
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

395

Retrieval Number: B0629042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract:- Many applications such as location based systems,

traffic monitoring, radio frequency identification, sensor

networks etc., benefit from spatio-temporal indexing. R-Tree

based index structures are widely used for indexing the spatial

information. The main issue to be considered is frequent updates.

These applications pose frequent updates which have to be

reflected in the index structure. Frequent changes to the index

structure causes more overhead. Recent research is to handle

these frequent updates efficiently. This paper presents the state of

art in the update strategies adopted in spatio-temporal indexing.

This work provides an idea of the present development in updating

techniques for spatio-temporal indexing.

Index Terms:- R-Trees, Spatio-Temporal Indexing, Update

Strategies.

I. INTRODUCTION

 Applications such as Global Positioning System (GPS),

Computer Aided Designing [1] etc., have made storage of

multi-dimensional data mandatory nowadays. Indexing these

data is necessary for fast retrieval. Spatial index structures

such as grid files, R-Trees, Quad trees [3] exist for this

purpose. R-Tree [2] and its variants are the most widely used

for its efficiency and simplicity. R-Trees represent the objects

as Minimum Bounding Rectangles (MBRs). R-Tree can be

extended to support spatio-temporal data also. Applications

[1] such as traffic monitoring, radio frequency identification,

sensor networks, multimedia, location aware systems etc.,

benefit from spatio-temporal indexing. With the increase in

necessity to track moving objects, find the objects nearby

during travel, finding a neighbour for some purpose etc.,

spatio-temporal databases are gaining more importance.

Since these data keep moving, accuracy of query results

depends on fast retrieval of data. If retrieval takes time, the

actual result and the result obtained differ because the objects

would have moved by the time the result was retrieved and the

result might become less useful. So, for faster retrieval

indexing of these data is required. Though indexing provides

quicker query results, there are some issues in indexing

spatio-temporal data. One of the main issues is to handle

frequent updates. Existing spatial index structures are not

efficient to handle frequent updates. This poses a lot of

overhead to the index structure. Update is normally a costly

process as it involves a delete and insert. Frequent updates

Manuscript received on April 26, 2012.

 Lakshmi Balasubramanian, Department of Computer Science and

Engineering, Pondicherry Engineering College, Puducherry, India,

(e-mail: lakshmi@pec.edu).

Sugumaran. M, Department of Computer Science and Engineering,

Pondicherry Engineering College, India, (e-mail: sugu@pec.edu).

increase the update cost dramatically. Techniques to handle

update efficiently are thus necessary. Techniques like lazy

splitting [4], lazy update [5], extended MBR [5], batch update

[6], deferred delete [7], deferred delete and insert [8] etc.,

have been proposed to handle the issue effectively. Lazy

splitting avoids splitting the node when it is full by finding

free space in some nearby node. Lazy Update [5] updates only

when the object moves out of the present MBR. Extended

MBR [5] approach expands the MBR of the present leaf to

some extent so that zigzag movement of the objects do not

pose frequent changes in the structure. Bulk update [6]

technique takes advantage of the fact that not all updates need

to be considered as separate operations, they might share a

common path which when exploited reduces the disk

accesses. Buffering technique [7] defers the deletes or both

the deletes and inserts [8] and makes them effective in a bulk

when the buffer is full. Normally R-Tree is traversed

top-down for any operation. But bottom up approach [9] was

proposed to tackle updates efficiently.

This work presents an analysis on these update strategies

adopted in spatio-temporal indexing. Section 2 provides a

brief overview on the most used index structure, the R-Tree

and its spatio-temporal variant TPR-Tree. Section 3 provides

an analysis on the state of art update strategies in

spatio-temporal indexing and finally Section 4 provides the

conclusion.

II. INDEX STRUCTURE

The main index structures used for spatial indexing include

R-Tree [2] and its variants. TPR-Tree [10] is an efficient

variant of R-Tree supporting spatio-temporal indexing. The

following sub sections provide basic details of R-Tree and the

TPR Tree.

A. R-Tree

R-Tree [2] is a disk resident index structure. It is height

balanced and multi-dimensional version of B-Tree [11]. The

structure is designed such that a search requires visiting only a

small number of nodes. Inserts, deletes, updates and queries

to R-Tree can be mixed and hence the structure is dynamic.

R-Tree consists of a root node, non leaf nodes and leaf nodes.

The leaf nodes contain the unique ID of the object, MBR of

the object, and pointer to the actual data. MBR is the smallest

rectangle that covers the object. The non-leaf nodes contain

the MBR which covers all its children and pointer to the

children. A set of properties [2] must be satisfied for the

structure to be a valid R-Tree.

The properties includes details

on maximum and minimum

An Analysis on Update Strategies for

Spatio-Temporal Indexing

Lakshmi Balasubramanian, M. Sugumaran

An Analysis on Update Strategies for Spatio-Temporal Indexing

396 Retrieval Number: B0629042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

limit of entries that a node can hold, the fan out of the root,

index and leaf nodes and balance property.

Operations like insertion, deletion, updating and querying

can be carried out in R-Tree. Insertion involves traversing the

tree from root to the leaf node where the object can be put

such that the properties of R-Tree are satisfied. During

traversal, the node which needs least change to put the new

object is chosen and travelled down. After insertion, if the

node exceeds the maximum capacity, splitting is done so that

the newly formed nodes have entries between the minimum

and maximum capacity. Splitting incurs more disk accesses.

Hence many splitting methods were proposed to handle

situations efficiently. Some of them include linear [2],

quadratic [2], R* [12], 2-3 [1], branch grafting [1], clustering

[13] etc. Deleting involves multi path search. When an object

is to be deleted, first the object is located by traversing from

root to some leaf node. The search may be multi path due to

overlap. During deletion, if the number of entries becomes

less than the minimum capacity then the tree is adjusted to

satisfy the properties. Updating a record involves deletion of

old value of the entry and insertion of new value of the entry.

Searching records which lie within a given window is the most

often used query. The tree is always traversed from top to

bottom. The non-leaf records which overlap the given

window are chosen during traversal for further exploration.

This is done at every level until the leaf nodes are reached.

The leaf nodes which overlap with the given window are the

qualified records.

B. TPR-Tree

A TPR-Tree [11] is a spatio-temporal variant of R-Tree.

TPR-Tree represents a moving object with a MBR which

describes its extent at time t and a VBR (Velocity Bounding

Rectangle) which describes the upper and lower bound of the

velocity in each dimension. Leaf and non leaf nodes both store

MBRs and VBRs. Insertion, deletion and updating processes

are same as R-Tree. It can handle queries based on future

positions by using the VBR. The extent to which it can predict

the future is called the horizon of the tree.

Update methods are not efficient to handle updates from

update-intensive applications. Efficient schemes are

necessary to handle these frequent updates. Next section

highlights on the analysis of the update techniques in the

literature for spatio-temporal indexing.

III. ANALYSIS OF STATE OF ART UPDATE

STRATEGIES

Indexing moving objects faces many challenges. One of the

main challenges is to handle numerous updates efficiently.

Some techniques such as lazy splitting [4], lazy update [5],

Extended MBR [5], Bulk loading [6], update memos [7] and

semi bulk loading [8] are briefed and their advantages and

disadvantages are highlighted. A synopsis on generalized

bottom up approach [9] is also presented. Updating protocol

[14] which could reduce the number of update messages is

also discussed.

A. Lazy Splitting

Lazy Splitting [4] is avoiding or deferring the costly splitting

process thereby saving disk accesses. When an object is

inserted into a leaf that is full, then a nearby leaf which has

free space is chosen and the data is added into that leaf and the

original leaf’s MBR is expanded to contain the new entry.

This method reduces update cost by trying to avoid disk

access consuming processes like splitting and merging unless

they are absolutely necessary. When a data is deleted the

existing MBR may have to contract. Though the update cost is

reduced with this method, the search cost increases since the

extension of MBR would cause overlap. Leaf nodes which are

nearby need not be near based on distance. This fact still

degrades the query performance.

An improvement to this technique was to search for free nodes

only with the siblings. If a data member is inserted into a node

and that node is full, the parent of that node will check to see if

any other child of the parent node can hold the new entry. If

the parent node is full, the child will split. If the parent node

does have a free space, it will find a child with a free space.

The parent will take a data member from the node directly

next to the free node and insert it into the free node. Next, the

MBRs for both of the nodes will be adjusted and process

repeats. Eventually the node where the new point is to be

inserted will have an available spot. This ensures that the leaf

nodes will be packed to their maximum capacity. This

technique can be effective for updates which are not very

frequent.

B. Lazy Update

Lazy Update [5] technique updates the entry only if it

moves out of the present MBR. The update operation first

finds the old entry and deletes it. During deletion, the changes

are propagated till the root. Now, if the object is again

inserted into the same leaf, then the change propagated is

waste of cost. The cost incurred is still more when the

deletions caused underflow and thus lead to merging and after

insertion of new entry to the same node caused splitting. The

lazy update technique updates the structure of the index only

when an object moves out of the corresponding MBR. If a

new position of an object is in the MBR, it changes only the

position of the object in the leaf node. It can update the

position of the object quickly and reduce update cost greatly.

This is more useful for slow moving objects which change

their positions but not far enough to move away from its

MBR.

C. Lazy Update with Extended MBR

Extended MBR [5] approach is to expand the current MBR

to some extent so that the objects do not move out of the

current MBR. An object that is on the boundary of an MBR

can easily move out of the MBR. If an object zigzags along

the boundary of an MBR, deletions and insertions can occur

continuously even when adopting lazy update technique. This

can reduce the improvement in cost savings due to lazy update

technique as every time a normal update must take place. To

prevent this problem, a slightly large bounding rectangle

called the Extended MBR (EMBR) instead of an MBR is

used. The EMBR is used only for leaf nodes. The actual MBR

is expanded to certain extent to hold the object. If the object is

still out of the MBR, then normal update has to take place.

Since the EMBR is larger than

the corresponding actual MBR,

overlaps tend to increase

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-2, May 2012

397

Retrieval Number: B0629042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

degrading the search performance. A trade-off between the

gain of the update performance and the loss of the search

performance should be maintained. This technique also can

support only slowly moving objects. If the objects move out

of the EMBR, then this method would not be effective.

D. Deferred Delete

Deferred delete [7] technique does only the insertion part

of the update immediately and defers the delete part. The

update consists of deletion of old entry and insertion of new

entry. Multipath search is required for deletion. Thus if the

deletion of old entry is not done immediately but done in bulk

by a garbage cleaner and only insertion of the new entries is

performed immediately, the cost of update reduces

significantly. This is the main basis of update memos. Update

memo is a structure which stores the object ID, latest

timestamp of the object and number of obsolete entries (that

has to be deleted). Whenever an update is issued, if the object

ID is present in the update memo, then the timestamp is

updated to the current and the number of obsolete entries is

increased by one. If the object ID is not present in the update

memo then a new entry for it is created in the update memo.

Then the new entry is inserted in the tree. The deletion is done

by the garbage cleaner in a lazy manner and in batches (i.e.)

all obsolete entries in a leaf are deleted at the same time. Thus

the multipath search for every delete is reduced to a single

path search to a leaf having a number of obsolete entries and

then passing it to the next leaf and so on till all the obsolete

entries are deleted. This methodology supports indexing of

objects’ current and future positions. This technique can

cause unnecessary overflows due to the presence of obsolete

entries. This technique can be adopted for fast moving objects

also.

E. Semi Bulk Loading

In semi bulk loading [8], both the insertions and deletions

are deferred. A small in memory buffer is exploited to defer

the operations. When the buffer is full, flushing algorithms [8]

like flushAll, flushLRU, flushLFU are used to flush the

entries to the disk. FlushAll flushes out all the entries to the

disk. FlushLRU flushes a certain amount of the entries which

have least timestamp. FlushLFU flushes a certain amount of

entries which have less number of updates. Semi bulk loading

technique provides good results on frequently moving

objects. Optimization on the amount of entries to be flushed

and the buffer size is provided with analysis. More flushing

algorithms can be analyzed so that the performance still

increases.

F. Bulk Loading

Bulk loading technique [6] exploits the common path that

the updates may take and updates group of entries which share

a common path in a batch. Update has always been considered

as an individual operation. When numerous updates are

issued, each is considered as an individual operation and

processed. But the updates may share a common path which

when utilized can reduce the update cost. The updates which

share a common path are grouped and bulk loaded so that the

separate disk accesses to every operation is saved and reduced

to that of loading to one node. The loading pool is partitioned

into buckets and updates are grouped in buckets according to

some hash function such that updates in a bucket share a

common path. There exist different schemes for loading the

buckets [6]. The MBR bias scheme considers the old position

of the entries. The entries whose old positions belong to the

same leaf node are grouped in one bucket. The Grid bias

considers the effect of nearness of new positions of the

objects. Though the exact MBR is not known at this stage, a

grid is formed and an approximate MBR is calculated and

those which would fall in same leaf are put in one bucket.

Hybrid Biased scheme considers both the old and new

positions. The buckets are indexed with both the leaf node ID

of old MBR and grid cell ID of new MBR. The objects which

have common leaf node for old MBR and common grid cell

ID for new MBR are considered to share a path. When the

buckets are full, they are flushed to the disk resident index

structure. This technique suits moving objects with any speed.

G. Generalized Bottom Up Approach

Bottom up approach [9] exploits the fact that all entries are

stored at the leaf level. So traversing from bottom might save

disk accesses. Usually the deletion and insertion operations in

an update are processed by traversing from the root to the leaf

node. But the operations actually take place at the leaf. So

rather than top-down approach, bottom up approach is

expected to perform better. A generalized bottom up

approach was proposed and proved to outperform the top

down approach. A direct access table to the internal nodes is

maintained. It stores the ID and MBR of the node. A bit vector

on leaf nodes is maintained to find whether the node is full or

not. A hash table which provides directs access to the leaf

nodes. Using these structures, generalized bottom up

approach is as follows; whenever an update is issued, first

using the hash table, it is checked whether the updated entry

exists within the same old MBR. If so then the position is

updated in the leaf node directly. If the object is not in the

same MBR, then it is checked whether expansion of the leaf

node can hold the entry. If it so then the object is put in the leaf

node and the hash table is modified with the new boundaries

of the leaf. If the object does not exist in the leaf node even

after the expansion, then the direct access table is used to

locate the leaf node it can be placed. If the leaf node in which

it has to be place is full, the next sibling is found using the bit

vector table. The maintenance of the secondary structures is

not expensive and they do not occupy more space in main

memory. This generalized bottom up approach when

integrated with any update technique performs better then the

top down technique.

H. Updating Protocol

The new updating protocol [14] suggests a tolerance region

which reduces the updates since updates are not necessary

until the object is within the tolerance region. The protocol for

updates can be modified to reduce the number of messages

between objects and database server. This reduces the overall

workload of the system and eventually reduces update cost. In

conventional systems, exact location and velocity of the

object is used to predict the future positions. Spatio-Temporal

Safe Region is a tolerance

provided to the objects such that

they are free from the velocity

and location updates as long as

An Analysis on Update Strategies for Spatio-Temporal Indexing

398 Retrieval Number: B0629042212/2012©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

they are within the error bounds. Safe region is calculated on

two objectives: reduced update workload and query accuracy.

Query accuracy is achieved by the database server by probing

exact location of the object when the safe region does not

provide adequate information. These probing are called

passive updates. Thus the new protocol supports both active

updates (object to database server) and passive updates

(database server asking for objects’ update).

The update techniques in the literature can thus be classified

as those supporting slow moving and fast moving objects,

those that are done in bulk and those done individually, those

that utilizes top-down and those that utilizes bottom-up

approaches.

IV. CONCLUSION

Spatio-temporal indexing is used by many applications and

most of them are update intensive. The index is faced with

numerous updates but is not competent to handle them.

Update involves a multipath delete and insert and thus is a

costly process. Several techniques have been proposed in the

literature to handle updates. These methods may either

support slow moving or fast moving objects; can be processed

individually or in bulk; utilize top-down or bottom-up

approaches. The techniques analyzed in this work include

lazy splitting, lazy update, lazy update with extended MBR,

deferred delete, semi bulk loading and bulk loading. The

major drawback with lazy splitting and extended MBR was

overlap which could degrade search performance. Lazy

update could support only slow moving objects. Deferred

delete may cause more overflows due to the presence of the

objects which have to be deleted. Every technique was

analyzed and bottom up technique provided a promising cost

saving. Update protocol which suggested less number of

messages between server and objects and supported both

passive and active update is also highlighted. Further research

works can take advantage of the rich resource available in this

field and proceed further to design a more efficient update

strategy to handle frequent updates.

REFERENCES

1. Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N.

Papadopoulos and Yannis Theodoridis, R-Trees: Theory and

Applications, London: Springer, 2006, 1st Ed.

2. A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial

Searching”, Proceedings of the 1984 ACM SIGMOD International

Conference on Management of Data, 1984, pp.47-57.

3. Raphael A. Finkel and Jon Louis Bentley, “Quad Trees: A Data

Structure for Retrieval on Composite Keys", Journal of Acts

Informtica, vol.4, no.1, 1974, pp.1-9.

4. Barrios. J, Makki. S.K and Karimi. M, “An Indexing Structure for

Mobile Objects Utilizing Late Update”, Proceedings of the 7th

International Confernce on Information Technolofy: New

Generations, 2010, pp.162-167.

5. Dongseop Kwon, Sangjun Lee and Sukho Lee, “Indexing the Current

Positions of Moving Objects Using the Lazy Update R-Tree”,

Proceedings of the 3rdInternational Conference on Mobile Data

Management, 2002, pp.113–120.

6. Xiaoyuan Wang, Weiwei Sun and Wei Wang, “Bulkloading Updates

for Moving Objects”, Proceedings of the 7thInternational Conference

on Web-Age Information Management, 2006.

7. Xiaopeng Xiong and Walid G. Aref, “R-Trees with Update Memos”,

Proceedings of the 22nd International Conference on Data

Engineering, 2006.

8. MoonBae Song and Hiroyuki Kitagawa, “Managing Frequent Updates

in R-Trees for Update-Intensive Applications”, IEEE Transactions on

Knowledge and Data Engineering, vol.21, no.11, 2009,

pp.1573-1589.

9. M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo, “Supporting Frequent

Updates in R-Trees: A Bottom-Up Approach”, Proceedings of of the

International Conference on Very Large Databases, 2006.

10. S. Saltenis, C.S. Jensen, S. Leutenegger and M. Lopez, “Indexing the

Positions of Continuously Moving Objects”, Proceedings of ACM

SIGMOD Conference on Management of Data, 2000, pp.331-342.

11. Douglas Comer , “Ubiquitous B-Tree”, Journal of CAN Computing

Surveys, vol. 11, no.2, 1979, pp.121-137.

12. N. Beckmann, H.-P. Kriegel, R. Schneider and B. Seeger, “The

R*-Tree: An Efficient and Robust Access Method for Points and

Rectangles”, Proceedings of the ACM SIGMOD International

Conference on Management of Data, 1990, pp.322-331.

13. Pan Jin and Quanyou Song, “A Novel Index Structure R*Q-Tree based

on Lazy Splitting and Clustering”, Proceedings of the International

Conference on Computer Science and Automation Engineering, 2011,

pp.405-407.

14. Su Chen, Beng Chin Ooi and Zhenjie Zhang, “An Adaptive Updating

Protocol for Reducing Moving Object Database Workload”, Journal

Proceedings of VLDB Environment, vol.3, no.1, 2010, pp.735-746.

