
 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

251

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0761062312 /2012©BEIESP

A Research Study on importance of Testing and

Quality Assurance in Software Development Life

Cycle (SDLC) Models

Maneela Tuteja, Gaurav Dubey

Abstract: In recent years, software testing is becoming more

popular and important in the software development industry.

Indeed, software testing is a broad term encircling a variety of

activities along the development cycle and beyond, aimed at

different goals. Hence, software testing research faces a

collection of challenges. A consistent roadmap of most relevant

challenges is proposed here. In it, the starting point is constituted

by some important past achievements, while the destination

consists of two major identified goals to which research

ultimately leads, but which remains as reachable as goals. The

routes from the achievements to the goals are paved by

outstanding research challenges, which are discussed in the

paper along with the ongoing work.

Software testing is as old as the hills in the history of digital

computers. The testing of software is an important means of

assessing the software to determine its quality. Since testing

typically consumes 40~50% of development efforts, and

consumes more effort for systems that require higher levels of

reliability, it is a significant part of the software engineering

Software testing is a very broad area, which involves many

other technical and non-technical areas, such as specification,

design and implementation, maintenance, process and

management issues in software engineering. Our study focuses

on the state of the art in testing techniques, as well as the latest

techniques which representing the future direction of this area.

Today, testing is the most challenging and dominating activity

used by industry, therefore, improvement in its effectiveness,

both with respect to the time and resources, is taken as a major

factor by many researchers

The purpose of testing can be quality assurance, verification,

and validation or reliability estimation. It is a tradeoff between

budget, time and quality. Software Quality is the central concern

of software engineering. Testing is the single most widely used

approach to ensuring software quality.

(Keywords: SDLC, Software quality, Testing techniq

Technique .)

I. INTRODUCTION

I. Introduction: Software Testing

Software testing is the process of executing a program or

system with the intent of finding errors. Software is not

unlike other physical processes where inputs are received and

outputs are produced. Where software differs is in the

Manuscript received: on July, 2012

 Maneela Tuteja, Department of Information TechnologyDronacharya

College of Engineering, Gurgaon, Haryana,.

Gaurav Dubey, Amity School of Computer Sciences, Amity University,

Uttar Pradesh,India.,

manner in which it fails. Most physical systems fail in a

fixed (and reasonably small) set of ways. By contrast,

software can fail in many bizarre ways. Detecting all of the

different failure modes for software is generally infeasible.

Discovering the design defects in software, is equally

difficult, for the same reason of complexity. Because software

and any digital systems are not continuous, testing

boundary values are not sufficient to guarantee correctness.

All the possible values need to be tested and verified, but

complete testing is infeasible. Exhaustively testing a simple

program to add only two integer inputs of 32-bits (yielding

2^64 distinct test cases) would take hundreds of years, even if

tests were performed at a rate of thousands per second.

The iterative process of software testing consists of

1. Designing tests

2. Executing tests

3. Identifying problems.

4. Getting problems fixed.

A. Objective of Testing

The objective of testing is to find problems and fix them to

improve quality. Software testing typically represents 40% of

a software development budget. There are four main

objectives of testing:

(a) Demonstration: It shows that, system can be used for

integration with acceptable risk. It demonstrates

functions under special conditions and shows that

products are ready for integration or use.

(b) Detection: It discovers defects, errors and deficiencies.

Determines system capabilities and limitations quality

of components, work products and the system.

(c) Prevention: It provides information to prevent or reduce

the number of errors clarify system specifications and

performance. Identify ways to avoid risk and problems

in the future.

(d) Improving Quality: By doing effective testing, we can

minimize errors and hence improve the quality of

software.

II. TYPES OF SOFTWARE TESTING

There are various types of testing techniques that have

been invented. Each testing technique serves a different

purpose for testing different artifacts like designing, coding

and planning software requirement specification.

All the testing techniques are divided into mainly three

categories, black box, white box or grey box testing.

Techniques which tests external behavior of the system are

categorized in Black box

A Research study on Importance of Testing and Quality Assurance in Software Development Life Cycle

(SDLC) Models

252

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0761062312 /2012©BEIESP

testing and which tests internal behavior of the system are

termed as white box testing and which tests both internal and

external behavior are called grey box testing.

Software Testing Techniques

Black box

Testing

White box Testing Grey box

Testing

Functional and

system testing,

Stress testing,

Performance

testing, Usability

testing,

Acceptance

Testing, Beta

testing, Ad hoc

Testing,

Regression

testing,

Intersystem

testing, Volume

testing, Parallal

testing,

Boundary value

Unit testing, Error

handling testing,

Desk checking, Code

walk through, Code

reviews and

inspection, Code

coverage testing,

Statement/ Path/

Function/ Condition

testing, complexity

testing/ Cyclomatic

complexity, Mutation

testing

Integration

Testing,

Regression

Testing.

III. SDLC AND QUALITY ASSURANCE

SDLC refers to software development life cycle, i.e. the

various stages used in the life cycle of software development.

There are various software development approaches defined

and designed which are used during development process of

software, these approaches are also referred as “Software

Development Process Models”.

 A. SDLC Models

Software development life cycle is basically a systematic way

of developing software. It includes various phases starting

from the functional requirement of software (means what

software is supposed to do). After that designing takes place

then development and then testing. After testing is finished,

the source code is generally released for Unit Acceptance

Testing (UAT) in client testing environment. After approval

from client, the source code is released into production

environment [1]. There is various software development

approaches defined and designed which are used during

development process of software, these approaches are also

referred as "Software Development Process Models". Each

process model follows a particular life cycle in order to

ensure success in process of software development.

Various types of SDLC Models are :

 Water-fall Model

 Prototype Model

 RAD Model

 V Model

 The waterfall Model

Waterfall approach was first process model to be introduced

and followed widely in software engineering to ensure

success of the project. In "The Waterfall" approach, the

whole process of software development is divided into

separate process phases. The phases in Waterfall model

are: Requirement Specifications phase, Software Design,

Implementation, Testing, Deployment of system &

Maintenance [1]. All these phases are cascaded to each

other so that second phase is started as and when defined

set of goals are achieved for first phase and it is signed off,

so the name “Waterfall Model”. Fig 3.1 shows all the

phases in water fall model.

Communicat ion

Planning

Modeling

Const ruct ion
Deployment

analysis

design
code

t est

project init iat ion

requirement gat hering estimating

scheduling

tracking

delivery

support

f eedback

Fig (a) : The phases of Waterfall Model

Advantages

In Waterfall model, every phase is implemented in a

sequential order. Waterfall model is used where the

duration of project is very less, and it is best suited for small

projects. Also, Waterfall model is suitable when the

specification and requirements are clearly stated for the

software project.

Disadvantages

In Waterfall model, the output of one phase forms the

input of the next phase. This concept actually turns as i t s

disadvan tage i .e. When a mistake occurs in a

particular phase, the same mistakes gets carried over to the

last phase. Waterfall model is time intensive process and

almost provides little or no option to change user

requirements. This model is useful only when the

requirements are free zed.

 The Prototyping Model

A prototype is a working model that is functionally

equivalent to a component of the product. In many

instances the client only has a general view of what is

expected from the software product [27]. In such a scenario

where there is an absence of detailed information regarding

the input to the system, the processing needs and the output

requirements, the prototyping model may be employed.

Communicat ion

Qu ick p lan

Const ruct ion

of

prot ot ype

Mo d e lin g

 Qu ick d e sig n

De live ry

& Fe e dback

Deployment

Fig. (b) The Prototyping Model

http://www.onestoptesting.com/sdlc-models/waterfall-model/default.asp

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

253

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0761062312 /2012©BEIESP

Advantages

With reduced time and costs, Prototyping can improve the

quality of requirements and specifications provided to

developers. Prototyping requires user involvement and

allows them to see and interact with a prototype allowing

them to provide better and more complete feedback and

specifications.

Disadvantages

Insufficient analysis: The focus on a limited prototype can

distract developers from properly analyzing the complete

project. User can begin to think that a prototype, intended

to be thrown away, it is actually a final system that merely

needs to be finished or polished developer attachment to

prototype.

 The Spiral Model

The spiral model, also known as the spiral lifecycle model,

is a systems development method (SDM) used in

information technology (IT) [1]. This model of

development combines the features of the prototyping

model and the waterfall model. The spiral model is

intended for large, expensive, and complicated projects.

Fig (c) The Spiral Model

Advantages

Estimates (i.e. budget, schedule, etc.) Become more

realistic as work progresses, because important issues are

discovered earlier. It is more able to cope with the (nearly

inevitable) changes that software development

generally entails. Software engineers (who can get restless

with protracted design processes) can get their hands in

and start working on a project earlier.

Disadvantages

As it is highly customized so there is limiting re-usability.

It is applied differently for each application. There is a risk

of not meeting budget or schedule.

B. Quality Assurance

Everyone is committed to quality; however, the following

statement shows some of the confusing ideas shared by

many individuals that inhibit achieving a quality

commitment: Quality requires a commitment, particularly

from top management. Close cooperation of management

and staff is required in order to make it happen.

• Many individuals believe that defect-free products and

services are impossible, and accept certain levels of defects

as normal and acceptable [1].

• Quality is frequently associated with cost, meaning that

high quality equals high cost. This is confusion between

quality of design and quality of conformance [2].

• Quality demands requirement specifications in enough

detail that the products produced can be quantitatively

measured against those specifications. Many

organizations a r e n o t capable or willing to expend the

effort to produce specifications at the level of detail

required [3].

Technical personnel often believe that standards stifle their

creativity, and thus do not abide by standards compliance.

However, for quality to happen, well-defined standards and

procedures must be followed [1].

Quality cannot be achieved by assessing an already

completed product. The aim therefore, is to prevent quality

defects or deficiencies in the first place, and to make the

products assessable by quality assurance measures. Some

quality assurance measures include: structuring the

development process with a software development standard

and supporting the development process with methods,

techniques, and tools. The undetected bugs in the software

that caused millions of losses to business have necessitated

the growth of independent testing, which is performed by

a company other than the developers of the system [8].

In addition to product assessments, process assessments are

essential to a quality management program. Examples

include documentation of coding standards,

prescription and use of standards, methods, and tools,

procedures for data backup, test methodology, change

management, defect documentation, and reconciliation.

Quality management decreases production costs because

the sooner a defect is located and corrected, the less costly

it will be in the long run [7]. With the advent of automated

testing tools, although the initial investment can be

substantial, the long-term result will be higher-quality

products and reduced maintenance costs. The total cost of

effective quality management is the sum of four

component costs: prevention, inspection, internal failure,

and external failure. Prevention costs consist of actions

taken to prevent defects from occurring in the first place.

Inspection costs consist of measuring, evaluating, and

auditing products or services for conformance to standards

and specifications [9]. Internal failure costs are those

incurred in fixing defective products before they are

delivered.

IV. PROBLEM STATEMENT

A. Problem Definition

The study of various software development process

models reveal that in almost all these models, software

testing is included as one phase, but testing is required at

each phase and not at a particular stage. The main purpose

of software testing is to uncover errors which are not simply

syntax errors in code but various other types of errors in all

the documents produced during the software

development ,e.g. software

requirements document,

design document, test plan etc.

http://www.onestoptesting.com/sdlc-models/spiral-model.asp
http://www.onestoptesting.com/sdlc-models/spiral-adv-disadv.asp
http://www.onestoptesting.com/sdlc-models/spiral-adv-disadv.asp

A Research study on Importance of Testing and Quality Assurance in Software Development Life Cycle

(SDLC) Models

254

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0761062312 /2012©BEIESP

Various types of software testing techniques have been

developed till date, but which type of testing technique will

be suitable and sufficient for checking a particular

document in which phase of software development life cycle

(SDLC) is not yet clear. So here the problem is to

1. Identify the testing techniques which can be applied

at different levels and phases of software development

life cycles

Also, software quality is an essential part of any software

project. Various quality assurance and control activities may

be used to ensure quality in the software project. Different

quality attributes need different types of testing to measure

software quality. The problem is that out of numerous

testing techniques possible, which testing technique

should be applied to measure which quality attribute is not

very clear. So the next problem takes here is

2. Identify the testing techniques which can be

applied to measure which software quality attribute

B. Justification

By categorizing which type of testing to be applied at

which phase of software development will help us plan for

testing in that phase efficiently and to take full advantage

of all the types of testing techniques to improve quality in

that phase and consequently the overall quality of the

software project. The relation between various quality

attributes and the testing techniques required for each of

these will help save time and produce quicker results and

streamlined testing of the project for that particular

software quality attribute.

This defines the statement of problem. Next we’ll

describes the Proposed Solutions according to the problem of

statement.

C. Proposed solution

According to the problem statement above, a model

“Software Development Life Cycle Testing Model” is

proposed in which all types of testing techniques related to

test all phases of SDLC are specified. V model of testing

given by Mr. Perry includes only 5 phases of SDLC. Here

this model is extended to include more phases of SDLC and

select the types of testing technique that can be applied in

each phase.

1. Apply Testing on all Phases of SDLC

It has always been a big question when to start testing.

Experts suggest that every step taken in the development of

the system must be tested thoroughly in a formal manner. It

means that testing must be done for requirements gathering,

designing, coding, and even for testing phase. Testing of

testing efforts may seem to be unusual and surprising but

it is an important effort because one needs to be sure about

the testing efforts to be able to rely on its reports. A good

testing life cycle begins during the requirements elicitation

phase of software development, and concludes when the

product is ready to install or ship, following a successful

system test. Fig given below shows that testing applied on

all the phases (Requirement gathering, Designing, Coding,

Testing, Implementation and Maintenance) of SDLC, not a

particular stage. The study of various software development

process models reveal that in almost all these models,

software testing is included as one phase, but testing is

required at each phase and not at a particular stage. In this

SDLC testing model we applied the testing at all the phases

of SDLC. By categorizing which type of testing technique

to be applied at which phase of software development life

cycle will help us plan for testing in that phase efficiently

and to take full advantage of all the types of testing

techniques to improve quality in that phase and consequently

the overall quality of the software project. Well-defined

traceable and controllable processes are required for

enhancing the quality of the software products and gaining

optimum benefits from applied effort. Software process is a

stepwise sequence of activities carried with the focus of

producing quality software in an economic manner it will be

possible when we applied testing at all the phases of software

development life cycle. Software testing is recommended to

be started as early as possible in the earliest phases of the

SDLC, most preferably in the requirement analysis phase

itself and should be performed by skilled testers only and

not by developers. Software development life cycle (SDLC)

processes involve activities of software requirements,

analysis, requirement specification, design, coding, testing,

delivery, and maintenance. The testing phase can be used in

all of these life cycle phases as an umbrella activity.

Fig. (d) Applying testing on all phases of SDLC

2. Identifying Testing Techniques according to Phase of SDLC

We identifying that which type of testing technique can be applied to which phase of SDLC. Fig (e) shows the phases of

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

255

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0761062312 /2012©BEIESP

SDLC and according to testing technique.

Fig (e) : SDLC Testing Model

3. Application of Testing to Measurement of Quality

Attributes

Different quality attributes need different types of testing

to measure software quality. Various types of testing

according to the quality feature it applies to in the table 6.3.

In given table we identified that for a particular software

quality feature which type of software testing technique can

be applied:

A Research study on Importance of Testing and Quality Assurance in Software Development Life Cycle

(SDLC) Models

256

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0761062312 /2012©BEIESP

Table 1: Testing Technique According to Quality Features

Quality

Attribute

Testing Types

Performance Performance testing

Compatibility Compatibility testing

Reliability Stress testing,

Robustness testing, load testing

Vulnerability Penetration testing

Consistency Database testing, Table testing

Correctness Database testing, Table testing

Portability

Portability Testing

Recovery

Recovery testing

Completeness

Boundary/Statement/Loop/Condition/Path coverage testing

V. CONCLUSION & FUTURE WORK

Software testing is the activity that executes software with

an intention of finding errors in it. Testing should be

performed at different levels, including module level

testing, unit level testing, interface testing and system level

testing. Testing is done both at developer end and customer

end and it is performed by testers as well as the customer

before delivery of the product but it can ensure a fair level

of confidence in the predictable behaviour of the product in

the provided conditions.

Quality is the main focus of any software engineering

project. Without measuring, we cannot be sure of the level

of quality in software. So the methods of measuring the

quality are software testing techniques. This thesis report

relates various types of testing technique that we can apply

in measuring various quality attributes. Also which testing

are related to various phase of SDLC. General SDLC

processes are applied to different type of projects under

different conditions and requirements. There are various

type of SDLC model (Waterfall Model, RAD Mode,

Iterative Model, Proto Type Model, Spiral Model,

V-Model, etc). But in all these models, testing is applied

after a particular stage and not in all the phases. In this

thesis report, it is concluded that testing should be applied

in all the phases of SDLC and not at a particular stage.

Which type of testing technique can be applied to which

type of SDLC phase is also summarized.

Future work for this area will be to take more new coming

testing techniques and relating these to the phases of SDLC.

This will help taking the maximum advantage of that

testing technique. And this will be helpful to conclude that.

 REFERENCES

1. Accessibility Summit. (2006). Public Sector NeedsBetter Guidance On

Web Accessibility, E-GovernmentBulletin (Issue 226, 13 November

2006)http://www.ukoln.ac.uk/webfocus/events/meetings/accessibility-su

mmit-2006-11/egovernment- 2006-11-13.php (Accessed August

30th2007)

2. Alexander, Dey. (2003). How accessible

areAustralianusWeb03.http://ausweb.scu.edu.au/aw03/papers/alexander

3/(Accessed August 30th 2007)BSI. (2005). PAS 78: Guide to good

practice incommissioning accessible websites. British Standards

 Institute. http://www.bsi-

 global.com/en/Standards-and-Publications/Industry-Sectors/ICT/PAS-7

8/ (Accessed August 30th 2007) Carey, Kevin. (2005). Accessibility:

The Current Situation and New Directions. Ariadne 44, June 2005.

http://www.ariadne.ac.uk/issue44/carey/ (Accessed August 30th

2007)Chisholm, Wendy and Henry, Shawn. (2005). Interdependent

components of Web accessibility.Proceedings of W4A at WWW2005:

InternationalCross- Disciplinary Workshop on Web

Accessibility.New

York:ACM.Press.http://doi.acm.org/10.1145/1061811.1061818(Access

ed Aug 30, 07)

3. Clark, Joe.(2006).To Hell with WCAG 2. A List Apart No. 217.

http://alistapart.com/articles/tohellwithwcag2(Accessed August 30th

2007)Cooper, Martyn. 2006. Making online learning accessible to

disabled students: an institutional case study. ALT-J-Research in

Learning Technology, Vol. 14, No. 1, pp 103-115.DDA (2005)

Disability Discrimination Act 2005.

4. Web Accessibility 3.0: Learning From The Past,Planning For The Future,

Nevile, L. and Kelly, B.ADDW08. University of York, 22-24 September

2008. Retrieved February 4th

2009:http://www.ukoln.ac.uk/web-focus/papers/addw08/paper-2/

5. Contextual Web Accessibility - Maximizing the Benefit of Accessibility

Guidelines, Sloan, D, Kelly, B., Heath, A., Petrie,

6. H., Hamilton, F and Phipps, L.WWW 2006 Edinburgh, Scotland 22-26

May 2006.Conference Proceedings, Special Interest Workshops

(CD ROM). RetrievedFebruary 4th 2009:

http://www.ukoln.ac.uk/webfocus/papers/w4a-2006/

7. IMS. (2004). IMS Guidelines for Developing Accessible Learning

Applications. Version 1.0 White Paper. IMS Global Learning

Consortium. http://www.imsglobal.org/accessibility/#accguide

(Accessed August 30th 2007) IWMW 20072007). Contextual

Accessibility in Institutional Web Accessibility Policies.

http://www.ukoln.ac.uk/webfocus/events/workshops/webmaster-2007/se

ssions/sloan/(Accessed August 30th 2007) Kelly, Brian, Phipps,

Lawrie and Swift, Elaine.

(2004).Developing A Holistic

Approach for E-Learning

Accessibility. Canadian Journal

of Learning and Technology, 2004,

http://www.ukoln.ac.uk/webfocus/events/meetings/accessibility-summit-2006-11/egovernment-
http://www.ukoln.ac.uk/webfocus/events/meetings/accessibility-summit-2006-11/egovernment-
http://www.bsi-/
http://www.bsi-/
http://alistapart.com/articles/tohellwithwcag2(Accessed
http://www.ukoln.ac.uk/webfocus/papers/w4a-2006/
http://www.imsglobal.org/accessibility/#accguide

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

257

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0761062312 /2012©BEIESP

Vol. 30, Issue 3.http://www.ukoln.ac.uk/web-focus/papers/cjtl-

 2004/(Accessed August 30th 2007)

8. Kelly, Brian, Sloan David, Phipps Lawrie, Petrie Helen and Hamilton,

Fraser. (2005). Forcing standardization or accommodating diversity? A

framework for applying the WCAG in the real world. Proceedings of the

2005 International Cross-Disciplinary Workshop on Web Accessibility

(W4A) (Chiba, Japan, 10 May 2005). New York:ACM Press, 46-54.

 http://www.ukoln.ac.uk/webfocus/papers/w4a-2005/ (Accessed August

30th 2007) Kelly, Brian. (2006). Accessibility of resources in

institutional repositories, Digital Repositories mailing List, 18 December

2006. on Aging. (2002). Older adults and information technology: A

compendium of scientific research and web site accessibility guidelines.

Washington, DC: U.S. Government Printing Office. Nielsen, Jakob.

(1994). Heuristic evaluation. In Nielsen,J., and Mack, R.L. (Eds.),

 Usability Inspection Methods. New York: John Wiley & Sons. Pickard,

Jack. (2006). Whistle Stop WCAG 2 : To Hell… and back. Blog post

August 2006. http://www.thepickards.co.uk/index.php/200608/whistle

-stop-wcag-2-to-hell-and-back/ (Accessed August 30th 2007)

Raymond, Eric. (1998). The Cathedral and the Bazaar, First

http://www.firstmonday.org/issues/issue3_3/raymond/

AUTHORS PROFILE

Maneela Tuteja,

M-Tech (Computer Science Engineering) from

Amity School of Engineering & Technology,

Amity Unicersity Noida,

 B-Tech (Information Technology) from

Kurukshetra University.

Having more than 5 years of professional

experience in IT, Services & Education.

http://www.thepickards.co.uk/index.php/200608/whistle%20-stop-wcag-2-to-hell-and-back/
http://www.thepickards.co.uk/index.php/200608/whistle%20-stop-wcag-2-to-hell-and-back/

