A Model to Secure Mobile Devices using Keystroke Dynamics through Soft Computing Techniques

M. Karnan, N. Krishnaraj

Abstract: In this mobile world, there are more mobile phones in than computers. Everyday more of these phones becomes smart phones. Nowadays, mobile devices functions like a mini computer, it becomes more attractive target for thieves. A reliable security application is needed to safeguard data and protect against theft. As mobile devices become more pervasive in our lives, there is a greater need to protect the data on such devices. The current PIN (Personal Identification Number) authentication in mobile device is weak and there is a demand of strong authentication. Biometrics adds an additional authentication and it provides most significant improvement in mobile security. In this research work, we proposed a hybrid authentication mechanism (keystroke, fingerprint and palm print) where biometric data’s are captured and user template can be generated. The template is used to check whether the user is authenticated person or an imposter.

Index Terms: PIN, Template, Keystroke dynamics, Finger print, palm print.

I. INTRODUCTION

Authentication [5,13] is the process of verifying whether the digital identities of computers and the physical identities of people are authentic. Now a day the mobile phone usage has made revolutionary changes in our day to day life. Mobile devices are extremely useful for storing sensitive documents, manage email, delivering presentation, mobile banking.

In India most of the adults have been victims of mobile phone loss or theft. Only four in ten Indians have a password protecting their services. Traditional security system prompts a user to provide a 4 or 6 digit PIN to access protected data. It is not sufficient to protect the mobile devices. So, there is a need of secure authentication method which protect sensitive data present in the mobile device.

The most common is authentication based on something you know (usually a password). The second category is something has (ATM, Smartcard) and third category is based on something that a person is (Fingerprint, Palm print)[7,8].

In this paper, we concentrate on three things (i) keystroke dynamics (ii) Finger print recognition and (iii) palm recognition. Keystroke dynamics is a widely accepted biometric technique it can be easily implemented in mobile devices without need of any external hardware. Second finger print, it requires special hardware to capture finger print[1], now a day’s all the mobile phones have the capability to acquire finger print images. Example [GI100 – the first mobile phone with finger print recognition] [21] technology] Third, palm recognition is a new physiological biometric technique provides reliable performance due to its stable and unique characteristics. It provides better results because, size of the image is large than finger print image. So, palm print is more unique than finger print. We concentrate on Physical security, Content Security and Device Management. So, reliable performance is assured in mobile devices.

In the proposed mobile user authentication system Fingerprint, Palmprint and Keystroke dynamics are combined in a single model in Fig.2. The proposed system is implemented using Matlab7.0 and it shows reliable performance when compared with other unimodal and bimodal biometric authentication system.

II. BIOMETRICS

A. Definition

Biometric authentication [16] is an automatic method that identifies a user or verifies the identity based upon the measurement of his or her unique physiological traits or behavioral characteristics. Biometrics for mobile user authentication is becoming convenient and considerably more accurate[8,11,12]. Multibiometric is becoming socially acceptable because it is convenient (nothing to carry on remember), accurate (provides for positive authentication), and can provide better efficiency[14].

B. Keystroke Dynamics

Keystroke dynamics is a behavioral measurement and it aims to identify users how they type[8], such as duration of a keystroke or key hold time, latency of keystrokes (inter-keystroke times) [7,8]. The analogy is made to the days of telegraphy when operators identify each other by recognizing “the fist of the sender” [9]. Both the National Science Foundation (NSF) and National Institute of Standards and Technology (NIST), United States of America have conducted studies establishing that typing patterns are unique for the person [5].

C. Fingerprint & Palmprint

Palm and finger reader recognition systems measure and analyze the overall structure, shape and proportions of the hand, e.g. length, width and thickness of palm, fingers and joints[17,18]; characteristics of the skin surface such as creases and ridges.

Manuscript received on July, 2012.

Dr. M. Karnan, Department of Computer Science and Engineering, Tamilnadu College of Engineering, Coimbatore, Tamilnadu, India.

N. Krishnaraj, Research Scholar, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India.

Retrieval Number: C0693052312/2012©BEIESP

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
The palm and finger scanner/reader devices still maintain accuracy even when hands are dirty, which are good in construction areas. Palm and finger scanner recognition systems[19] are best used for verification due to less accurate detection compared to fingerprint detection and can be more expensive than these devices. Some drawbacks, Minor injuries to palm may occur, and weight fluctuations can prevent the device from working properly. Sometimes systems need to be updated regularly to accommodate these changes.

D. Performance of the Biometric System
The performance of the biometric system has been measured using (i) False Alarm Rate (FAR) and (ii) Imposter Pass Rate (IPR) [1]. FAR is the percentage of genuine users incorrectly categorized as imposters and IPR is the percentage of imposters incorrectly matched to a genuine user’s reference template. Equal Error Rate (EER) is the rate of setting at which both false alarm and imposter pass errors are equal. EER is also known as the crossover error rate (CER). The lower the ERR (or CER), more accurate is the system. The overall performance of a biometric system is assessed in terms of its accuracy, speed, storage, cost and ease-of-use.

III. EXISTING SYSTEM
In this paper, we proposed keystroke dynamics with fingerprint and palm recognition. As for our survey there is no researchers developed a model combined the above three things (keystroke, fingerprint and palm print). But fingerprint and palm print recognition [17,18] were developed and it produces better results.

IV. FEATURE EXTRACTION
In keystroke dynamics Various features can be extracted from the keystroke dynamics[8] are (i) Duration (Amount of a time a key is pressed), (ii) Latency (Differences of time between two key events), (iii) Mean, standard deviation (Mean and standard deviation value of each type of PIN), (iv) Press–Release (Latency between pressing and releasing the key), (v) Digraph. All the above features are used to create template for the particular user. In Fig 1 the duration of the first letter T is the time between T2 (key Release time) – T1 (key press time), and latency between the letters T and H is T3 (next key press) – T2 (key release), the time between the two key-press B and H is T4 and T3 i.e. the duration of the first key with latency between the keys is the digraph, where T1, T2, T3, T4 and T5 is the time when a key-release or key-press event occur.

Fig 2 Duration, Latency and Digraph for the word “BH”

D. Performance of the Biometric System
The performance of the biometric system has been measured using (i) False Alarm Rate (FAR) and (ii) Imposter Pass Rate (IPR) [1]. FAR is the percentage of genuine users incorrectly categorized as imposters and IPR is the percentage of imposters incorrectly matched to a genuine user’s reference template. Equal Error Rate (EER) is the rate of setting at which both false alarm and imposter pass errors are equal. EER is also known as the crossover error rate (CER). The lower the ERR (or CER), more accurate is the system. The overall performance of a biometric system is assessed in terms of its accuracy, speed, storage, cost and ease-of-use.

III. EXISTING SYSTEM
In this paper, we proposed keystroke dynamics with fingerprint and palm recognition. As for our survey there is no researchers developed a model combined the above three things (keystroke, fingerprint and palm print). But fingerprint and palm print recognition [17,18] were developed and it produces better results.

IV. FEATURE EXTRACTION
In keystroke dynamics Various features can be extracted from the keystroke dynamics[8] are (i) Duration (Amount of a time a key is pressed), (ii) Latency (Differences of time between two key events), (iii) Mean, standard deviation (Mean and standard deviation value of each type of PIN), (iv) Press–Release (Latency between pressing and releasing the key), (v) Digraph. All the above features are used to create template for the particular user. In Fig 1 the duration of the first letter T is the time between T2 (key Release time) – T1 (key press time), and latency between the letters T and H is T3 (next key press) – T2 (key release), the time between the two key-press B and H is T4 and T3 i.e. the duration of the first key with latency between the keys is the digraph, where T1, T2, T3, T4 and T5 is the time when a key-release or key-press event occur.

Fig 2 Duration, Latency and Digraph for the word “BH”

D. Performance of the Biometric System
The performance of the biometric system has been measured using (i) False Alarm Rate (FAR) and (ii) Imposter Pass Rate (IPR) [1]. FAR is the percentage of genuine users incorrectly categorized as imposters and IPR is the percentage of imposters incorrectly matched to a genuine user’s reference template. Equal Error Rate (EER) is the rate of setting at which both false alarm and imposter pass errors are equal. EER is also known as the crossover error rate (CER). The lower the ERR (or CER), more accurate is the system. The overall performance of a biometric system is assessed in terms of its accuracy, speed, storage, cost and ease-of-use.

III. EXISTING SYSTEM
In this paper, we proposed keystroke dynamics with fingerprint and palm recognition. As for our survey there is no researchers developed a model combined the above three things (keystroke, fingerprint and palm print). But fingerprint and palm print recognition [17,18] were developed and it produces better results.

IV. FEATURE EXTRACTION
In keystroke dynamics Various features can be extracted from the keystroke dynamics[8] are (i) Duration (Amount of a time a key is pressed), (ii) Latency (Differences of time between two key events), (iii) Mean, standard deviation (Mean and standard deviation value of each type of PIN), (iv) Press–Release (Latency between pressing and releasing the key), (v) Digraph. All the above features are used to create template for the particular user. In Fig 1 the duration of the first letter T is the time between T2 (key Release time) – T1 (key press time), and latency between the letters T and H is T3 (next key press) – T2 (key release), the time between the two key-press B and H is T4 and T3 i.e. the duration of the first key with latency between the keys is the digraph, where T1, T2, T3, T4 and T5 is the time when a key-release or key-press event occur.

Fig 2 Duration, Latency and Digraph for the word “BH”

D. Performance of the Biometric System
The performance of the biometric system has been measured using (i) False Alarm Rate (FAR) and (ii) Imposter Pass Rate (IPR) [1]. FAR is the percentage of genuine users incorrectly categorized as imposters and IPR is the percentage of imposters incorrectly matched to a genuine user’s reference template. Equal Error Rate (EER) is the rate of setting at which both false alarm and imposter pass errors are equal. EER is also known as the crossover error rate (CER). The lower the ERR (or CER), more accurate is the system. The overall performance of a biometric system is assessed in terms of its accuracy, speed, storage, cost and ease-of-use.

III. EXISTING SYSTEM
In this paper, we proposed keystroke dynamics with fingerprint and palm recognition. As for our survey there is no researchers developed a model combined the above three things (keystroke, fingerprint and palm print). But fingerprint and palm print recognition [17,18] were developed and it produces better results.

IV. FEATURE EXTRACTION
In keystroke dynamics Various features can be extracted from the keystroke dynamics[8] are (i) Duration (Amount of a time a key is pressed), (ii) Latency (Differences of time between two key events), (iii) Mean, standard deviation (Mean and standard deviation value of each type of PIN), (iv) Press–Release (Latency between pressing and releasing the key), (v) Digraph. All the above features are used to create template for the particular user. In Fig 1 the duration of the first letter T is the time between T2 (key Release time) – T1 (key press time), and latency between the letters T and H is T3 (next key press) – T2 (key release), the time between the two key-press B and H is T4 and T3 i.e. the duration of the first key with latency between the keys is the digraph, where T1, T2, T3, T4 and T5 is the time when a key-release or key-press event occur.
The aim of preprocessing is to eliminate the unwanted components in the input images.

The palmprint recognition based on the principal lines, wrinkles and ridges on the surface of the palm[2]. The line structures are stable and remain unchanged throughout the life of an individual.

V. FEATURE SUBSET SELECTION

Feature selection is used to remove irrelevant features. The aim of feature selection is to reduce the quantity of data and speed up the computation time, and also to improve the performance of the system. Several Optimization techniques like Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Bacteria Foraging Algorithm (BFOA) was used for selecting subset features [3,10]. The selected features in the finger print and palm print is given as the input to the BFOA algorithm, to find out the dominant subset features.

The selected features will be given as the input the classification. The dominant features improve the classification accuracy. In the proposed system each biometric techniques can be implemented separately and it combinations are implemented, their performance are measured.

A. Bacteria Foraging Optimization Algorithm

The Bacteria Foraging Optimization Algorithm (BFOA) has been widely accepted as a global optimization algorithm[10], inspired by social foraging behavior of E-coli described in the algorithm.

Chemotaxis :

It simulates the E-coli movement through swimming and tumbling via flagella.

Swarming :

All E-Coli groups organized in such a way that travelling a ring by moving to nutrient gradient.

Reproduction :

The least health E-coli bacteria eventually die, and healthier bacteria split into two and placed in same location.

Assumptions :

- \(S_p \) – Dimension of Search Space
- \(N_b \) – Total number of bacteria in the population
- \(C_x \) – Number of chemotatic steps
- \(S_l \) – Swimming length
- \(N_r \) – Number of reproduction steps
- \(N_{ed} \) – Number of Elimination Dispersal Events
- \(P_{ed} \) – Probability of Elimination Dispersal Events

Algorithm

1. Initialize \([S_p, N_b, C_x, S_l, N_r, P_{ed}]\)
2. Elimination dispersal loop \(i=i+1\)
3. Reproduction loop \(k=k+1\)
4. Chemotaxis loop \(p=p+1\)
 4.1 for \(i=1,2,n\), take chemotatic step for \(n\) bacterium i
 4.2 compute fitness function \(B_0(I,p,k,l)\)
 4.3 Assign \(B_{last} = B_0(I,p,k,l)\)
 4.4 Tumple
 4.5 Move

4.6 Compute fitness function \(B_n(I,p+1,k,l)\)
4.7 Swim
 4.7.1 \(m=0\) (swim length counter)
 4.7.2 while \(m=S_l\) then \(m=m+1\)
 4.7.3 if \(B_0(I,p+1,k,l) < B_{last}\)
 \(B_{last} = B_0(I,p+1,k,l)\) else \(m=S_l\)
4.8 Go to next bacterium \((i+1)\)
5. if \(p<C\), go to step 4
6. Reproduction
 6.1 Compute health of each bacteria
 \[p^1_{health} = \sum_{p=2}^{m=1} p(i,p,k,l)\]
6.2 The bacteria with lowest health die, and highest health split into two , and palced in same location.
7. If \(k<N_{re}\), goto step 3
8. Elimination – Dispersal
 For \(I=1,2 \ldots n\), with probability \(p_{ed}\) eliminate & disperse each bacterium
9. If \(l<N_{ed}\) then goto step 2.
 Else end.

VI. CLASSIFICATION

Classification is the main task for different applications like voice recognition, text classification, data classification and image classification etc. Support Vector Machine (SVM) [7] is used to classify the features. Each user’s individual template is given as the input to the input layer of SVM after normalization. The network is trained to produce the target value assigned for each user and the results from the output layer are stored in the database inorder to find classification accuracy. The SVM classification produces better performance with BFOA. The network is trained to produce output value of 0.9 for genuine user and 0.1 for imposter. The time required to train and test the data with SVM shown in Table1.

Table 1 : Training and Testing time required for biometric techniques

<table>
<thead>
<tr>
<th>Biometric Techniques</th>
<th>Algorithm</th>
<th>Training (ms)</th>
<th>Testing (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keystroke</td>
<td>BFOA</td>
<td>28</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>30</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>20</td>
<td>0.65</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>BFOA</td>
<td>28</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>35</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>23</td>
<td>0.68</td>
</tr>
<tr>
<td>Palmprint</td>
<td>BFOA</td>
<td>36</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>27</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>24</td>
<td>0.86</td>
</tr>
<tr>
<td>Keystroke & Fingerprint</td>
<td>BFOA</td>
<td>24</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>32</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>19</td>
<td>0.54</td>
</tr>
<tr>
<td>Keystroke & Palmprint</td>
<td>BFOA</td>
<td>28</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>20</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>20</td>
<td>0.63</td>
</tr>
<tr>
<td>Fingerprint & Palmprint</td>
<td>BFOA</td>
<td>32</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>30</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>23</td>
<td>0.77</td>
</tr>
<tr>
<td>Keystroke & Fingerprint & Palmprint</td>
<td>BFOA</td>
<td>21</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>30</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>15</td>
<td>0.40</td>
</tr>
</tbody>
</table>
A Model to Secure Mobile Devices using Keystroke Dynamics through Soft Computing Techniques

VII. PERFORMANCE EVALUATION

FAR is used to determine the classifier performance. FRR is used to determine how many incorrect positive results occur among all positive samples during the test. The proposed hybrid system was tested on 200 samples of keystroke features, 100 fingerprint and 100 palm print features to verify the classification accuracy. As computational time and classification accuracy BFOA provides better performance than other existing methods, shown in Fig 4.

From the experiments and results, the proposed hybrid authentication system (Fingerprint, Palmprint and Keystroke dynamics), produces 92.8% of accuracy in detecting imposters is shown in Table 2 and the error rate is 0.063 shown in Fig 5.

Table 2: Accuracy and Error Rate of Biometric Techniques

<table>
<thead>
<tr>
<th>Biometric Techniques</th>
<th>Algorithm</th>
<th>Accuracy</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keystroke</td>
<td>BFOA</td>
<td>90.6</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>86.9</td>
<td>0.088</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>84.6</td>
<td>0.073</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>BFOA</td>
<td>88.4</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>83.5</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>85.2</td>
<td>0.086</td>
</tr>
<tr>
<td>Palmprint</td>
<td>BFOA</td>
<td>88.2</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>84.6</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>86.7</td>
<td>0.078</td>
</tr>
<tr>
<td>Keystroke & Fingerprint</td>
<td>BFOA</td>
<td>83.2</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>85.8</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>85.9</td>
<td>0.082</td>
</tr>
<tr>
<td>Keystroke & Palmprint</td>
<td>BFOA</td>
<td>88.3</td>
<td>0.077</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>84.8</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>86.4</td>
<td>0.077</td>
</tr>
<tr>
<td>Fingerprint & Palmprint</td>
<td>BFOA</td>
<td>86.9</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>82.7</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>85.4</td>
<td>0.059</td>
</tr>
<tr>
<td>Keystroke & Fingerprint & Palmprint</td>
<td>BFOA</td>
<td>92.8</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>PSO</td>
<td>86.6</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>ACO</td>
<td>88.9</td>
<td>0.063</td>
</tr>
</tbody>
</table>

REFERENCES

20. www://subhb.org/2012/01/26/palm-recognition-technology-to-enable-mobile-biometrics/

AUTHORS PROFILE

Dr. M. Karnan received the PhD Degree in Computer Science and Engineering in 2007 from Gandhigram Rural University (fully funded and controlled by Government of India), Dindigul, Tamilnadu, India. He obtained the Master of Engineering Degree in Computer Science and Engineering in 2000 from Government College of Engineering, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India. He received the Bachelor of Engineering Degree in Electrical and Electronics Engineering from Government College of Technology Bharathiar University, Madurai, Tamilnadu, India. Currently he is working as Professor in Department of CSE, TCE, Coimbatore, Tamilnadu, India. His area of interest is Biometrics in Pattern Recognition, Neural Networks, Pattern Recognition, Data Mining, etc.

N. KRISHNARAJ received the B.Tech in Information Technology in 2005 from Anna University, Chennai, Tamilnadu, India. He obtained the Master of Engineering Degree in Software Engineering in 2007 from Anna University, Chennai, Tamilnadu, India. Currently he is working as Assistant Professor in Department of Information Technology, Hindusthan College of Engineering and Technology, Coimbatore, Tamilnadu, India. Her area of interest is Biometrics in Pattern Recognition. He is a Research Scholar in Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India.