Impedance Study of Drinking Water and Tastants Using Conducting Polymer and Metal Electrodes

Mopsy Dhiman, Pawan Kapur, Abhijit Ganguli, Madan Lal Singla

Abstract—In this study the sensing capabilities of a combination of metals and conducting polymer electrodes for drinking water and dissolved tastants using an AC-impedance mode in frequency range 10^2 to 10^5 Hz at 0.1 V potential has been carried out. Classification of seven different bottled and municipal drinking water samples along with various tastants dissolved in DI water (DI water) for KCl (5mM) (salty), HCl (5 mM) (sour) quinine (0.1 mM) (bitter), sucrose (5 mM) (sweet), black tea liquor, black tea liquor with sucrose (2% sugar solution), and a bottle of “packed” orange juice has been made using six different working electrodes in a multi electrode setup using PCA. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniiline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these water samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in water/tastants. The different sensing surfaces allowed a high cross-selectivity in response to the same basic tastes in much the same way as the biological system between different brands of mineral water or between purpose and tastants in beverages is largely increasing. Classification of seven different bottled and municipal drinking water samples along with various tastants dissolved in DI water, groundwater were used aside from different tastants from the polymer [23]. Laboratory conductivity measurement is used to assess the degree of mineralization of distilled water and DI water, which are used to evaluate variations in dissolved mineral concentrations of raw water and wastewater [24]. Taylor and Mc Donald described an equivalent circuit in the sensing system to understand the theoretical phenomenon behind impedance measurement studies [25].

In this study, we analyzed the impedance behavior of drinking water and tastants at a constant voltage of 0.1 V in the frequency range from 10^2 to 10^5 Hz using a combination of electrodes. For this different samples of bottled drinking water, groundwater were used aside from different tastants such as KCl (salty), quinine (bitter), HCl (sour) and sucrose (sweet) in deionized (DI) water, black tea and a liquor of black tea with sucrose. The metal electrode surface area was kept constant for all the measurements. The impedance measurements of ITO-Polyaniline (ITO-PANI), ITO-Polypyrrole (ITO-PPY) conducting polymer electrodes were also compared with metal electrodes. In all the electrodes the average impedances of each electrode after repeated measurements of the samples over a period of 90 days were taken into consideration and used for the AC-impedance study and principal component analysis (PCA).

INTRODUCTION

Water is an essential precursor to the discovery of life [1]. It is one of the abundantly available resources in nature and is important for animal and plant life [2]. The use of artificial sensors for evaluating water quality for drinking purpose and tastants in beverages is largely increasing. Impedance study responds to the compounds responsible for basic tastes in much the same way as the biological system and may detect differences between beverages having similar flavours. For instance, some of them can distinguish between different brands of mineral water or between different brands of wine, in addition to detecting ionic metals in water. Different methods have been used in these studies for substances ensuring sweetness, saltiness, sourness, bitterness and umami by potentiometry [3-6], voltammetry [7-11] and admittance measurement [12]. Recently, the interest to learn more about AC-impedance technique has rapidly grown in the bio-electrochemistry for sensor studies. Impedance measurement is the study of conductivity and impedance is a numerical expression of the ability of an aqueous solution to carry electric current.

Keywords: - Sensing electrodes, AC-impedance, Principal component analysis, Drinking water, tastants, conducting polymers.
Experimental Section

Materials and method (Chemicals used)

Drinking water supplied from the municipality of Chandigarh (India) and groundwater (hand pump water) samples from the same area together with samples of bottled drinking water by 5 different companies labelled A (treated using reverse osmosis and ozone), B (treated using reverse osmosis), C (ozonized with added minerals), D (treated with ozone), E (treated by reverse osmosis and ozonized with added minerals, procured from local market of Chandigarh (India). All the basic tastants were prepared in the laboratory using AR analytical grade chemicals, KCl (5-50 mM Cl⁻), HCl (5 mM) (from Loba Chemie, India), quinine 0.1 mM (Fluka), sucrose 5 mM, 5% black tea solutions prepared by dipping a 5 gm of (Brook Bond-Taj Mahal) tea bag in 100 ml of DI water, and another tea solution prepared by adding 1 gm of sucrose to 50 ml of black tea and a pack of “packed” orange juice (Minute Maid from Coca-Cola). The chemicals used for the preparation of conducting polymer sensors are aniline and pyrrole (Spectrochem Pvt Ltd. India), LiClO₄ (Alfa Aesar), H₂SO₄ (Ranbaxy, India), and Indium Tin Oxide glass plates.

Electrochemical equipment

CHI Instruments Electrochemical workstation 660C (Austin, TX, USA) was used for the impedance study. All the AC-impedance experiments were carried out at 20 ±2°C using a single compartment 3 electrode cell. Pt, Au, GC, and Ag (Supplied by CHI Instruments) were used as working electrodes; ITO-PANI and ITO-PPY working electrodes were grown potentiostatically. Pt wire as the counter electrode and Ag/AgCl (4M KCl) as the reference electrode were used. The AC-impedance parameters were +0.1 V potential for 60 s at an amplitude of 0.005 V with a frequency range from 10² to 10⁵ Hz.

Metal electrode polishing and electro polymerization of conducting polymers at ITO coated glass surface

All the four metal electrodes (Pt, Au, glassy carbon, and Ag) were polished to obtain a smooth surface with alumina powder (Al₂O₃, CH Instruments, Inc, USA) of particle sizes of 1, 0.3, and 0.05 µm and washed before use. PANI and PPY films were deposited on the ITO surface (0.8 cm²) by the electro polymerization of the respective monomers in a glass cell having a three electrode ITO coated glass as the working electrode, Pt wire as the counter electrode and Ag/AgCl as the reference electrode. For the ITO-PPY electrode 0.1 ml of pyrrole monomer and 10 ml of 0.2M LiClO₄ were taken in the glass cell and a film was grown potentiostatically at +1 V for 30 s. Similarly PANI films were grown on an ITO surface using 0.5 ml of aniline in 10 ml of 0.2 M H₂SO₄ at +1.2 V for 60 s by the potentiostatic method. Each ITO-polymer film electrode was washed with DI water 2-3 times dried and kept in a dessicator before and after use. Each polymer electrode was observed 10 times [29].

Principal component analysis of water and tastants

Quality assessment studies of seven types of drinking water and different tastants were carried out by PCA.

PCA for Drinking water
I. A set with four electrodes (Pt, Au, Ag, glassy carbon), a set with two polymer electrodes (ITO-PANI, ITO-PPY) and a set with all the six electrodes (Pt, Au, Ag, glassy carbon, ITO-PANI, and ITO-PPY) for drinking water.

PCA for Tastants
II. PCA plot- A having six electrodes with tastants.

Results and discussion

Electrochemical impedance was measured by applying an AC potential to an electrochemical cell containing the sample solution and measuring the current through the cell using small excitation signals.

Equivalent circuit / Randle’s model

The complex plane plot or Nyquist plot obtained by impedance study is due to the Randle’s equivalent circuits, where Cdl is the double-layer capacitance, Rs is the bulk sample solution resistance, Rc is the charge-transfer resistance associated with the double layer [Fig.1 (a), Fig.1 (b) and Fig. 1(c)].
The circuit components represent the processes contributing to the overall impedance of the system. These circuits are used mainly for the analysis of impedance data [12]. A Nyquist plot for a typical Randle’s cell is always semicircular. The solution resistance can be found on a real axis at a high-frequency intercept [Fig.1 (d)].

In these impedance plots, each electrode surface represents the response for DI water. The complex plane plot of impedance behavior in Fig.2 (a) shows a semicircle. This half circle is a characteristic of a single time constant, although the electrical impedance plots often contain several time constants. The single time constant may be due to the DI water being a poor conducting solution resulting in higher impedances, forming a semicircle. The impedance plot clearly shows that the Pt electrode is least polarized in comparison to Au and silver, whereas the GC electrode is highly polarized. The behavior of the PPY and PANI electrodes has been found to be 45° oblique line which may be due the conducting nature of the polymer. The resistance of the polymer surface is negligible in comparison to the electrolyte resistance. Thus, the polymer is in its oxidized state and the impedance is equal to the electrolyte between the working and reference electrodes [20, 26-28]. The average impedances observed with these 6 electrodes are given in Fig. 3, which shows that the GC and Au electrodes are highly sensitive.

Impedance study of DI water samples

The response of four electrodes (Au, Pt, Ag and glassy carbon) and two conducting polymer electrodes (ITO-PANI, and ITO-PPY) for DI water in the frequency range of 10^2 to 10^5 Hz with a potential of 0.1 V are given in Fig. 2 (a) and Fig.2 (b), respectively.
Impedance Study of Drinking Water and Tastants Using Conducting Polymer and Metal Electrodes

Impedance study of seven different drinking water samples

The AC-impedance of five bottled water samples, municipal water, and groundwater are represented in Fig.4 using all the six working electrodes.

Sample A shows the higher impedance values with the three metal electrodes, GC electrode as well as with conducting polymer electrodes, indicating that this water may contain fewer dissolved ions, hence shows a flattened circle on a complex plane plot. Sample B represents almost similar values with no significant impedance changes in Au or Pt, whereas the impedance of the Ag and GC electrodes are of the order of 75% and 50% approximately to that of the Au and Pt electrodes. The B, C, D, E, and other drinking and groundwater samples have lower impedance output for GC, Ag, Au, and Pt electrodes.

The impedance behavior of Au electrode with sample D shows somewhat higher impedance values in comparison to other metal electrodes, while conducting polymer electrodes have low impedance output. Thus impedance data explains some relation between Au electrode and Sample D at higher impedance which may be due to dissolved minerals present that can be seen from the values of ground water sample. Impedance measurements of all the water samples on the polymer electrodes shows a charge-transfer resistance, polymer thin-film interference, the ion-diffusion co-efficient into the polymer and the redox capacitance [26], which is an important parameter of electrochemically conducting polymers. The assessment of sensors has been carried out using impedance data with the combination of sensing electrodes for different brands of drinking water in PCA. In PCA results, first principal component provides most of the information and presents the highest variance.

Fig.5 (a) represents all the four metal electrode surfaces which are able to distinguish water sample A clearly whereas B, C, D and ground water lie close to each other.

In Fig.5 (b) conducting polymer electrodes are able to clearly distinguish the bottled water in comparison to municipal and ground water which lie close to each other indicating the source of water withdrawal may be same.

similar behavior has been observed when the PCA of six electrodes were studied together in Fig.5 (c).
interaction occurring between the electrode surface and the threshold detection level for tastants, indicating specific compound present in it. The PCA plot in Fig.6 clearly distinguishes between various tastants without knowing the specific compound present in it. The PCA plot in Fig.6 clearly distinguishes between various tastants having various mM concentrations in DI water. The sensing pattern of combination of electrodes clearly shows cross sensitivity at concentrations in DI water. The sensing pattern of Fig.6 represents PCA of various tastants having various mM concentrations in DI water. The use of conducting polymer i.e. PANI and PPY lies towards the same side of the plane. The detection of tastants i.e. sour (HCl), salty (KCl), bitter (quinine), sweet (sucrose) tastes prepared in DI water, thus indicates variable sensitivity due to the nature of tastants/cation-anion mobility towards electrode surface. The tea liquor prepared in DI water, sweet tea liquor and orange juice were also classified towards electrode surface. The tea liquor prepared in DI water, thus indicates variable anions present in this water. Metal electrodes were not found to be much helpful in classification of different brands of water. However, six set of electrodes was able to classify threshold level tastants present in DI water. More detailed studies in impedance mode are being carried out for further quantification of beverages and tastants quality.

Acknowledgments
The authors are grateful to Ravi K Komaravala, Mrinmoy Misra, Amol, P. Bhondekar of Central Scientific Instruments Organization (CSIO), Chandigarh for their deep interest in this study.

References
[18] E Stussi, R Stella and D De Rossi, “Chemo resistive conducting polymer based odour sensors: Influence of thickness changes on their

