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Abstract-Field programmable gate arrays (FPGA) are 

increasingly being used in the high performance and scientific 

computing community to implement floating-point based system. 

The reversible single precision floating point multiplier 

(RSPFPM) requires the design of reversible integer multiplier 

(2424) based on operand decomposition approach. Reversible 

logic is used to reduce the power dissipation than classical logic 

and do not loss the information bit which finds application in low 

power computing, quantum computing, optical computing, and 

other emerging computing technologies. Among the reversible 

logic gates, Peres gate is utilized to design the multiplier since it 

has lower quantum cost. Operands of the multiplier is 

decomposed into three partitions of 8 bits each using operand 

decomposition method. Thus the 2424 bit reversible 

multiplication is performed through nine reversible 8x8 bit 

multipliers and output is summed to yield an efficient multiplier 

optimized in terms of quantum cost, delay, and garbage outputs. 

This proposed work is designed and developed in the VHSIC 

hardware description language (VHDL) code and simulation is 

done using Xilinx 9.1simulation tool. 

 

Key words: Reversible logic gates, reversible logic circuits, 

reversible multiplier circuits, quantum computing, 

Nanotechnology based systems. 

I. INTRODUCTION 

    In VLSI circuit design, reduction of power dissipation is 

the one of the major goal. As demonstrated by R.Landauer 

in the early 1960s, irreversible hardware computation, 

regardless of its realization techniques, results in energy 

dissipation due to the information loss [1]. It is proved that 

the loss of each one bit of information dissipates at least 

KTln2 joules of energy(heat), where K=1.3806505x10-

23m2kg-2K-1 (joules Kelvin-1) is the Boltzmann‟s constant 

and T is the absolute temperature[1].  

  Reversible logic circuits have theoretically zero internal 

power dissipation because they do not lose information. 

Hence, In 1973, Bennett showed that  in order to avoid 

KTln2 joules of energy dissipation in a circuit, it must be 

built using reversible logic gates [2].A circuit is said to be 

reversible if the input vector can be uniquely recovered from 

the output vector and there is a one-to-one correspondence 

between its input and output assignments, i.e. not only the 

outputs can be uniquely determined from the inputs, but also 

the inputs can be recovered from the outputs . 
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Thus the number of inputs and outputs in reversible logic 

gates or circuits are equal. Reversible logic has received 

great attention in the recent years due to their ability to 

reduce the power dissipation which is the main requirement 

in low power Very large scale integration (VLSI) design. 

Quantum computers are constructed using reversible logic 

circuits. It has applications in various research areas such as 

low power CMOS design, optical computing, DNA 

computing, quantum computing, nanotechnology 

bioinformatic and thermodynamic technology. It is  not 

possible to construct quantum circuits without reversible 

logic gates. Synthesis of reversible logic circuits is 

significantly more complicated than traditional irreversible 

logic circuits because in a reversible logic circuit, fan-out 

and feedback is not allowed. Thapliyal and Srinivas  

proposed the TSG gate, in reversible circuit designing. The 

construction of such new gates does not make any 

significance to reduce quantum cost nor the gate 

complexity[3]. Mohammadi et al (2009) has proposed a new 

reversible (44) multiplier circuit using “HNG” gate which 

has minimised the quantum cost with previous design. 

Michael Nachtigale et al (2010) proposed the single 

precision floating point multiplier (32 32) multiplier by 

using both Toffoli and Peres gate. This design uses the 

reversible 4:2 compressor and reversible Wallace tree 

multiplier.This reversible design of the 8x8 bit Wallace tree 

multiplier has been optimized in terms of quantum cost, 

delay, and number of garbage output [7]. 

  Multiplication is a heavily used arithmetic operation in 

many computational units. It is necessary for the processors 

to have high speed multipliers with less hardware 

complexity. Floating point numbers are one possible way of 

representing real numbers in binary format. The IEEE 754 

standard presents two different floating point formats, 

Binary interchange format and Decimal interchange format. 

Multiplying floating point numbers is a critical requirement 

for DSP applications involving large dynamic range. This 

paper focuses only on single precision binary interchange 

format. The proposed  system describes a reversible single 

precision floating point multiplier (SPFP) using only the 

Peres gate. The efficient 24x24 bit reversible significand 

multiplication is performed through nine reversible 8x8 bit 

multipliers .Since Peres gate has lowest quantum cost 

compared to other reversible logic gates. The optimized 

values of quantum cost, gate delay, and garbage output is 

obtained compared to the existing design and reduces the 

hardware complexity of the system. Section 2 gives the 

different types of the reversible logic gates required for the 

present work. Section 3 describes the design of reversible 

multiplier circuit.Section 4 

discuss the design of 

reversible exponent 
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addition.Section 5 deals with the final results and 

conclusion. 

     II. REVERSIBLE LOGIC GATES 

  Power dissipation is important factors in VLSI design.The 
recent computers erases a bit of information every time and 

dissipate the power while they perform a logical operation. 

Such logical operations are called "irreversible logic". An 

example of information being lost can be seen in an 

ordinary AND gate. An AND gate has two inputs and only 

one output, which means that in the process of moving from 

the input to the output of the gate, we loss one bit of 

information. The main advantages of reversible logic is low 

power consumption, reduce the information loss in the bit, 

minimise the power dissipation. Reversible logic gate is an 

n-input, n-output logic device with one-to-one mapping. 
This is used to determine the outputs from the inputs and 

also the inputs can be uniquely recovered from the outputs.  

   Fig 1 and 2 shows the classical gate (irreversible gate) and 

general NN reversible gate. 
    

 

 
Fig 1.  Classical (Irreversible) gate 

 

 

 
 

Fig 2. N x N Reversible gate 

       

  In the reversible XOR gate there is no loss of information 

bit signals. Since it maps the input vector with output vector 
which gives the equal number of inputs and output and it is 

shown in Fig 3. 

 

 
Fig 3. Reversible XOR gate 

  

 Peres gate is represent as 3×3 vector in Fig 4.In the 

proposed design, Peres gate is used because of its lowest 

quantum cost. The input vector is I (A, B, C) and the output 

vector is O (P, Q, R). The output is defined by P = A, Q = 

A⨁B and R=AB⨁C. Quantum cost of a Peres gate is 4.  

 
Fig 4 . 33   Peres gate. 

 

   The input vector of Feynman gate is I (A, B) and the 

output vector is O (P, Q). The outputs are defined by P=A, 

Q=A ⨁ B and it is shown in Fig 5. Quantum cost of a 

Feynman gate is 1. 

    

 
 

Fig 5 . 2×2 Feynman gate. 

  

    Fig 6 shows a 33 Fredkin gate. The input vector is I (A, 
B, C) and the output vector is O (P, Q, R). The output is 

defined by P=A, Q=A′B⨁AC and R=A′C⨁AB. Quantum 

cost of a Fredkin gate is 5. 

                                   

                              

 
 

Fig 6. 3×3   Fredkin gate. 

 

  The 33 Toffoli gate is represent in Fig 7. The input vector 
is I(A, B, C) and the output vector is O(P,Q,R).The outputs 

are defined by P=A, Q=B, R=AB⨁C. Quantum cost of a 

Toffoli gate is  

     

 

 
                                 

Fig 7. 3×3 Toffoli gate. 

III. DESIGN OF REVERSIBLE SPFP MULTIPLIER 

  Block diagram which is shown in Fig 8 represents the 

design of reversible single precision floating point multiplier 

(RSPFPM) 

  The sign magnitude of multiplied product is the XOR 

function of X and Y. For the design of reversible 24 x 24 bit 

multiplier, the operands are decomposed into three partition 

of 8 bits each. The proposed reversible design of the 24x24 

reversible multiplier gives the optimized values for quantum 

cost, delay, and number of garbage outputs. The 

optimization is done at each stage by using reversible full 
adders and half adders. The exponents are added using the 

reversible ripple carry adder and the bias value -127 is 

subtracted from exponents using ripple borrow 

subtractor.The design is developed in the VHDL code and 

simulation result is obtained in Xilinx Software tool . 
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Fig 8.Block diagram for Reversible  Single  Precision 

FLP Multiplier. 

 

A. Single Precision Floating Point Multiplier 

 

   IEEE754 standard defines the format for a single precision 

floating point number stored in 32 bits. The standard three 

fields for a single precision floating point numbers are a 

single sign bit S, an 8 bit biased exponent E, and a 23 bit 
trailing significand T. The three fields are illustrated in Fig 

9.The XOR function, provided by a single Peres gate, 

suffices to calculate the sign of the product, as the product 

will be negative precisely when the signs of the two floating 

point factors differ. The field E is regarded as an unsigned 

integer that represents the signed exponent of the floating 

point number with a bias of 127 applied. 

 
    Fig 9.Single precision floating point multiplier format 

  

  Each significand is a 24 bit fixed point number, so we can 

use a 24x24 bit reversible multiplier to calculate the product 

of the significands occupies 48 bits.The product of the 

significands to fit it to the floating point format, the sum of 

the unbiased exponents of x and y will need to be biased. 

Because removing the bias from both exponents requires us 

to subtract 254, but adding in the bias for the difference 

requires us to add 127, the new biased exponent of the 
product of x and y will be Exy= (Ex-127) + (Ey-127) 

+127=Ex+Ey-127.This exponent of the product can be 

computed reversibly by four 2bit reversible carry propagate 

adders (RCPAs) in series.           

B.Reversible partitioning of the operand 

  Partitioned multipliers use a form of a technique called 

operand decomposition. The circuit treats the input numbers 

as concatenated inputs of smaller sizes, which are  

manipulated  using a specific technique to calculate the 

output corresponding to the original inputs. The operand 

decomposition (OD) techniques exist that are motivated by 

power savings, speed and area. Reducing quantum cost, 
garbage outputs, or delay motivates the design of a 

reversible partitioned multiplier. It reduces switching 

activity in binary multipliers. 

  In the design of 24x24 bit numbers, A and B, to be 

multiplied are logically partitioned into 3 vectors of 8 bits 

each. A is divided into AH, AM, and AL and B is similarly 

divided into BH, BM and BL. Thus the 24x24 bit partial 
product generation is carried out using nine of  optimized 

8x8 bit reversible multiplier. The OD process decreases the 

number of bits with the value of „1‟ in the multiplicands and 

reduces the amount of approximation. This partioning of 

two 24 bit operand is given in [7]. 

 

C.Design of Reversible Multiplier 

  The design of the proposed reversible multiplier is done 
using two steps. 

 Partial Product Generation (PPG) 

 Conventional addition       (CA) 

 

 
Fig 10. Peres gate Quantum cost 4 

  An 8x8 bit unsigned multiplication is performed in a 

reversible manner by utilizing only the Peres gate for the 

design to generate the 64 one bit partial products. The Fig 

10 shows the quantum cost of Peres gate.The 64 partial 

products are obtained for 8x8 bit reversible multiplication X 

× Y=([x7, x6,…. x0 ]  [y7, y6,…. y0 ])  and is shown in Fig 
11. In the summation stage of multiplier, this design realizes 

a lower quantum cost and fewer garbage outputs by virtue 

of proposed design of reversible full adder and half adder. 

Peres gate provide the necessary AND operator when their 

input C is hardwired to 0.Peres gates can generate the 64 

partial products. The connection in series reduces garbage 

outputs and the substitution of Peres gates reduces the 
quantum cost. A cascade of two Peres gate can generate the 

full adder operation. 

 

 



FPGA Implementation On Reversible Floating Point Multiplier 

441 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A0475022112 /2012©BEIESP 

 
Fig 11 .Generation of 64 partial products 

 

D.Design Using Peres Gate in Proposed System 

 

  Peres gate is used to realize the different logical functions. 

For the design of single precision floating point multiplier, 

reversible half adder (RHA) is obtained from Peres gate 

with the hardwired control of c=0. The expression became 

as Q=A⨁B, R =AB which is equal to the sum and carry out 

of half adder. This is represented in Fig 12. 

 
Fig 12. Reversible Half adder 

 

  Reversible full adder (RFA) circuit is obtained by 

cascading  the  two Peres gate as shown in Fig 13.The sum 

and carry output of reversible full adder is given by the 

Boolean expression in equation 1&2.                                             

  S    =A⨁B⨁Cin     (1)  

 

Cout=(A⨁B)Cin⨁AB        (2) 

 

Peres gate is equal with the transformation produced by a 

Toffoli Gate followed by a Feynman Gate. The final design 

of the reversible 8x8 bit reversible multiplier involves the 

use of reversible full adders, reversible half adders to 
summed  the partial products for obtaining 16 bit output 

result for 88 multiplier which is given in Fig 14. 
 

 

 
  

Fig 13. Reversible Full adder 

       Fig 14.16 bit output in the reversible 8x8 multiplier 

IV. DESIGN OF REVERSIBLE EXPONENT 

ADDITION 

   

The full adder is the basic building block in the ripple carry 

adder, and most other adder circuits. The full adder 

computes the sum bit Si and carry output bit Ci+1 based on its 

addend input bits Xi and Yi, and its carry input bit Ci. The 

sum bit and carry output bits are given in equation below. 

                    Si=Xi ⨁Yi ⨁Ci      (3) 

                 Ci+1=XiYi+XiCi+YiCi     (4) 

 

 

A. Reversible ripple carry adder 

 
  An 8-bit reversible ripple carry adder is used to add the 

two input exponents. As shown in Fig 15, a ripple carry 

adder is a chain of cascaded full adders and one half 

adder.Each full adder has three inputs (A, B, Ci) and two 

outputs (S, Co). The carry out (Co) of each adder is fed to the 

next full adder.  

 

Fig15 -Reversible Ripple Carry Adder 

  

The addition process produces an 8 bit sum (S7 to S0) and a 

carry bit (Co,7). These bits are concatenated to form a 9 bit 

addition result (S8 to S0) from which the Bias is subtracted. 
The Bias is subtracted using an array of ripple borrow 

subtractors. 

 

B.Ripple borrow subtractor 

 

  Generally subtractor has three inputs (minuend (S), 

subtrahend (T), Borrow in (Bi)) and two outputs (Difference 

(R), Borrow out (Bo)). The subtractor logic can be 

optimized if one of its inputs is a constant value which is 

our case, where the Bias is constant (127)10 = (001111111)2. 

  Block diagram for 1 bit 
subtractor is shown in Fig 

16. Table 2 represent The 
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truth table for a 1-bit subtractor with the input T equal to 1 

is called as “one subtractor (OS)”. 

 
Fig 16.1 Bit subtractor 

  

Table 2 - 1 Bit subtractor with the input T=1 

 
The Boolean equations to represent this subtractor is given 
as   

             Difference=(S ⨁ Bi)‟                      (5)  

             Borrow     =S‟ +Bi                          (6) 

 

Table 3 shows the truth table for a 1-bit subtractor with the 

input T equal to 0 is called as “zero subtractor (ZS)”.  

Table 3 - 1 Bit subtractor with the input T=0 

 
 

The Boolean equations to represent this subtractor is given 

as 

             

             Difference=(S ⨁ Bi)      (7)             

             Borrow=S‟. Bi                          (8) 

                                                                  

 
Fig 17.Ripple borrow subtractor 

 

  Fig 17 shows the Bias subtractor which is a chain of 7 one 

subtractors (OS) followed by 2 zero subtractors (ZS).The 

borrow output of each subtractor is fed to the next 

subtractor.  

  The XOR function is provided by a single Peres gate to 

calculate the sign of the product and will be negative 

precisely when the signs of the two floating point factors 

differ. 

V. RESULT ANALYSIS & SIMULATION OUTPUT 

 

  In this paper, the cost metric parameters such as  quantum 

cost, delay, and  number of garbage outputs for each of the 

units designed  is verified  with the existing system.[7] 

 

Table 4 gives the cost of the reversible partial product 

generation unit (RPPG) for the proposed system with the 
existing system[7]. 

  

             Table 4- Cost of proposed 88 RPPG unit 

 

The cost of the reversible 88 reversible multiplier unit  

for the proposed system with the existing system[7] is 

shown in Table 5 

  Table 5-Cost of proposed 88 reversible multiplier                

 
 

The table 6 gives the cost of proposed reversible single 

precision floating point multiplier with the existing 

system[7]. 

Table 6- Cost of reversible single precision floating                    

point multiplier 

 
  Thus the result statistics shows that the design of this work 

gives the efficient optimized values for the quantum cost, 

garbage outputs and quantum delay. 

 
  The simulation output is obtained by using Xilinx 

simulation tool is as follows. 
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Fig 18. Reversible 2424 Multiplier 

  The design of reversible 24×24 multiplier output which is 

obtained by Xilinx is shown in Fig 18. The output of this 
multiplier has product of 48 bits. 

 

Fig 19- Reversible SPFP  Multiplier 

  The simulation output for the design of single precision 

floating point multiplier is obtained and is shown in Fig 

19.This is the final stage of the design and the product 

output is represented as pp in the waveform. 

  VI. CONCLUSION  

  Reversible single precision floating point multiplier 

utilizes the reversible 8×8 multiplier, reversible full adder 

and half adder to impose an efficient optimized multiplier in 

measurement of quantum cost, gate delay and garbage 

outputs .This proposed system can be used in the design of 

complex systems in nanotechnology. 

  The design of reversible single precision floating point 

multiplier reduces the quantum cost(6552) and quantum 

delay (26205) compared with the existing system[7] with 

increased garbage outputs(1723).It is also proposed to 

design a reversible exponent calculator with high precision 

values. 
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