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Abstract— We propose a short time min-max feature for 

improving fall detection performance based on the specific 

signatures of critical phase fall signal, acquired using a 

tri-axial accelerometer on a torso. Our proposed feature has 

been validated by a Support Vector Machine with two-fold 

cross-validation. Fall and scripted activities were tested in the 

experiment. Performance was evaluated by comparing the short 

time min-max with a maximum peak feature. The results 

obtained from 420 sequences show that the performances of 

short time min-max feature can approach 98.2% sensitivity and 

100% specificity for a radial basis function kernel, which are 

better than those from the maximum peak feature for all testing 

kernels. The short time min-max feature also uses one sensor 

for the body’s position without a fixed threshold for 100% 

sensitivity or specificity, and without additional processing of a 

posture after a fall. The simplicity and high performance of our 

proposed feature makes it suitable for implementation on a 

microcontroller for use in practical situations. 

 

Index Terms— Fall detection, Critical phase, Short time 

min-max feature, Support Vector Machine.  

I. INTRODUCTION 

The number of elderly (i.e. people aged over 60 years) is 

estimated to reach almost two billion by 2050 [1]. One 

major public health problems for the elderly are falls and 

consequential injures, which will only get worse as the 

numbers of elderly increases. Major causes for fall-related 

hospital admissions are hip fractures, traumatic brain 

injuries, and upper limb injuries, resulting in a significant 

increase in the health care costs [2]. For example, the 

average cost of hospitalization for fall-related injuries for 

people aged 65 years and older range from US$ 6,646 in 

Ireland to US$ 17,483 in the USA [3, 4]. However, if the 

elderly could get help as soon as possible after the fall, the 

severity of the injury could be reduced. Also, it results in 

decreasing the risk of paralysis, the rate of sickness, death 

and the medical cost. 

Image processing and sensors are two most popular 
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techniques for fall detection [5]. Image processing performs 

very well [6]-[9] in controlled environments for the lighting 

and frame. Also, sensor methods are promising [10]-[18]. 

Nine micro mercury switches and an optical sensor attached 

to ten places around a coat were used for Lin‟s study [10]. 

By his fall after impact detection, the results show 

sensitivities of 98-100%. Using a tri-axial accelerometer 

attached to the waist or head for Kangas‟ study [11], two or 

more phases of a fall event were employed: the beginning of 

the fall, falling velocity, fall impact, and subsequent posture 

of the person. Using a simple threshold with three different 

detection algorithms (impact + posture, start of fall + 

impact + posture, and start of fall + velocity + impact + 

posture), his study reported 97-98% sensitivity and 100% 

specificity (by setting thresholds) for three middle aged 

subjects. The same algorithms with more subjects were 

investigated in his recent study, which obtain a sensitivity 

of 97.5% and a specificity of 100% (by setting thresholds) 

[12]. A tri-axial accelerometer was also employed by 

Chao‟s study [13]. A cross-product (AC) was proposed as a 

parameter, and compared to the acceleration magnitude 

(AM). AC leads to a larger area under a receiver operating 

characteristic curve than AM. Moreover, including post-fall 

posture (PP) recruitment leads to lower false alarm ratios 

for both AC- and AM-based methods. Sitting-to-lying 

motion was reported to produce false alarms in his study. A 

biaxial gyroscope, a tri-axial accelerometer, and an inertial 

sensor (a tri-axial + a gyroscope) were employed for 

Bourke‟s studies [14]-[16]. He reported 100% sensitivity 

(by setting thresholds) and 100% specificity using a 

threshold-based algorithm. However, our study [17] with 

the same algorithm used in Bourke‟s study [15] found that 

some false positives occur for quick movements. This was 

confirmed in his recent work with scripted and unscripted 

activities [16], which utilized thresholds for velocity, 

impact, and posture to achieve 100% sensitivity (by setting 

thresholds) and 100% specificity. His study [16] needs 

signals from both an accelerometer and a gyroscope to find 

the velocity.  

Addition of posture after a fall [11]-[12], post-fall posture 

recruitment [13] and posture after a fall [16] are needed to 

improve their fall detection performance. Moreover, some 

studies need fixed thresholds, which are obtained from the 

experiment, for 100% sensitivity or specificity. 
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A fall can be described as the rapid change from the 

upright/sitting position to the reclining or almost 

lengthened position, but is an uncontrolled movement. A 

fall has been defined to have four distinct phases [5]: 

(1) Pre-fall phase, comprising usual/normal activities of 

daily living (ADL), but may contain some instability; 

(2) Critical phase, when the body experiences a sudden 

movement towards the ground, ending with a vertical 

shock; 

(3) Post-fall phase, when the body remains inactive, 

frequently lying on the ground; 

(4) Recovery phase, when the person stands up on his 

own, or with the help of others. 

 During a critical phase fall, the body moves suddenly 

towards the ground, ending with a vertical shock. 

Therefore, a resultant from 3-axis acceleration, here the 

resultant acceleration of a torso is suddenly changed to a 

high negative and a positive peak in a short time interval. 

The high negative occurs when the body moves suddenly 

towards the ground. The high positive occurs when the 

body contacts the ground. 

This article proposes a short time min-max feature for 

fall detection. This feature employs specific characteristics 

of high negative and positive resultant acceleration peaks in 

short time, which occurs during critical phase fall signals. 

This feature distinguishes falls from ADL, that usually have 

a low negative and/or positive resultant acceleration peaks. 

The aims of this study are 

(1) to show that the minimum and maximum resultant 

accelerations observed during a critical phase fall of a torso 

can distinguish falls from ADL using a Support Vector 

Machine, without a fixed threshold for 100% sensitivity or 

specificity,  

(2) to propose a short time min-max feature, which is 

evaluated from the minimum and maximum resultant 

accelerations in a defined window for fall detection, and 

(3) to compare performances for a short time min-max 

and a maximum peak feature and show that the short time 

min-max feature can approach the better performance. 

The rest of this article is organized as follows: Section 2 

describes materials and methods, Section 3 presents results, 

Section 4 contains discussion, and conclusions are given in 

Section 5. 

II. MATERIALS AND METHODS 

A. Materials 

As in our previous study [18], a tri-axial accelerometer 

was constructed using two dual-axis MEMS accelerometers 

(Analog Devices ADXL321) mounted at right angles to 

each other, and attached to a person‟s torso as shown in 

Figure 1. The X axis is anterior-posterior, the Y axis is 

left-right, and the Z axis is superior-inferior. Signals from 

each axis were transmitted by wires connected to each 

accelerometer, transformed from analog to digital by 

NI-USB6008, and recorded for later offline processing. All 

signals were acquired at 12-bit resolution with a 1-kHz 

sampling frequency, and processed by a second-order 

low-pass Butterworth digital filter with a cut-off frequency 

of 20 Hz. The trial protocols were approved by the Research 

Ethics Committee of the Electrical Engineering Department 

of Prince of Songkla University. Written informed consents 

were obtained from all subjects prior to the experiments. 

 
Figure 1: Position of the tri-axial accelerometer. 

B. Fall and ADL Experiments 

Data from our previous study [18] were used, and added 

more subjects. A predefined set of falls and ADL common 

to the elderly were evaluated for performance. Young 

subjects were performed simulated falls onto a mattress for 

safety and health concerns. 14 young and 14 elderly 

subjects were involved in the experiments (7 male and 7 

female for young, age 25.14 ± 5.26 years, 7 male and 7 

female for elderly, age 68.28 ± 4.37 years). Four categories 

of fall: forward fall (FF), backward fall (BF), left side fall 

(LF), and right side fall (RF), and six categories of ADL: 

sit-stand (ST), stand-sit (TS), sit-lie on a bed/floor (SL), 

lie-sit (LS), bend down to pick up an object when standing 

(BD), and walk (WA) were performed. Each fall and ADL 

type was repeated three times for each subject, so the data 

comprised 420 sequences, made up from 168 fall and 252 

ADL sequences. 

C. Features  

Resultant acceleration ( resA ) can be evaluated from the 

representatives of the 3-axis acceleration. If xA , yA , and 

zA  are accelerations (g) along the x , y , and z  axes, 

then the resultant acceleration can be expressed as: 

 

2 2 2( ) ( ) ( )res x y zA A A A         (1) 

An example of a left side fall signal, displayed in terms of 

x , y , and z  accelerations is shown in Figure 2a, while 

the resultant acceleration corresponding to Figure 2a is 

shown in Figure 2b. Two features, a maximum peak and a 

short time min-max feature were tested in the experiment. 
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Maximum peak feature  

A fall produces high resultant acceleration as impact, so a 

maximum resultant acceleration peak, max( )resA , was 

used as a feature for a fall. Figure 2c shows max( )resA  of 

the example of left side fall signal. 

 
Figure 2: a) Example of general 3-axis acceleration for a 

left side fall. b) Example of the resultant acceleration 

corresponding to 2a. c) Part of the resultant acceleration 

including the critical phase signal of 2b. This part shows 

an example of 1.5 s sliding window, minS  , maxS  , and 

max( )resA . 

Short time min-max feature  

The short time min-max feature is separated from our 

previous algorithm [18]. High negative and positive peak 

resultant accelerations in critical phase fall signals are used 

for fall detection. To obtain the feature, the resultant 

acceleration signal is processed using a 1.5 s sliding 

window with 50% overlap. The 1.5 s window covers the 

critical phase fall signal. For the segmentation of data in 

each window, maximum resultant acceleration of the 

segmented signal ( maxS ) and minimum resultant 

acceleration of the segmented signal ( minS ) are computed.  

minS  and maxS for a 1.5 s sliding window act as a short 

time min-max feature. An example of a sliding window, 

minS , and  maxS  are shown in Figure 2c. 

D. Support Vector Machines   

A Support Vector Machines (SVM) was employed as the 

classifier to separate falls from ADL [19]. It is composed of 

either an input for max( )resA or two inputs for minS  and  

maxS . Three tested kernel functions follow: linear, 

polynomial with a default order of 3, and radial basis 

function (rbf) with a default scaling factor of 1. Data are 

normalized for training and testing. max( )resA of all the 

sequences, and minS   and maxS of all the segments of all 

the sequences, were divided into two groups for training 

and testing. The groups depended on the subjects, with 

balanced scenarios:  

1) 7 sets of young/elderly subjects were numbered 1-7, 

2) 7 sets of young/elderly subjects were numbered 8-14. 

During training, the max( )resA  for falls are set to fall 

events, while others are set to non-fall events for the 

maximum peak feature. For the short time min-max 

feature, only segments involving critical phase of falls for  

minS  and  maxS  are set to fall events, while others are set 

to non-fall events. Outputs (for the maximum peak feature) 

or segment outputs (for the short time min-max feature), 

which are greater than 0 denote falls. Otherwise, they are 

labeled as non-falls. Training and testing data were 

swapped for two-fold cross-validation. 

E. Performance Evaluation   

The performance is evaluated by sensitivity and 

specificity given by (2) and (3) 

(%) *100
TP

Sensitivity
TP FN




   (2) 

 

(%) *100
TN

Specificity
TN FP




   (3) 

 

where  TP  (true positive): a fall occurs, the algorithm 

detects it;  FP (false positive): the algorithm announces a 

fall, but it did not occur; TN (true negative): a normal (no 

fall) movement is performed, the algorithm does not declare 

a fall; FN (false negative): a fall occurs but the algorithm 

does not detect it. This event must be avoided because the 

elderly may receive serious injuries. 

III. RESULTS 

A. Fall characteristics   

 An example of a left side fall acquired using a tri-axial 

accelerometer is illustrated in Figure 2. The left side fall is 

displayed in terms of x , y  and z  accelerations in Figure 

2a. It is partitioned into three phases, a pre-fall phase, a 

critical phase, and a post-fall phase. In the pre-fall phase, 

or stand-still period, the z  acceleration is about 1 g, while 

the x  and y  accelerations are about 0 g. As the body falls 

during the critical phase, there is a reduction of z  

acceleration below 1 g for a short period (or a high negative 

peak), and then increase until the body impacts the mattress 

with a high positive peak 

acceleration.  
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In the post-fall phase, more than one peak usually occurs 

for several reasons, such as the knee impacting before the 

trunk for a forward fall, or the bottom impacting before the 

trunk in a backward fall, or due to rebounding of the body 

after impact. After impact, the acceleration direction 

reverses due to the rebound, and the body may 

impact/rebound several times until all the kinetic energy is 

exhausted. For the example, the z  direction changes to be 

parallel with the ground and the y  direction switches to 

the vertical at the same time. At the end of a fall, the x  

and z  accelerations are about 0 g while the y  acceleration 

is about 1 g. Figure 2b shows the resultant acceleration for 

all the axis accelerations in Figure 2a. The resultant 

acceleration is about 1 g during the pre-fall phase, then 

drops below 1 g for a short period (or a high negative 

peak), before increasing to a peak. Figure 2c shows a part 

of the resultant acceleration, including critical phase, with 

an example of a 1.5 s sliding window, minS ,  maxS , and  

max( )resA . 

B. Fall and ADL resultant accelerations 

Figure 3 shows examples of resultant accelerations for 

different fall signals. These specific signatures appear in 

the critical phase for all falls, i.e. forward fall, backward 

fall, left and right side falls. The high positive peaks of the 

resultant accelerations from falls are generally several times 

the gravitational acceleration, and higher than those for 

ADL resultant accelerations, except for soft impacts. Figure 

4 shows examples of ADL resultant accelerations. Even 

though ADL resultant accelerations have positive and 

negative peaks like fall resultant accelerations, their peaks 

are lower. They are usually in the interval (0.75–2 g), 

except for quick movements. 
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Figure 3: Example of resultant acceleration waveforms 

for different categories of fall. 
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Figure 4: Example of resultant acceleration waveforms 

for different categories of ADL. 

C. Maximum peak feature  

The maximum peaks for the falls are usually greater than 

those for ADL for the first and second data groups as 

shown by quartile box plots in Figures 5a and 5b, 

respectively. Even though most falls are separate from 

ADL, several scenarios such as „BF‟, „LF‟, „SL‟, and „TS‟ 

have overlapping trend between falls and ADL using only a 

threshold.  

For two-fold cross-validation with the SVM for each 

kernel, the first data group hyperplanes obtained from 

training were tested on the second data group, and the 

second data group hyperplanes were tested on the first data 

group. The sensitivities and specificities of each kernel for 

the maximum peak are shown in Table 1. 
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(a) First data group 
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(b) Second data group 

Figure 5: Quartile box plots of the maximum peak 

resultant accelerations of all sequences. 

 

Table 1: Sensitivities and specificities for each kernel for 

the maximum peak. 

Kernel 
Maximum peak 

Sensitivity Specificity 

linear 91.1 99.2 

polynomial 88.7 99.2 

rbf 91.1 99.2 

 

Table 2: Sensitivities and specificities for each kernel for 

the short time min-max feature. 

Kernel 
Short time min-max 

Sensitivity Specificity 

linear 97.0 100.0 

polynomial 95.2 100.0 

rbf 98.2 100.0 

D. Short time min-max feature  

Scatter plots of  minS and maxS of all sequences between 

critical phase fall and minimum before maximum ADL 

resultant acceleration for the first and second data groups 

are shown in Figure 6a and 6b, respectively. „Red-o‟ 

symbols represent falls, while „blue-x‟ symbols represent 

ADL. The maxS  for the falls are usually greater than those 

for ADL, while minS  in the critical phase falls are usually 

lower than the minimum before maximum from ADL. 

These scatter plots show a trend for getting better rates of 

fall detection when the 1.5 s sliding window with 50% 

overlap slides among the critical phase fall. 
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(b) Second data group 

 

Figure 6: Scatter plots of minS  and maxS  between critical 

phase fall and minimum before maximum ADL of all 

sequences. 

For all segment data, most segment data for ADL have 

low minS and maxS . Segment data for non-critical phase 

falls have both low and high minS / maxS , because there are 

several changes of fall event influencing fall detection. For 

example, the pre-fall phase of a fall offers low  minS  and 

maxS  (about 1 g) and should be detected as a non-fall. The 

critical phase of a fall offers very low minS , which is 

usually lower than the minimum before maximum from 

ADL, and may offer high/maximum maxS  depending on 

the reach of the sliding window to the maximum peak. 

Also, the post-fall phase, or the „impacting and rebounding‟ 

period, may offer low/high  minS and maxS because of the 

alternative resultant acceleration. Therefore, the output 

segments of a fall sequence can be detected as a fall for 

segments of critical phase or some segments of post-fall 

phase, which have high negative and positive peaks like 

those from critical phase. These characteristics occur for 

segments involving critical phase before post-fall phase, so 

they are first detected in critical phase.   
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However, if any segments of a fall sequence are predicted 

to be a fall, then the entire fall sequence is labeled as a fall. 

Using the SVM for each kernel and two-fold 

cross-validation, the sensitivities and specificities of each 

kernel for the short time min-max are shown in Table 2. 
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Figure 7: Resultant acceleration example of BF with false 

negative. 
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Figure 8: Resultant acceleration example of SL with false 

positive. 

IV. DISCUSSION 

A number of BF produce FNs and a number of SL 

produce FPs for the maximum peak feature, as an example 

of BF and SL which produce FN and FP in Figures 7 and 8, 

respectively. The FN event of BF can be viewed as a body 

that sometimes impacts a mattress with acceleration lower 

than general, producing a soft impact, which gives a 

maximum peak like that from ADL. However, this case can 

be reduced by the short time min-max feature because the 

characteristic of minimum resultant acceleration in a 

critical phase can distinguish falls from ADL, as the results 

shown in Table 2. The FP event of SL can be described that 

a body sometimes impacts a mattress with acceleration 

greater than general, which produces a maximum peak like 

that from falls. This result is the same as in Chao‟ s study 

[13]. Although these cases of SL produce high maximum 

peaks, they do not produce high negative peaks for the 

elderly because of slow movement at a beginning of a 

descent onto a mattress. Thus, these cases of SL can be 

detected by the short time min-max feature. Chao‟ s study 

[13] shows that his method including AC- and PP-based 

algorithms, depending on a lying posture, cannot 

completely avoid FP. Our proposed method is not 

dependent on a posture after a fall, so it is a good choice for 

distinguishing SL from falls. 

V. CONCLUSION 

This paper presents a short time min-max feature for fall 

detection for the elderly. Our proposed feature employs the 

specific signatures of high negative and positive peak 

resultant acceleration in critical phase fall signals, to 

distinguish falls from ADL using a Support Vector 

Machine. The results show a performance comparison 

between the maximum peak and the short time min-max 

feature. For tests involving 420 sequences, we found that 

the sensitivities and specificities of short time min-max 

feature are greater than that of the maximum peak feature 

for all kernels. The kernel function of rbf offers the best 

performance for both features, which are 91.1% sensitivity 

and 99.2% specificity for the maximum peak feature and 

98.2% sensitivity and 100% specificity for the short time 

min-max feature. The short time min-max feature gives 

better performance, uses only one sensor for a body‟s 

position, does not require a fixed threshold for 100% 

sensitivity or specificity, and does not involve additional 

processing for a posture after a fall. The simplicity and high 

performance of our proposed feature makes it suitable for 

implementation on a microcontroller for use in practical 

situations. 
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