object using microwaves 

where the scatterer is assumed to be a homogenous dielectric 

medium. The employed technique assumes no prior knowledge 

of the scatter’s material properties like electric permittivity and 

conductivity, and the far-field pattern is used as the only primary 

information in identification. The approach proposed consists of 

retrieving the shape and the position of the scattering object 

using a linear sampling method. The technique results in high 

computational speed and efficiency. In addition, the technique 

can be generalized for any scatterer structure. Numerical results 

are used to validate the feasibility of the proposed approach. 

 

Index Terms— Shape Reconstruction, Inverse Scattering, 

Microwave Imaging, Linear Sampling Method (LSM).  

I. INTRODUCTION 

  Reconstruction of an electromagnetic (EM) scatterer is a 

special case of target identification. The imaging of 

scattering objects using microwaves is a major problem 

which is intensely investigated in the field of science and 

technology. This kind of imaging is implemented using an 

electromagnetic inverse scattering technique which involves 

the determination of geometrical and physical properties of a 

scatterer, such as position, size, shape, permittivity, 

conductivity, and permeability, from the measurements of 

the scattered EM fields resulting from the interaction of 

known incident waves with the unknown object [1], [2], as 

illustrated in Fig.1.  

microwave imaging has many applications ranging from 

nondestructive testing and evaluation to medical imaging, 

and from civil engineering to target identification [3]-[5], the 

importance of solving the inverse EM problem to determine 

the shape and location of an object has become paramount. 

Even though this problem is not fairly new as we can refer to 

x-ray imaging in the early 20th century, however the 

complexity of EM imaging has hindered the exact and 

precise solution [6], [7] because of ill-posedness and 

nonlinearity. What is meant by ill-posedness is that one of the  

following conditions is not satisfied: the existence of the 

solution; the uniqueness of the solution; or the continuity of 

the inverse mapping. For these reasons robust analytical tools  
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involving the use of computationally intensive techniques are  

required. The various techniques employed are different 

according to the model used to define the scattering object, 

such as material properties and boundary conditions, and 

method of determining the solution. In this paper the 

scatterer is considered homogenous, electromagnetically 

penetrable, located in free space. The goal of the proposed 

technique was to reconstruct the scatterer’s profile and 

position. 

 
Fig.1   Incident and scattered fields configuration in 

the model of inverse scattering problem. 

   Since microwave imaging has many applications 

ranging from nondestructive testing and evaluation to 

medical imaging, and from civil engineering to target 

identification [3]-[5], the importance of solving the inverse 

EM problem to determine the shape and location of an object 

has become paramount. Even though this problem is not 

fairly new as we can refer to x-ray imaging in the early 20th 

century, however the complexity of EM imaging has 

hindered the exact and precise solution [6], [7] because of 

ill-posedness and nonlinearity. What is meant by 

ill-posedness is that one of the following conditions is not 

satisfied: the existence of the solution; the uniqueness of the 

solution; or the continuity of the inverse mapping. For these 

reasons robust analytical tools involving the use of 

computationally intensive techniques are required. The 

various techniques employed are different according to the 

model used to define the scattering object, such as material 

properties and boundary conditions, and method of 

determining the solution. In this paper the scatterer is 

considered homogenous, electromagnetically penetrable, 

located in free space. The goal of the proposed technique was 

to reconstruct the scatterer’s profile and position. 

Numerical methods employed for solving inverse 

scattering problems can be 

grouped into two categories, 

i.e. qualitative and 
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quantitative approaches. The singular sources [8], [9], the 

factorization method (FM) [4], [10] and the sampling 

method (SM) or the linear sampling method (LSM), are 

examples of qualitative methods. The LSM, introduced by D. 

Colton and A. Kirsch [11], is an effective method to tackle 

the problem of reconstructing the shape of the unknown 

scatterer. This method does not require a priori knowledge on 

the scatterer’s profile, however the physical properties, such 

as electrical permittivity value, of a penetrable scatterer 

cannot be calculated by using it [7], [11]-[16]. There are also 

various quantitative methods used to reconstruct the 

scatterer, i.e. the nonlinear and linear approximation 

methods. Although these methods are capable of 

reconstructing the scatterer with high precision 

unfortunately they require a great deal of iterations to 

improve the initial guess [7], [11] and thus are very time 

consuming. In this paper, the LSM approached is used for 

reconstruction because the many advantages 

aforementioned.  

The paper is organized as follows. In Section II, an 

appropriate model for the direct problem is introduced. In 

Section III, the mathematical details and the general 

formulations of LSM are described. The numerical examples 

are given in Section IV. Finally, Section V draws some 

conclusions. 

II. DIRECT SCATTERING  

In order to solve any inverse problem there has to be an 

appropriate model for the direct problem. In the direct 

scattering problem the scatterer and incident field are known 

quantities. The problem is to compute the scattered field in 

the form of a far-field pattern. For this scenario the Maxwell 

equations are defined by: 

(1a)                        0
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t
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where E


 and H


 are electric and magnetic fields,   is 

the electric permittivity and   is the magnetic permeability. 

If the electric and magnetic fields are time harmonic with   

frequency, equation (1) is represented by:    
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

 
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
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 Assume that D  is the homogenous penetrable scatterer 

in 3R  space. With this presumption the inhomogeneous 3R  

space will be divided to two homogeneous regions of D  and 

DR \ . Considering that the structure of the scatterer is 

infinite in one direction (z-axis) and the incident electric 

field is polarized parallel to the same infinite dimension of 

the object (TM polarization), the components of the E


 and 

H


 fields can be simplified as: 
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in which u  is the only component of the electric field. 

This equation shows that all of the components of the E


 and 

H


 can be found by using u . Therefore, from this point on 

the electric field will be considered the same as u . If the 

internal electric field is intu  on the D  region and the 

external electric field is extu  on the DR \2  region, by using 

the Maxwell equations, the scalar wave will be given by: 

(4)              Donuku 0int2int2   

(5)            DRonuku extext \0 222  

where k  is the wave number of free space and is defined 

as 2k . Since the scatterer is lossy, the relative 

complex permittivity is determined as rr i  , in which 

the imaginary section of 


 is calculated from the following 

equation:  

 

(6)                              0 r 

In the above equation,   is the electric conductivity, and 

0  is the electric permittivity of free space. As mentioned 

before, it can be said that the incident field is a plane wave in 

the direction of d̂ ,  

(7)                            dxiki eu
ˆ.ˆ 

and the external electric field is the total of the incident 

field ( iu ) and the scattered field ( su ), 

(8)                          siext uuu  

The existence of boundary conditions in all of the 2R  

space is one of the conditions that may lead to the 

well-posedness of a scattering problem and complete the 

model of the problem. These conditions include the 

discontinuity of region on D  and the Sommerfeld radiation 

condition. Therefore,  
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The Sommerfeld radiation condition for the scattered field 

is defined as:  
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   According to aforementioned points, it could be said that 

equations (4), (9), and (10) are a complete mathematical 

model of the direct scattering problem for the scatterer D , 

for which if the incident field is known, the scattered field 

will be calculated as su .  

Since the precision and accuracy of the measured scattered 

field are high in far-field zones, solving the inverse scattering 

problem is implemented in 

this zone. Though, we are 

able to study this problem for 
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scattered fields in near-field zones from the scatterer. It 

should be mentioned that in dealing with the ill-posedness 

problem, the latter approach is somewhat easier than the 

former one. For this reason, to solve a problem in far-field 

zone the pattern of the far-field is determined via the symbol 
u . Any scattering problem which satisfies the Helmholtz 

equations has asymptotic behavior outside of the scatterer 

which is DR \ . By using the Sommerfeld radiation 

condition and the Green integral equation, we have:  
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for which u  represents the far-field pattern and x̂  is 

cylindrical unit vector in   space. 

III. INVERSE SCATTERING (LINEAR SAMPLING 

METHOD)  

Our primary purpose is to reconstruct the shape of the 

scatterer by assuming a known far-field pattern u  for every 

dx ˆ,ˆ  and constant wave number k . In the range of the 

resonance frequency the problem is solved using a sampling 

method. The principle of this technique is based on solving 

the Fredholm integral equation of the first kind ( Fg ), as 

follow 

                                                                                  

(12)          


 xedddgdxug dxik ˆ,ˆˆˆ,ˆx̂F
ˆ.ˆ

 

 

in which F  is known as the far-field operator and u  is 

the far-field pattern for the incident wave ikxzi eu  . A 

question that maybe raised is why and how the integral 

equation Fg  and finding g  will help to reconstruct the 

shape and the position of the scatterer D . Actually, Colton 

[13] showed that if   zg


,.  would be a good approximation 

for g , for every 0 , we could have: 

                                                   

(13)       zzFg


,.,.   

then for Dz , we can say: 
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and we can say that for DRz \ , the equation 

  zg


,.  is established in general.  

 

 In summary, it can be said that if the chosen assumed 

point source is inside the scatterer Dz , we can show the 

far-field pattern by using a spectrum of the incident wave 

with a amplitude g . But if this point source is located on or 

outside of the boundary DRz \ , the use of a spectrum of 

the incident wave with finite amplitude is not possible. For 

this very reason g  is infinite on or outside of the boundary. 

It should be mentioned that the above conditions are fully 

satisfied if the scattering problem is solved analytically and 

not numerically.  

The errors caused by the discretization of the inverse 

problem will hinder viewing this event. As we approach the 

boundary D  from the inside of the scatterer the value of 

g  will increase. This value is larger on the outside of the 

scatterer DR \ . But this does not mean that the increasing 

process of g  is ascending. In fact, in some paths the value 

may decrease, but in comparison with the inside of the 

scatterer the value is very large and it can be said that g  is 

a specification function for D .  

According to what has been said our goal in this section is 

to solve the integral equation Fg . But because of the 

smoothness of this integral equation’s kernel u , the 

numerical realization of it is considered as an ill conditioned 

linear problem. The differences of the sampling methods are 

exact in solving this integral equation. LSM, which was first 

introduced but Colton and Kirsch [11] in 1996, is amongst 

the first methods of the group of sampling methods. In this 

method, the problem is changed in a way so that the 

ill-posedness of it decreases so that it can also be a good 

approximation for the unknown scatterer. In other words, it 

can be said that the goal is to minimize the error function 

shown below:  

                                            

(15)       22
,.,.,. zgzzFg


   

 

In this equation   is the Tikhonov regularization 

parameter. The smaller the   value, the closer the answer of 

the error function of the extremum problem gets to the real 

value. But if it’s too small or in other words if 0  it will 

cause the problem to go back to its ill-posed condition. The 

larger the   value, the smoother and simpler the solution of 

ill-posed problem. But if it's too large, the answer will be 

distance from the actual answer. For this reason an optimum 

value has to be chosen for  . Various methods exist for 

choosing   including Morozov’s discrepancy principle and 

L-curve [17]-[19] in which by choosing this parameter   

the value of g  and hence g  will be obtained eventually. 

One of the methods for solving the integral equation (12) is 

the factorization method. In [17], Kirsch proved that if the 

chosen point source is inside the scatterer Dz , the 

far-field function  z,.  will be in the range of   41*FF  

operator. This conclusion will be a kind of range identity for 

the primary integral equation. For further information, refer 

to reference [10].    

IV. NUMERICAL RESULTS 

In this section the 

numerical results of different 

2D structures will be 



Reconstruction of Shape and Position for Scattering Objects by Linear Sampling Method 

 

8 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A0367012111/2012©BEIESP 

presented. In all of the results presented the physical 

dimensions and distances have been normalized according to 

wavelength scale. The algorithm applied by the means of 

LSM the shape and the position of the scatterers are 

reconstructed. In LSM, there is no need to solve the direct 

problem, but the far field pattern is the input data of this 

problem. Therefore, the direct problem has to be solved 

according to the number of incident waves. To decrease the 

amount of computations in this stage one incident wave is 

used. The sampling points have been chosen in the 

  10,10:, 2  yxRyx  region. The grid has been 

obtained uniformly by discretizing the region into 101101  

points.  

In the simulation, sampling has been done uniformly on 

the far-field pattern. The far-field pattern is computed for the 

case where the number of the incident angles is equal to 18 

(0r 72), and their incident direction and measured direction 

are the same. Therefore: 

(18)              18sin,18cos  nnkk si  

 Forward scattering data is produced by using an integral 

equation on the scatterer (D region). This integral equation is 

referred to in [20]. The produced fields from this integral 

equation are used in the LSM. In solving the mentioned 

integral equation, the moment method is used for 

discretization of the D region [20], [21]. The basic functions 

in our simulations are chosen to be a rectangular pulse. In all 

examples, the discretization is rectangular and the maximum 

value of the elements length is chosen to be 10 . 

The first example is relative to an aircraft-shaped 

scattering object, as shown in Fig. 2. This is a homogeneous 

dielectric scatterer which has a relative complex permittivity 

equal to 1.04 j  ( 4r , 1.0r ). Also, it is assumed 

that the wavelength of the incident field is equal to 

20 (  20  or 1.0k ) and the number of the incident 

angles is equal to 18. The Tikhonov regularization parameter 

( ) is calculated by Morozov's discrepancy principle [18] 

and it is equal to 8103.5  . Fig. 2 shows the result of the 

reconstructed shape of this scatterer qualitatively. In fact, the 

shape of the actual scatterer has been shown by a closed blue 

line. g  is a characteristic function of the target and the 

boundary of the shape can be reconstructed by drawing an 

appropriate level. Also by choosing a specification function 

like    .log. f , the image of g  (  gf  ) can be drawn 

so that the shape of the scatterer could be clearer. 

 
Fig. 2  Shape and position reconstruction of an 

aircraft-shaped scattering object with 4r and 

1.0r   in free space by using LSM  (k=0.1).  

For the same example in Fig.3, shape and position 

reconstruction have been shown for higher frequencies. In 

Fig. 3(a), the wavelength of the incident field is equal to 

4 (  4  or 5.0k ), and in Fig. 3(b) it is equal to 

2 (  4  or 5.0k ). As this Figure shows, wherever the 

frequency of the incident field is closer to the resonance 

frequency, its reconstruction is more precise.   

 

 
Fig. 3  Shape and position reconstruction of an 

aircraft-shaped scattering object by LSM  (a) k=0.5, (b) 

k=1 

The second example is relative to an I-shaped and a 

T-shaped scattering object, as shown in Fig. 4. This is a 

homogeneous dielectric scatterer which has a relative 

complex permittivity equal to 5.02 j  ( 2r , 

5.0r ). Also, it is assumed that the wavelength of the 

incident field is equal to 2 (  2  or 1k ) and the 

number of the incident angles is equal to 18. The Tikhonov 

regularization parameter (  ) is calculated by Morozov's 

discrepancy principle [18] and it is equal to 81072.4  . Fig. 

4 shows the result of the reconstructed shape of these 

scatterers qualitatively. In Fig. 5 and Fig. 6, the frequency of 

the incident wave is increased, such that the wavelength of 

the incident field is equal to 2 and 1 in Fig. 5 and Fig.6, 

respectively. In Fig. 7, the number of the incident angles is 

equal to 72. These figures show that by increasing the 

frequency of the incident wave and also by increasing the 

number of the incident angles, the precision of reconstruction 

becomes higher.   

 
Fig. 4  Shape and position reconstruction of the scattering 

objects by LSM. (the number of the incident angles is 

equal to 18 and 1k )  
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Fig. 5  Shape and position reconstruction of the scattering 

objects by LSM. (the number of the incident angles is 

equal to 18 and k )  

 

 
Fig. 6  Shape and position reconstruction of the scattering 

objects by LSM. (the number of the incident angles is 

equal to 18 and 2k )  

 

 
Fig. 7  Shape and position reconstruction of the scattering 

objects by LSM. (the number of the incident angles is 

equal to 72 and 2k )  

V. CONCLUSION 

Shape and position reconstruction of a scattering object at 

microwave frequency was described using the linear 

sampling method. The LSM was proposed because it can be 

applied to an extremely wide class of scatterers without any a 

priori information. The advantage of this approach is its high 

computational efficiency and speed. Furthermore, the 

approach described can be generalized for scatterer 

structures. Numerical results are used to validate the 

described technique. These results showed, wherever the 

frequency of the incident field is closer to the resonance 

frequency, and when the number of the incident angles 

increases, the reconstruction of the scatterer is more precise. 
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