
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

502

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

Software Quality Modeling and Current State of the

Art

N. Rajasekhar Reddy, R.J.Ramasree

Abstract: Software Quality Assurance plays a key role in software

development. The research is mainly aimed at considering prior

researches, present working status and to restore the gaps

between them with present known information. Here, we conduct

a review on current state of the art in software quality evaluation

and assurance models.

Keywords: SQA, Product metrics, software science, size-defect

relationship, measurement applied to SQA, Terms—Software as

a service (SaaS), software selection, service utility

I. INTRODUCTION:

Research on software quality is as old as software research

itself. As in other engineering and science disciplines, one

approach to understand and control an issue is the use of
models. Therefore, quality models have become a well-

accepted means to describe and manage software quality.

Beginning with hierarchical models proposed by Boehm et

al. [1], over the last 30 years, a variety of quality models has

been developed, some of which have been standardized.

Many of these models are used, for example to aid the

specification of quality requirements, to assess existing

systems or to predict the defect density of a system in the

field. The last three decades in quality modeling generated a

multitude of very diverse models commonly termed ―quality

models‖. Examples on the spectrum of diverse models

include taxonomic models like the ISO 9126 [2], metric-
based models like the maintainability index (MI) [3] and

stochastic models like reliability growth models (RGMs) [4].

On first sight, such models appear to have little relation to

each other although all of them deal with software quality.

We claim that this difference is caused by the different

purposes the models pursue: The ISO 9126 is mainly used to

define quality, metric-based approaches are used to assess

the quality of a given system and reliability growth models

are used to predict quality.

To avoid comparing apples with oranges, we propose to use

these different purposes, namely definition, assessment and

prediction of quality, to classify quality models.

Consequently, we term the ISO 9126 as definition model,

metric-based approaches as assessment models and RGMs

as prediction models. Although definition, assessment and

prediction of quality are different purposes, they are

obviously not independent of each other:

 Manuscript Received January 09, 2012.

N. Rajasekhar Reddy, Department of Computer Science and

Engineering, Madanapalli Institute of Technology and Science,

AndhraPradesh, India (E-mail: rajsekhar007@gmail.com)

R.J.Ramasree, Department of Computer Science, Raastriya Sanskrit

dyapeeta,Tirupati, AndhraPradesh, India (Email: rjramasree@yahoo.com)

It is hard to assess quality without knowing what it actually

constitutes and equally hard to predict quality without
knowing how to assess it. This relation between quality

models is illustrated by the DAP classification shown in Fig.

1.

Fig1: DAP classification

The DAP classification views prediction models as the most

advanced form of quality models as they can also be used

for the definition of quality and for its assessment. However,

this view only applies for ideal models. As Fig. 1 shows,

existing quality models do not necessarily cover all aspects

equally well. The ISO 9126, for example, defines quality but
gives no hints for assessing it; the MI defines an assessment

whose relation to a definition of quality is unclear. Similarly,

RGMs perform predictions based on data that is not

explicitly linked to a definition of quality.

In this paper we explore the Software Quality models and

current state of the art.

II.SOFTWARE QUALITY MODELS AND CURRENT

STATE OF THE ART

One of the main shortcomings of existing quality models is

that they do not conform to an explicit meta model. Hence

the semantic of the model elements is not precisely defined

and the interpretation is left to the reader.

Quality models should act as a central repository of

information regarding quality and therefore the different

tasks of quality engineering should rely on the same quality

model. But today, quality models are not integrated into the

various tasks connected to

quality.

mailto:rajsekhar007@gmail.com
mailto:rjramasree@yahoo.com

Software Quality Modeling and Current State of the Art

503

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

 For example, the specification of quality requirements and

the assessment of software quality are usually not based on

the same models. Another problem is that today quality

models do not address different views on quality. In the field

of software engineering, the value-based view is typically

considered of high importance [5]. This view is largely
missing in current quality models [6].

The variety in software systems is extremely large, ranging

from huge business information systems to tiny embedded

controllers. These differences must be accounted for in

quality models by defined means of customization. In

current quality models, this is not considered [7, 8, and 9].

III. DEFINITION QUALITY MODELS

Existing quality models lack clearly defined decomposition

criteria that determine how complex concepts of quality are

to be decomposed. Most definition models depend on a

taxonomic, hierarchical decomposition of quality attributes.

This decomposition does not follow defined guidelines and
can be arbitrary [10, 11, 12, 6]. Hence, it is difficult to

further refine commonly known quality attributes, such as

availability. Furthermore, in large quality models, unclear

decomposition makes locating elements difficult, since

developers might have to search large parts of the model to

assert that an element is not already contained. This can lead

to redundancy due to multiple additions of the same or

similar elements.

The ambiguous decomposition in many quality models is

also the cause of overlaps between different quality

attributes. Furthermore these overlaps are often not

explicitly considered. For example, security is strongly

influenced by availability (denial of service attack) which is

also a part of reliability; code quality is an important factor

for maintainability but is also seen as an indicator for

security [13].

Most quality model frameworks do not provide ways for

using the quality models for constructive quality assurance.

For example, it is left unclear how the quality models should

be communicated to project participants. A common method

of communicating such information is guidelines. In

practice, guidelines that are meant to communicate the

knowledge of a quality model experience various problems.

Often these problems are directly related to corresponding

problems of the quality models itself; e.g. the guidelines are

often not sufficiently concrete and detailed or the document
structure of the guideline is not aligned according to an

evident schema. Also rationales are often not given for the

rules the guidelines impose. Another problem is that the

quality models do not define tailoring methods to adapt the

guidelines to the application area.

IV. ASSESSMENT QUALITY MODELS

The already mentioned unclear decomposition of quality

attributes is in particular a problem for analytical quality

assurance. The given quality attributes are mostly too

abstract to be straightforwardly checkable in a concrete

software system [3,5]. Because the existing quality models

neither define checkable attributes nor refinement methods

to get checkable attributes, they are hard to use in

measurement [14, 6].

In the field of software quality, a great number of metrics

for measurement have been proposed. But these metrics face

problems that also arise from the lack of structure in quality

models. One problem is that despite defining metrics, the

quality models fail to give a detailed account of the impact

that specific metrics have on software quality [6]. Due to the
lack of a clear semantics, the aggregation of metric values

along the hierarchical levels is problematic. Another

problem is that the provided metrics have no clear

motivation and validation. Moreover, many existing

approaches do no respect the most fundamental rules of

measurement theory and, hence, are prone to generate

dubious results [15].

Due to the problems in constructive and analytical quality
assurance, also the possibility of certification on basis of

quality models experiences elementary problems [14]. It has

to be noted that measurement is vital for any control process.

Therefore the measurement of the most important quality

attributes is essential for an effective quality assurance

processes and for a successful requirements engineering.

V. PREDICTION QUALITY MODELS

Predictive quality models often lack an underlying definition

of the concepts they are based on. Most of them rely on

regression using a set of software metrics. This regression

then results in equations that are hard to interpret [16].

Furthermore, prediction models tend to be strongly context-

dependent, also complicating their broad application in

practice. Many factors influence the common prediction

goals and especially which factors are the most important
ones varies strongly. Usually these context conditions are

not made explicit in prediction models.

VI. DISTRIBUTED SYSTEM QUALITIES

EVALUATION APPROACH

As service-oriented distributed systems grow in size and

complexity, ensuring that they conform to their

specifications throughout the software life cycle becomes

more difficult. This difficulty stems in part from the

problem of serialized- phasing development [17], in which

application- level entities are developed after infrastructure-

level entities. Serialized-phasing development makes it

difficult to evaluate end-to-end functional and quality-of-

service (QoS) aspects until late in the software life cycle for

example, at system integration time.

Agile techniques help address functional aspects of

serialized-phasing development by validating software

functionality throughout the entire software life cycle[18,

19]. For example, test-driven development and continuous

integration are agile techniques that validate functional

quality by ensuring that software behaves as expected. The

benefit of using agile techniques to improve QoS assurance

of service-oriented distributed systems, however, has not

been demonstrated. Developers, therefore, need new
techniques to help alleviate the complexity of serialized-

phasing development and enable evaluation of QoS

concerns throughout the software life cycle.

Model-driven engineering

(MDE) is a promising

solution for improving

software development of

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

504

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

service-oriented distributed systems [20]. MDE techniques,

such as domain-specific modeling languages (DSMLs)[21],

provide developers with visual representations of

abstractions that capture key domain semantics and

constraints. DSMLs also provide tools that transform

models into concrete artifacts, such as source code or
configuration files that are tedious and error-prone to create

manually using third-generation languages. Moreover, such

artifacts often are not available early enough in the software

life cycle to allow a proper evaluation of end-to-end QoS

properties.

James H. Hill et al[22] discuss about the way in which

Domain Specific Modeling Languages (DSMLs) are used to

realize agile techniques for continuously evaluating service-
oriented distributed-system Quality of service (QoS)

throughout the software life cycle. As service-oriented

distributed systems grow in size and complexity ensuring

that they confirm to their specifications throughout the

software life cycle becomes more difficult which stems in

part from the problem of serialized-phasing development

which application level entities are developed after

infrastructure-level entities. Evaluation of end-to-end

functional and QoS aspects are difficult due to serialized-

phasing development until late in the software life cycle.

Address functional aspects of serialized-phasing

development are helped by Agile techniques. They validate

software functionality throughout the entire software life

cycle. A promising solution for improving software

development of service oriented distributed systems is

Model-driven engineering (MDE). DSMLs which is a MDE

technique provides developers with visual representations of

abstraction that capture key domain semantics and

constraints. Agile QoS assurance process is by system
execution modeling in which the developers rapidly model

the behavior and workload of the distributed systems being

developed, synthesize a customized test system from models,

execute the synthesized test system on a representative

target environment test bed to produce realistic empirical

results at scale and analyze the test system's QoS in the

context of domain specific constraints.

Component workload emulator [coworker] test suite (CUTS)
is a operating system, programming language, middleware-

independent DSML-based system execution modeling tool

for service oriented distributed systems. QoS can be used in

service oriented distributed systems by using Component

Behavior Modeling Language (CBML) DSML models

component behavior, the Workload Modeling Language

(WML) DSML models component workload and the

Understanding Nonfunctional Intensions Via Testing

Experimentation (Unite) DSML species QoS unit tests for

performance analysis in distributed systems.

The QoS-Enabled Dissemination (QED) project applies

these CUTS DSMLs and their agile techniques. Under the

first capability capturing behavior and workload is studied,

under the second capability the realistic data is generated

and the third capability focuses on collecting and analyzing

distributed system data.

The service-oriented distributed systems respond to inputs

like events or remote method invocations and are reactive.

This system's workload and behavior are analogous to

sequence of actions that cause side-effects DSML based

system execution modeling tools must use intuitive domain-

specific abstractions and they must capture properties to

provide a light weight adaptive process. The behavior and

workload of the received target event begin with an input

action followed by a sequence of actions and states defines
the behavior. QED developers can easily adapt their models

to test different scenarios as they model behaviors and

workload using DSMLs. DSMLs facilitate in saving time

decreasing errors.

Ensuring QoS of service-oriented distributed system require

continuously generating realistic data and results. DSML

based system execution modeling tools must provide these

information leveraging model interpreters made the
realization of capability in CUTS. After QED developers

use CBML and WML to model the behavior and workload

of components in the multistage work flow application, they

use CUTS model interpreters to generate source code

customized to their target environment.

Collecting and analyzing QoS metrics in service-oriented

distributed systems is difficult because the data often
changes overtime. Systems structure can also change over

the life cycle. Data collection and analysis technique must

adapt to the volatility in service oriented distributed systems.

Log formats, casual relations, user-defined evaluation

function are used to define QoS unit tests.

Aggregation function like SUM(f) and AVG(f) combines

multiple occurrences of a result and a grouping criteria,

which partition results into sets before aggregation. QoS unit
test's data trend can be viewed throughout the system's

execution in its target environment, by removing the

aggregation function. Average service time on the basis of

the partial specification is calculated with the help of an

equation which is f = AVG(LF2.sendTime, LF1.recvTime).

QED developers are provided with a lightweight technique

to ensure QoS by automatically extracting metrics of interest

from system traces by the Unite DSML. When analyzing

extracted data Unite doesn't require the QED developers to

understand distributed-system composition.

Experiments were conducted to evaluate the QoS of the

QED and Global Information Grid (GIG) middleware by

applying the CUTS DSMLs to a multistage workflow

application consisting of six different component stages that

runs atop GIG middleware. Each application component

contains a CUTS behavior and workload model that stresses

different parts of the QED and GIG middleware. Each

component also contains actions that log metrics for Unite to

analyze the QED and GIG middleware performance.
Experiments were conducted in a representative target

environment test bed at the Institute for Software Integrated

Systems (ISIS) ISISlab.

Observation: The existing QoS capabilities of the GIG

middleware are determined with the help of responsive time

which also gives information about where the QED

middleware can improve QoS relative to the GIG

middleware baseline. Application of agile techniques in
DSML-based system execution tools facilitates in reduction

of the effort of testing

service-oriented distributed-

system QoS. Less time and

Software Quality Modeling and Current State of the Art

505

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

effort are required by the QED developers in order to

generate and run tests in their target environment than to

implement it manually. The complexity of analyzing results

for the distributed systems using Unite is alleviated by

CUTS agile techniques. The number of log formats for the

QoS unit tests remains constant as the system complexity
grows. Unite's QoS unit test specification process is a one-

time effort for software developers when the log formats are

assumed to remain stable.

VII.SOFTWARE MODULES QUALITY ASSURANCE

APPROACH BASED ON SIZE AND DEFECT

RELATION

As the truth prevails that software is in the phase of

tremendous development and has been making us highly

dependable, it‘s necessary to look into the defects and

minimize them and one such defect as per the research is

that higher the size of software, higher the defects. Hence,

with the help of special oriented products like Mozilla, Cn3d,

jboss and eclipse we investigate functional form of the size.

Understanding the importance of the relationship between

the size and defect proneness of software modules, and how
its relationship would facilitate various development

decisions linked to prioritization of quality assurance

activities.

Gunes koru et al[23] conducted study about various

relationships that is between the size and defects linearly,

size and defects non-linearly, size and defects in terms of

density and finally, size and defects without any relationship

and to study these we adopt various methods, mainly about
implementation of conventional data having various factors

like deleted modules which are problematic as their defect

counts are smaller than the non deleted ones and They might

also be removed from the data analysis but doing so might

decrease the number of data points, and size changes which

study about Ignoring size changes. For example, a module

measured when it was small can become larger and more

defect prone over time. Then a COX is introduced to avoid

the potential internal validity threats. But, in this study a

conditional COX is used.

Then the size and fault of data is used in the study followed

by a data format description.

The initial product, Mozilla, is a Web browser and was a

large-scale product, and Cn3D, which is a smaller product

and Cn3d is a bioinformatics application for Web browsers
written in C++ which visualizes 3D structures from the

National Center for Biotechnology. Unlike Mozilla, which is

a general-purpose product, Cn3d is a domain-specific

product and eclipse is a Java Integrated Development

Environment (IDE) that has a large suite of sub-products

and finally, JBoss is one of the most commonly used Java

application servers. JBoss data set included 9,428

observations that belonged to 1,703 Java classes.

The data format description, with this process either ends

the period or a class is deleted in this and after this modeling

and outputs are studied wherein we study various COX

models and the tests applied to it and study the importance

of modeling output to size-defect relation. the findings have

many important uses. They show that, when working on the

focused quality assurance works like testing and code

inspections, it will be useful to give higher priority to

smaller modules. Hence, suggestion is that practitioners

choose among practitioners choose among different

prioritization strategies by also considering that smaller

modules are proportionally more defect prone.

Keeping the various threats to validity in mind, like (i)

construct validity in which the defect proneness was

operated with the risk of a defect fix for classes. We

identified defect fixes from the CVS logs entered by

developers, some issues may arise, like some defects may

not surface, some defects may surface but not get fixed, and

some defect fixes may not be recorded in CVS logs, (ii)

internal validity in which Some other variables may

influence on defect proneness. Hence, the internal validity
threat caused by not using other structural measures is to be

minor. Anyhow developers‘ skills, expertise, and training

will definitely affect the defects. Hence, Cox modeling can‘t

be avoided here when some factors are unknown or

uncontrollable. (iii) External validity, in which we validate

our findings from mozilla by using the size and defect data

collected from three other open-source products. The

replicated studies examining this relationship on other

software products will for sure be useful to assess our

findings after gaining confidence in the external validity of

the results reported. (iv)Finally narrowing down to the
conclusion validity wherein, even though there are potential

threats to the validity of this study just like any other

empirical study, we have confidence that our study and

findings have adequate validity.

Observation: Hence from the above discussion it is to be

understood that the functional form of the relationship

between software size and defect is vital for development

and inspection with limited amount of resources for quality
assurance. It is also clear that smaller modules are

proportionally problematic compared to the larger ones.

This study is also useful to software practitioners when they

decide about modules to be chosen for focused testing and

inspection. The practitioners should consider giving high

priority to smaller modules to increase the effectiveness of

their quality and to use the resources efficiently. The

replicated studies will be useful to assess the findings and to

test if the phenomenon can be stated as a theory or not.

Earlier, it has been found out that the interface defects that

were connected with structures present outside the modules
local environment, could explain why smaller modules are

proportionally more troublesome because, in the system

they studied, the interface defects were equally distributed

over smaller and larger modules which is important for

further investigation because, if validated, it gives an

explanation about the mechanisms behind the size-defect

relationship discovered here.

VIII.SOFTWARE SERVICE QUALITY ASSESSMENT

APPROACHES

Service selection is a multi criteria decision-

making problem whose resolution commonly involves a

trade-off between quality and cost. As explained before,

there is no guarantee of service quality at selection time;

however, reputation can help in predicting the likelihood of

a quality offer to be met. As

a matter of fact, selection
can translate into a three-

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

506

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

criterion decision-making problem involving reputation,

quality, and cost. This problem can be reduced to a single-

criterion decision-making problem provided that quality

reputation and cost are aggregated into a single selection

metric. Although recent literature works agree on the

necessity of considering reputation for service selection,
there is no general consensus on the role of reputation in

decision support. Considering service reputation as the

aggregation of ―arbitrary‖ consumers‘ feedback makes it

hard to clearly define what exactly feedback refer to

(credibility, reliability, etc.) and what exactly reputation

stands for.

Ensuring the veracity of reputation reports is also a critical

issue. First, feedback can be subjective since it is based on
consumers‘ ―personal‖ expectations and opinions. Second,

consumers may have an ―obstructed‖ view of a service and

its performance, especially when the latter is part of a

composite service. Third, reputation systems are prone to

attacks by malicious consumers who may give false ratings

and subvert service reputation. Generally, it is harder to

maintain a per-consumer reputation system than a per-

service reputation system, mainly because services are less

versatile, more traceable, and come in a smaller number.

Moreover, it is harder to manage user identities especially

for malicious users who are likely to change their quite often
(e.g., sybil attacks [6]). Finally, consumers may have little

incentive to leave feedback; they are often more eager to

leave negative feedback when they are dissatisfied with the

experienced service than to leave positive feedback when

they are satisfied. This introduces a bias against positive

ratings and leads to unfair reputation reports. For all of these

reasons, the first step toward establishing the foundations of

an automated reputation aware selection framework is to

unambiguously define the feedback as a computable no

arbitrary metric and to devise an objective rating system. As

continuity to models explored above we review the work

carried out by Limam, N et al [26].

The widespread use of internet, the software as a

service (SAAS) model in which software is delivered on

demand and priced on use has become widespread over the

market. As discussed in the paper the evolution of SaaS

model is the result of outsourcing software in the

development of project which is challenging as well as risky,

the risk factor is because of the performance or quality of
the external software which at some point of application

may not deliver the expected quality. Hence, for testing the

quality of software SaaS is a model which provides a low-

risk alternative of COTS models in large investments.

The motive of the paper framework lies in the fact that

service selection is a multi-criteria decision making

problems and there is no guarantee of service quality at

selection time. Hence, a service selection is based on three
parameters: - reputation, quality and cost.

The work presented in this paper discusses risk management

pursuant to project development through extended service

software components. The paper presents an automated

quality and reputation based framework, which is

independent of consumer ratings for service rating and

selection in Software as a Service (SaaS). The work of this

paper is different from the previous work from the fact that

it takes into consideration of automation of the service rating

process. The service proposed in this paper facilitates the

user to take feedback which has been assigned to a delivery

service that objectively reflects the satisfaction or

dissatisfaction with the offered service and quality.

The degree of coherence between the service quality

provided and promised is monitored and translated into a

utility metric. For the fulfillment of this objective, a

feedback computation model is derived from the

expectancy-disconfirmation theory from market science, this

model further generate feedback based on the service utility

and cost. Moreover, for better and more accurate

presentation of feedback results a model named as,

reputation derivation is proposed which integrates feedback
with the reputation value which reflects the performance of

the service at selection time. The most important

characteristic of work is the service ranking function that it

integrates the quality, cost and reputation parameters into a

single metric that is used to evaluate service offering against

each other, so that the ranking has to be evaluated against

only one parameter i.e. the integrated parameter proposed in

this paper.

Observation: The objective of adding the service selection

process is accomplished by the authors through a rating

function which provides feedback on delivered service

without human intervention. The mathematical formulation

involved in the quality monitoring functions and the various

variables are as follows:-

 is utility function and is defined as a weighted product of

the utilities associated with each parameter Qi,  is

expressed as-

0 dim

i

i

i

cQ

Q

Q Q S

v F


 

Where, FQi is a function that gives the utilities associated

with the parameter Qi.

 Qi : quality parameter

 CQi ϵ [0,1] reflects how much the users cares about

quality parameter.

  1 better than or wqual to (q)
0, otherwise

() 0,1

()

i

if qi i e
i i i

dom Q

i q Accept q
Accept



 


For utility computation a function parameter ‗Accepti‘ gives

results based on the domain of the quality parameter Qi and

the agreement index, qi. The agreement index is the

equivalence in the promised and the provided quality. The

function ‗Accepti‘ follows a Bernoulli distribution pi to

meet the quality qi represented by the quality parameters.

IX.SQ EVOLUTION MONITORING APPROACHES FOR

DEFECTS

Hongyu Zhang [27] proposed Chart based Software quality

evolution model for defects. This can be considered as
current state of the art in

chart based models. The

review of this work fallows.

Software Quality Modeling and Current State of the Art

507

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

Unlike all other works, which mostly deal with only

development process and its functionality, this article is

dealing with Quality of software to be evaluated. This

includes the calculation of reusability, maintainability of

software that is developed. These times the research

interests and work is more on those areas which include
software evolution.

The adoption of SPC(software process control) is well

explained using two very good and well formed open system

software namely ECLIPSE and GNOME. The technique

here followed is the use of different control charts. This

technique is good and is apt for calculating the quality. Here,

evaluation is done in accordance to graph between the

number of bugs or defects over a certain period of time. C-
charts usage is given much importance here in the article.

Next comes in to discussion the evolution of Eclipse. The

evolution is observed in accordance to their changes in

months, days and year‘s .Other important factor to fix values

in C chart is number of source lines that change over that

period. The use of Bugzilla to report and track defects is

perfect. Over all the evolution process over years eclipse
versions 2.1, 3.0, 3.1 have evaluated with increased quality

and less bugs.

The evolution process of Gnome, which also follows the

similar trends described above. But here the stability is less

and in time of changing there is also a change in

architectural design. Many versions like 2.0, v2.0,

2.0.0,(v19.0 to v19.8),(v2.0.1 to v2.0.5) have evaluated.

After the evolution of these patterns, the main focus is

discussion of the pattern the charts have in plotting the

defects. It has 6 kinds of patters namely downward trend,

upward trend, Impulse, Hills, Small variations, Rollercoaster.

All these are different in the number of bugs marked in C

charts in time. As to consider, downward trend is decrease

in number of bugs and increase in software quality. Upward

trend is increase in number of bugs and decrease in quality.

Impulse is sudden rise in bugs over a small interval of time.

Observation: Overall the article using C-charts, the quality

is perfectly calculated .But it has no guaranty that it works

successfully in other closed systems which have less

variations compared to open systems ,Eclipse and Gnome. It

also has not discussed anything about other charts like r-

charts, x-chart and p-charts.

X.SOFTWARE MAINTENANCE QUALITY AND

MINING APPROACH

Alexander Tarvo[28] proposed an interesting model that can

be considered as current state of the art in this category. In

this model presented by Alexander Tarvo, a detailed study is
done on Binary Change tracer (BCT) which is a

multipurpose tool that can mine vital information on a

software system. Software maintenance activities result in

system modifications that are distributed to customers as

updates. Incorrect changes result in software regressions

which are painful as they cause failures in already stable

features and parts of the system. The best method to avoid

regressions' negative consequences is extensive testing of all

fixes. A tool or method that can predict the amount of risk

for each fix is needed. This need is met by BCT which

extracts information on all changes that have happened to

Microsoft Windows. Each fix's risk of regression is

predicted by a statistical model built with the help of data

mined with BCT. It exploits features of a standard

engineering process so it can be used for a variety of

software projects.

Though research exists on risk prediction in software

projects, researchers have concentrated on fault proneness

prediction (FPP) models. They tend to predict which parts of

the newly developed software system will be more prone to

failures. According to FPP models a system consists of

components described by metrics (numeric properties) for

example, statistical models like decision tree or logistics

regression. FPP models aren't designed to predict the risk for
a particular software update. Prediction of software

regressions is much less explored area due to difficulties of

mining data on fixes. A statistical model requires detailed

information on hundreds of prior fixes which is scattered

through multiple data sources. To build a regression

prediction model we need to develop a special program

called a mining tool that performs these tasks. BCT is a

specialized tool not only for extracting fix metrics but can

be used for other purposes.

A bug record is created in the Bug tracking Database (BTD)

when any change in Windows is necessary and each bug

record has a unique identifier (bud ID) which contains fields

describing change. After initial analysis of bug, the current

version of the source code from the Version Control

Systems (VCS) is downloaded and changes are made. The

change passes some basic functionality testing and then the

changed source files are integrated back into the VCS in the

form of an atomic transaction or check-in. After fix

development is complete the test engineer must test the
change. The amount of testing is influenced by many factors

but the most obvious is regression risk. If testing reveals any

problems with the change, the test engineer asks the

developer to fix them or else the test engineer marks the bug

record closed and a software update can be built. BCT uses

a decomposition of system into binary modules. BCT

collects information on all changes in the system that

occurred during the specified time interval. Analysis of a

binary occurs in four steps:

1. Dividing the binary into components.

2. Extracting the history of code changes.

3. Associating code changes with bugs.

4. Storing the extracted data.

The results are accumulated until a complete history of

changes is retrieved. A software system generates symbol
files in addition to binaries and these files determine which

chunk of a binary corresponds to a particular line in the

source file. This information is used by BCT to retrieve a

complete list of names of the source files used to build old

and new versions of the binary. BCT restores

componentization of the software system and it stores each

component in one of the internal lists.

BCT retrieves all the versions newer than that source files
oldest version but older than

or the same age as source

files newest version and

performs a pairwise

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

508

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

comparison of these versions in ascending order. The

changes are added to the dictionary of atomic changes that

happened to binary. The history of source file changes is

retrieved automatically. Code changes in the VCS are

related to corresponding bug records in the Bug Tracking

Databases (BTD) to retrieve information about why the
changes are made. Analysis of BTD is more difficult for the

tool. BCT stores all mined entities, their metrics and their

links in the SQL database but it itself doesn't mine all code

metrics for changed functions and binaries. MaX framework

which is another tool designed by Microsoft to extract

metrics.

Fix regression prediction (FRP) model which is based on

logistic regression is developed to predict a fix's regression
risk. The fix metrics are the metrics of corresponding bug

record and all its related entities like number of changes the

fix caused, experience of the developer who made the fix,

general fix metrics. The model comprises of inherent

coefficient values and contains hidden knowledge regarding

which fix metrics are the best indicators of the possible

regression. Classifiers make a few mistakes unlike the ideal

classifiers which detect all high risk fixes without making

mistakes. Each fix prediction has four possible outcomes

which are true positive, false positive, true negative and

false negative. These form the basis for several metrics for
classifier accuracy. True Positive Rate (TPR) and False

Positive Rate (FPR) are the two widely used metrics and

have values between 0 and 1. A Receiver Operating

Characteristic (ROC) curve is a graph with the TPR values

on y-axis and FPR values on x-axis. These are used to

estimate classifier performance and the area under ROC

curve (AUC) is a number characterizing the classifier

performance.

Observation: BCT reported metrics and determined whether

the fix caused any regressions. The model's accuracy is

measured by using a data splitting technique. A stepwise

procedure is used to determine which metrics predict risk.

BCT automatically extracts its metrics, passes them to FRP

model to calculate the regression risk when a new fix is

available. Fix's are categorized into very high risk, high risk,

average risk, low risk and very low risk based on the risk.

Test engineers use this information to plan fix testing. FPR

model has significantly higher accuracy than test engineers;

hence it is useful in in risk prediction. FRP model's utility is
estimated by comparing its results with those from manual

estimation of regression risk. The test engineer analysed the

fix and classified its risk as high, medium or low. Build

reports are being integrated with the FRP model and the

model is used to predict regression risk for each bug fixed in

a build which will help leverage testing of the daily builds.

BCT is also used to analyze daily builds which provide a

complete list of changes in the software project which are

used to track its progress. BCT user interface will let us

visualize all processes occurring in the software system.

XI. MULTIPLE REPOSITORIES CENTRIC

SOFTWARE QUALITY MODELING

APPROACH

Software quality models generally predict, for a program

module, either the number of defects it is likely to have or

the quality-based risk category it belongs to, e.g., faultprone

(fp) or not-fault-prone (nfp) [29], [30], [31]. In the literature,

various classification techniques have been applied for

software quality modeling, such as Logistic Regression [32],

Naive Bayes [33], and Decision Trees [34], [35]. Software

measurement and defect data from a prior software release

or similar project are used to train the software quality
model, which is then applied to predict the quality of the

target system with known software metrics. In the software

industry, it is common for an organization to maintain

several software metrics repositories for projects developed

[36]. The data in these repositories are likely to follow

similar patterns, especially if the organization enforces the

same development life cycle, as well as the same coding and

testing practices. While most existing related works focus on

training using one software measurement data set, we

emphasize including all relevant past projects during the

training process. The working hypothesis is that multiple

software repositories provide additional information that can
improve the predictive performance of the trained software

quality model. A common problem during software quality

modeling is searching for an optimum model that adequately

satisfies quality improvement goals. For example, the

different costs of misclassifying fp and nfp modules poses

model selection challenges. The search for an optimal

solution is compounded when modeling with multiple

software project data sets. In this section we review the

current state of the art carried out by Yi (Cathy) Liu et

al[37].

Software development includes prototype simulation, code

inspection and measurement based analysis. Simply by

identifying the errors software cannot be made perfect,

analyzing the errors and then development is an important

aspect .The most common solution is enhanced when

manage multiple project datasets .NASA software metrics

provides all the necessary data required for the same. In the

thesis, two study cases of building software quality models

are discussed. Genetic programming which was initially
developed by M, Harman and B.Jones is the first one and

the other non G.P. based techniques as such given by

T.M.Khoshgooftarin his paper on software quality. The G.P.

based technique follows Darwinian principle of survival .the

case studies stated above are classified into 7 software

measurements datasheets. The multiple repositories provide

with some extra data that helps in development of software

quality.

Software quality is next important aspect which is stressed

in this paper. The software attributes such as the defect

density and failure rate contribute to the development.

Software metrics codes measurement schemes to build

defect predictors and quality models. Classification of

models is discussed that help to determine the quality of the

software and is reliability. The software measurement data

required is also available with the PROMISE engineering

repositories. The following are the different data sets and

software systems: kc1, kc2, kc3, cm1, mw1, pc1, jm1.with

the help of case studies the thesis explains the development
of softwares. The genetic programming process involves

initialization, evaluation, selection, breeding and evolution.

The tool used for the study is lilgp1.01 which was initiated

by Douglas Zongker and

Bill Punch. To represent the

model performance and

Software Quality Modeling and Current State of the Art

509

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

complexity two fitness functions primary and secondary are

used respectively. It was elicited that for higher values of

modeling parameter correction of software would become

easy.

In the non G.P. based technique, seventeen different

machine learners are applied to the same seven software

measurement datasets. They are as follows:

Classification technique Acronym

Locally weighted learning LWL Stump

1-Instance based learning IB1

k-Instance based learning IBk

Bagging Bagging

Sequential minimal

optimization

SMO

Logistic regression LR

Ripple down rules Ridor

One rule OneR

Line of code LOC

Partial decision tree PART

Decision table Decision table

WEKA‘s implementation

c4.5

J48

Tree disc classification TD

Alternating decision tree ADTree

Repeated incremental pruning
to produce error reduction

JRip

Random forest Random forest

Naïve Bayes NaiveBayes

From the results of the case studies, it was concluded that

the G.P. based Baseline Classifier results for different

merged training data sets. the kc1,kc2,kc3 results were

relatively similar to their corresponding data set

performances unlike mw1,pc1,jm1,cm1.how ever in the

second study of G.P. based technique, the software quality

development was based on summing up the validation phase.

A single data set value was used for filtering error datasets.

From the non-G.P. based techniques, the average error rates

for all 17 learners were determined individually. The test

data was obtained based on the voting approach. it was

states that jm1 has higher NECM values representing higher

level of noise .the G.P. based technique is said to out beat

the latter as the search space for the solution is wide when

compared to the traditional classifications. The final

structure of the solution is easier to determine in the G.P.

bases technique. The empirical validity was also considered

in this thesis. This technique was implemented with4 c

projects, 2 c++ projects and one java project .the two
additional metrics to capture the data set variation were

introduced. With the help of other software metrics the

software quality may be improved. An evolutionary process

study was conducted in the best of the settings.

Observation: The paper focuses on the software

development with multiple data repositories. The different

G.P. based strategies were presented for the development

process: baseline classifier, validation, validation-and-voting
classifier. The validation-and-voting classifier is much better

than baseline classifier since it is said to be less prone to

over fitting and variance errors. The second case study tries

to focus on this problem and indicates that the search based

soft ware quality modeling approach produces better results

when compared to the multiple software datasets. But with

respect to the terms like quality, measurements and

application domain, the software depositories are much

similar to the target projects. This could provide a platform

for object oriented metrics in the future study about quality

development. By taking all other possible measurements it is
also possible to improve the efficiency of the software.

XII. VALUE BASED SYSTEM QUALITY

EVALUATION APPROACH

This section explores the value based system quality
evaluation approaches and the discussion is centric to the

proposal of the Frank Buschmann[38] that based on Big Ball

Of Mud model.

Professionals have always been trying on software

architectures and its support towards system qualities like

flexibility, performance, and robustness. However, most of

the software architectures use the Big Ball of Mud pattern

which is a well structured system that is convenient for
usage.

The Big Ball of Mud: To understand the Big Ball of Mud

―theory‖, Some panelists said that nonfunctional quality is

needed: user acceptance, maintenance-friendliness, and so

on but another set said that good system quality is a result of

using the ―right‖ technologies, like COTS programming

platforms. And mainly quality is costly, so to not waste
precious time and budget, all design and realization efforts

related to system quality should focus on aspects that

directly contribute to the system‘s business success.

Otherwise the system has no chance to get certified and no

certification means hardly any use of it. Hence, quality with

value is the finally convinced discussion followed by usage

of sufficient system quality is necessary.

Value oriented Design: Software development projects
invest a lot into achieving nonfunctional quality but, many

project teams don‘t seem to know exactly the qualities

needed by the system.

These qualities which are building blocks for system appear

attractive from a marketing per-spective and that are hard to

qualify and quantify even though any quality that isn‘t

needed increases a system‘s architectural complexity and

life-cycle costs; any quality that isn‘t provided with an
appropriate degree decreases user acceptance. Consequently,

the provided quality shares hardly any value to the system‘s

success.

Pragmatic architects must determine the qualities a system

needs and the level of quality needed and must also make

corresponding design decisions that are needed to the

quality requirements. If they observe scope creep or a
tendency to neglect or overweight a system‘s quality

demands, they should initiate a dialog with the relevant

stakeholders to keep the project on track so that it refocuses

on value-providing qualities. They should also communicate

the identified quality demand‘s contribution to the system‘s

business value and success, to get support from project

sponsors for any necessary

design and realization

efforts. This above approach

means that Big Ball of Mud

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-1, March 2012

510

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

architectures are not bad. If requirements analysis reveals

that we get the required value with a moderate level of

quality, we don‘t need to design for the final solution; if the

system‘s business success doesn‘t depend on a

nonfunctional quality, Big Ball of Mud architecture is

perfect.

The Architect‘s System Quality Toolbox is used to ensure a

system provides valuable quality architects for methods,

techniques, and practices that can be applied in the various

activities of software development. In requirements

engineering, the architect‘s interest lies in systems value

being identified and narrowed as we find scenario-based

requirements quite useful for fulfillment. Every scenario

says about a specific user function.

From an architect‘ point of view, it is highly necessary to

recognize the set of architectural quality needs as they have

an effect on the system‘s concrete design. The finalized set

of architecturally significant scenarios is the basic for

guiding the concrete architecture. Two requirements for

success are:

Focus on essence. The concept of walking skeletons is a

baseline architecture and implementation that supports the

functional requirements. We can evaluate the baseline and

adjust explicitly and early in a project‘s life cycle, to attain

its nonfunctional qualities.

And the other requirement is thoughtful design decision.

Design tactics outline the solution space for a specific

quality aspect in terms of potentially applicable patterns,

practices and technologies using the specific qualities of the

architectural scenarios. Design tactics support architects in

selecting the ―simplest solution that possibly could work.‖

Thus they can create lean, economic, and elegant designs

that maximize the value of the qualities addressed.

Observation: To get the expected operational and

developmental quality, a test-driven approach is a powerful

tool. Evaluations, simulations, and running code provide

direct feedback as to about architecture and implementation

support its quality requirements. Test-driven design is

another vehicle to check the specified qualities are sufficient

for providing the expected value or not. Unless the system is

used, all its requirements, especially quality aspects, are just

assumptions. Hence, you might need to adjust the assumed

quality requirements when you see the system in action.

Basically, it‘s the responsibility of architects to act as the

quality advocate of a system. Their part is very important, to

ensure a system provides the right operational and

developmental qualities and also to provide quality

contributes measurable value.

XIII. CONCLUSION

Here, in this paper we discussed current state of the art in

Software quality models. Our observations focused on

various aspects of the proposed models usage those includes

flexibility and reusability. We found from the above

discussion that generalized SQA approaches are still in their

initial stages. Many SQA models are suggested to achieve

required goals but most of them are software development
design specific. Thus, here we can conclude that there is a

wide scope in research to develop generalized Software

quality evaluation and assurance models those can generate

Software quality evaluation test cases, which are specific to

software development model selected.

REFERENCES

[1]B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. Macleod, and M.

J. Merrit. Characteristics of Software Quality. North-Holland, 1978.

[2]ISO. Software engineering – product quality – part 1: Quality model,

2001.

[3]D. Coleman, B. Lowther, and P. Oman. The application of software

maintainability models in industrial software systems. J. Syst. Softw.,

29(1):3–16, 1995.

[4]M. R. Lyu, editor. Handbook of Software Reliability Engineering. IEEE

Computer Society Press and McGraw-Hill, 1996.

[5]S. Wagner. Using economics as basis for modelling and evaluating

software quality. In Proc. First International Workshop on the

Economics of Software and Computation (ESC-1), 2007.

[6]B. Kitchenham and S. L. Pfleeger. Software quality: The elusive target.

IEEE Software, 13(1):12–21, 1996.

[7]E. Georgiadou. GEQUAMO—a generic, multilayered, cusomisable,

software quality model. Software Quality Journal, 11:313–323, 2003.

[8]S. Khaddaj and G. Horgan. A proposed adaptable quality model for

software quality assurance. Journal of Computer Sciences, 1(4):482–487,

2005.

[9]J.M¨unch and M. Kl¨as. Balancing upfront definition and customization

of quality models. In Workshop-Band Software- Qualit¨atsmodellierung

und -bewertung (SQMB 2008). Technische Universit¨at M¨unchen,

2008.

[10]M. Broy, F. Deissenboeck, and M. Pizka. Demystifying maintainability.

In Proc. 4th Workshop on Software Quality (4-WoSQ), pages 21–26.

ACM Press, 2006.

[11]F. Deißenb¨ock, S. Wagner, M. Pizka, S. Teuchert, and J.-F. Girard. An

activity-based quality model for maintainability. In Proc. 23rd

International Conference on Software Maintenance (ICSM ‘07). IEEE

Computer Society Press, 2007.

[12]B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni. The SQUID

approach to defining a quality model. Software Quality Journal, 6:211–

233, 1997.

[13]V. Basili, P. Donzelli, and S. Asgari. A unified model of dependability:

Capturing dependability in context. IEEE Software, 21(6):19–25, 2004.

[14]C. Frye. CMM founder: Focus on the product to improve quality, June

2008.

[15]N. Fenton. Software measurement: A necessary scientific basis. IEEE

Trans. Softw. Eng., 20(3):199–206, 1994.

[16]N. E. Fenton and M. Neil. A critique of software defect prediction

models. IEEE Trans. Softw. Eng., 25(5):675–689, 1999

[17]H.W.J. Rittel and M.M. Webber, ―Dilemmas in a General Theory of

Planning,‖ Policy Sciences, vol. 4, no. 2, 1973, pp. 155–169.

[18]P. Abrahamsson et al., ―New Directions on Agile Methods: A

Comparative Analysis,‖ Proc. 25th Int‘l Conf. Software Eng. (ICSE 03),

IEEE CS Press, 2003, pp. 244–254.

[19]D. Saff and M.D. Ernst, ―An Experimental Evaluation of Continuous

Testing during Development,‖ Proc. ACM SIGSOFT Int‘l Symp.

Software Testing and Analysis, ACM Press, 2004, pp. 76–85.

[20]D.C. Schmidt, ―Guest Editor‘s Introduction: Model- Driven

Engineering,‖ Computer, vol. 39, no. 2, 2006, pp. 25–31.

[21]G. Karsai et al., ―Model-Integrated Development of Embedded

Software,‖ Proc. IEEE, vol. 91, no. 1, 2003, pp. 145–164.

[22]Hill, J.H.; Schmidt, D.C.; Edmondson, J.R.; Gokhale, A.S.; , "Tools for

Continuously Evaluating Distributed System Qualities," Software,

IEEE , vol.27, no.4, pp.65-71, July-Aug. 2010 doi:

10.1109/MS.2009.197,

 [23]Koru, A.G.; Dongsong Zhang; El Emam, K.; Hongfang Liu; , "An

Investigation into the Functional Form of the Size-Defect Relationship

for Software Modules," Software Engineering, IEEE Transactions on ,

vol.35, no.2, pp.293-304, March-April 2009 doi: 10.1109/TSE.2008.90

[24]L.M. Ottenstein, ―Quantitative Estimates of Debugging

Requirements,‖IEEE Trans. Software Eng., vol. 5, no. 5, pp. 504-514,

1979.

[25]J.R. Douceur, ―The Sybil Attack,‖ Proc. First Int‘l Workshop Peer-to-

Peer Systems, 2002.

[26]Limam, N.; Boutaba, R.; , "Assessing Software Service Quality and

Trustworthiness at Selection Time," Software Engineering, IEEE

Transactions on , vol.36, no.4, pp.559-574, July-Aug. 2010 doi:

10.1109/TSE.2010.2

[27]Hongyu Zhang; Sunghun Kim; ,

"Monitoring Software Quality

Software Quality Modeling and Current State of the Art

511

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A0465022112 /2012©BEIESP

Evolution for Defects," Software, IEEE , vol.27, no.4, pp.58-64, July-

Aug. 2010 doi: 10.1109/MS.2010.66

[28]Tarvo, A.; , "Mining Software History to Improve Software

Maintenance Quality: A Case Study," Software, IEEE , vol.26, no.1,

pp.34-40, Jan.-Feb. 2009 doi: 10.1109/MS.2009.15

[29] L.C. Briand, W.L. Melo, and J. Wust, ―Assessing the Applicability of

Fault-Proneness Models across Object-Oriented Software Projects,‖

IEEE Trans. Software Eng., vol. 28, no. 7, pp. 706-720, July 2002.

[30] N.J. Pizzi, R. Summers, and W. Pedrycz, ―Software Quality Prediction

Using Median-Adjusted Class Labels,‖ Proc. IEEE CS Int‘l Joint Conf.

Neural Networks, vol. 3., pp. 2405-2409, May 2002.

[31] A. Koru and H. Liu, ―Building Effective Defect-Prediction Models in

Practice,‖ IEEE Software, vol. 22, no. 6, pp. 23-29, Nov./Dec. 2005.

[32] N.F. Schneidewind, ―Investigation of Logistic Regression as a

Discriminant of Software Quality,‖ Proc. IEEE CS Seventh Int‘l

Software Metrics Symp., pp. 328-337, Apr. 2001.

[33] T. Menzies, J. Greenwald, and A. Frank, ―Data Mining Static Code

Attributes to Learn Defect Predictors,‖ IEEE Trans. Software Eng., vol.

33, no. 1, pp. 2-13, Jan. 2007.

[34] L. Guo, B. Cukic, and H. Singh, ―Predicting Fault Prone Modules by

the Dempster-Shafer Belief Networks,‖ Proc. IEEE CS 18th Int‘l Conf.

Automated Software Eng., pp. 249-252, Oct. 2003.

[35] T.M. Khoshgoftaar and N. Seliya, ―Comparative Assessment of

Software Quality Classification Techniques: An Empirical Case Study,‖

Empirical Software Eng. J., vol. 9, no. 3, pp. 229-257, 2004.

[36] N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous and

Practical Approach, second ed. PWS Publishing, 1997.

AUTHOR PROFILE

N.Rajasekhar reddy was born in Madanapalli,

February 28.He was received Bachelor‘s degree in Computer

Science in S.V University and M.Tech degree from Satyabama

University respectively. After working as a research assistant

and an assistant professor in the Dept. of ComputerScience and

Engineering, Madanapalli Institute of Technology and Science,

Andhra Pradesh, India. His research interest includes Software

Engineering, Software Quality Assurance and Testing. He was

published 4 international journal papers and 5 National journal

papers in Software Engineering. He is a member of SCIE, ISTE,

and IEEE.

R.J.Ramasree was born in Tirupati and

received M.S degree in Bits Pilani and Doctoral degree in

Computer Science, S.V University respectively. Then she was

working as assistant professor in the Dept. of Computer Science in

Rastriya Sanskrit Vidya peeta University. After professor in the

Faculty of Computer Science, Raastriya Sanskrit VidyaPeeta,

Tirupati. . Her research interest includes Data Mining.

