
 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

213

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0777062312/2012©BEIESP

 Abstract: Semantic similarity measures play an important

role in the extraction of semantic relations. Semantic similarity

measures are widely used in Natural Language Processing

(NLP) and Information Retrieval (IR). The work proposed here

uses web based metrics to compute the semantic similarity

between words or terms and also compares with the

state-of-the-art. For a computer to decide the semantic

similarity, it should understand the semantics of the words.

Computer being a syntactic machine, it cannot understand the

semantics. So always an attempt is made to represent the

semantics as syntax. There are various methods proposed to find

the semantic similarity between words. Some of these methods

have used the precompiled databases like WordNet, and Brown

Corpus. Some are based on Web Search Engine. The approach

presented here is altogether different from these methods. It

makes use of snippets returned by the Wikipedia or any

encyclopedia such as Britannica Encyclopedia. The snippets are

preprocessed for stop word removal and stemming. For suffix

removal an algorithm by M. F. Porter is referred. Luhn’s Idea is

used for extraction of significant words from the preprocessed

snippets. Similarity measures proposed here are based on the

five different association measures in Information retrieval,

namely simple matching, Dice, Jaccard, Overlap, Cosine

coefficient. Performance of these methods is evaluated using

Miller and Charle’s benchmark dataset. It gives higher

correlation value of 0.80 than some of the existing methods.

 Keywords : Semantic Similarity, Wikipedia, Web Search

Engine, Natural Language Processing, Information Retrieval,

Web Mining

I. INTRODUCTION

Semantic similarity is a central concept that finds great

importance in various fields such as artificial intelligence, natural

language processing, cognitive science and psychology. Accurate

measurement of semantic similarity between words is essential for

various tasks such as, document clustering, information retrieval,

and synonym extraction. For a machine to be able to decide the

semantic similarity, intelligence is needed. It should be able to

understand the semantics or meaning of the words. But a computer

being a syntactic machine, semantics associated with the words or

terms is to be represented as syntax.

For this various approaches are proposed till now. Word

semantic similarity approaches or metrics can be categorized as:

Pre-compiled database based metrics, i.e., metrics consulting only

human-built knowledge resources, such as onto logies,

Manuscript received on July, 2012.

T.Sujatha, Department of CSE, Kaushik College of Engineering,

Vishakhapattanam (A.P.), India

Prof. Ramesh Naidu G, Department of CSE, Kaushik College of Engg.,

Vishakhapattanam (A.P.), India

Prof. P.Suresh Babu, Department of CSE, Kaushik College of

Engineering, Vishakhapattanam (A.P.), India

Co-occurrence based metrics using WWW, i.e., metrics that assume

that the semantic similarity between words or terms can be

expressed by an association ratio which is a function of their

co-occurrence Context based metrics using WWW, i.e., metrics that

are fully text-based and understand and utilize the context or

proximity of words or terms to compute semantic similarity. Several

Precompiled database based methods have been proposed in the

literature that use, e.g., WordNet, for semantic similarity

computation. WordNet is an on-line semantic dictionary—a lexical

database, developed at Princeton by a group led by Miller. Edge

counting methods consider the length of the paths that link the

words, as well as the word positions in the taxonomic

structure.Information content methods compute similarity between

words by combining taxonomic features that exist in the used

resource, e.g., number of subsumed words, with frequencies

computed over textual corpora [3]. Semantic similarity between

words changes over time as new words are constantly being created

and new meaning is also being assigned to the existing words. Also

there can be a problem with person name detection and alias

detection. One person may have multiple names to identify. So there

are some problems with the precompiled databases. The new senses

of words can not be immediately listed in any precompiled

database. Maintaining an up-to-date taxonomy of all the new words

and new usages of existing words is difficult and costly. A solution

to this problem is : ―The Web can be regarded as a large-scale,

dynamic corpus of text‖. Danushka Bollegala has proposed

similarity measures using page count returned by the search engine

for the given word pair. These similarity measures are modified four

popular co-occurrence measures; Jaccard, Overlap, Dice, and PMI

(point-wise mutual information). Page-count-based metrics use

association ratios between words that are computed using their

co-occurrence frequency in documents. The basic assumption of this

approach is that high co-occurrence frequencies indicate high

association ratios and high association ratios indicate a semantic

relation between words. Cilibrasi and Vitanyi proposed a

page-count-based similarity measure, called the Normalized

Google Distance.

 ------- 1

As the semantic similarity between two words increases, the

distance computed by decreases. This metric is considered to be a

dissimilarity measure. The metric is also unbounded, ranging from

0 to ∞. J. Gracia , proposed a variation of Normalized Google

Distance that defines a similarity measurement. This variation is

typically referred to as ―Google-based Semantic Relatedness:

------- 2

The next approach is using TF-IDF representation to represent

semantics of a word. Here Term Frequency (TF) is the ratio of

number of occurrences of the considered term (ti) in document dj,

and the total number of occurrences of all terms in document dj.

= ------

3

Measuring Semantic Similarity between Words

Using Web Pages

T.Sujatha, Ramesh Naidu G, P.Suresh B

Measuring Semantic Similarity between Words Using Web Pages

214

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: C0777062312/2012©BEIESP

Elias Iosif [8] proposed text-based or context based similarity

metrics. The basic assumption behind these metrics is that

―similarity of context implies similarity of meaning”, i.e., words

that appear in similar lexical environment (left and right contexts)

have a close semantic relation. For each occurrence of a word w a

left and right context of size K is considered. i.e.

[tK,L…..t2,Lt1,L]w[t1,R…..t2,RtK,R] where,

 and represent the ith word to the left and to the right

of w respectively.

Each word is represented as a feature vector as Fw,k=(Vw,1, Vw,2,….

Vw,N).There are various feature weighting schemes for computing

the value of Vw,i, some of

them are :
Scheme Acronym

Binary B

Term frequency TF

Add-one TF TF1

Log of TF LTF

Add-one LTF LTF1

TF-inverse Document Freq TFIDF

Log of TFIDF LTFIDF

Add-one LTFIDF LTFIDF1

II. PROPOSED SEMANTIC SIMILARITY METHOD

Given two words P and Q, we model the problem of measuring

the semantic similarity between P and Q, as a one of constructing a

function simðP;QÞ that returns a value in range [0,1] If P and Q are

highly similar (e.g.,synonyms), we expect simðP;QÞ to be closer to

1. On the other hand if P and Q are similar, then we expect

simðP;QÞ to be closer to 0. We define numerous features that

express the similarity between P and Q using page counts and

snippets retrieved from a web search engine for the two words.

Using this feature representation of words, we train a two-class

support vector machine to classify synonymous and nonsynonymous

word pairs. The function simðP;QÞ is then approximated by the

confidence score of the trained SVM.

Fig.1. Outline of the proposed method

Fig. 1 illustrates an example of using the proposed method to

compute the semantic similarity between two words, gem and

jewel. First, we query a web search engine and retrieve page counts

for the two words and for their conjunctive (i.e., “gem,” “jewel,”

and “gem AND jewel”). In Section 2.2, we define four similarity

scores using page counts. Page counts-based similarity scores

consider the global co-occurrences of two words on the web.

However, they do not consider the local context in which two words

co-occur. On the other hand, snippets returned by a search engine

represent the local context in which two words co-occur on the web.

Consequently, we find the frequency of numerous lexical syntactic

patterns in snippets returned for the conjunctive query of the two

words. The lexical patterns we utilize are extracted automatically

using the method described in Section 2.3. However, it is

noteworthy that a semantic relation can be expressed using more

than one lexical pattern. Grouping the different lexical patterns that

convey the same semantic relation, enables us to represent a

semantic relation between two words accurately. For this

purpose, we propose a sequential pattern clustering

algorithm in Section 2.4. Both page counts-based similarity

scores and lexical pattern clusters are used to define various

features that represent the relation between two words. Using

this feature representation of word pairs, we train a two-class

support vector machine in Section 2.5.

2.2 Page Count-Based Co-Occurrence Measures

Page counts for the query P AND Q can be considered as an

approximation of co-occurrence of two words (or multiword

phrases) P and Q on the web. However, page counts for the

query P AND Q alone do not accurately express semantic

similarity. For example, Google returns 11,300,000 as the

page count for “car” AND “automobile,” whereas the same is

49,000,000 for “car” AND “apple.” Although

automobile is more semantically similar to car than apple is,

page counts for the query “car” AND “apple” are more than

four times greater than those for the query “car” AND

“automobile.” One must consider the page counts not just for

the query P AND Q, but also for the individual words P and Q

to assess semantic similarity between P and Q.

We compute four popular co-occurrence measures; Jaccard,

Overlap (Simpson), Dice, and Pointwise mutual information

(PMI), to compute semantic similarity using page counts. For

the remainder of this paper, we use the

Notation H(P) to denote the page counts for the query P in a

search engine. The WebJaccard coefficient between words

(or multiword phrases) P and Q, WebJaccard (P: Q), is

defined as

WebJaccard (P: Q)

Therein, P Q denotes the conjunction query P AND Q.

Given the scale and noise in web data, it is possible that two

words may appear on some pages even though they are not

related. In order to reduce the adverse effects attributable to

such co-occurrences,weset the WebJaccard coefficient to

zero if the page count for the queryP Qis less than a

threshold c.2 Similarly, we define WebOverlap, WebOverlap

(P,Q) as

WebOverlap (P,Q)

WebOverlap is a natural modification to the Overlap

(Simpson) coefficient. We define the WebDice coefficient as

a variant of the Dice coefficient. WebDice(P:Q) is defined as

WebDice(P:Q)

Pointwise mutual information [20] is a measure that is

motivated by information theory; it is intended to reflect the

dependence between two probabilistic events. We define

WebPMI as a variant form of

point wise mutual information

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

215

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0777062312/2012©BEIESP

Ostrich,a large,flightless bird that lives in the dry

grasslands of africa

using page counts as WebPMI(P:Q)

Here, N is the number of documents indexed by the search

engine. Probabilities in (4) are estimated according to the

maximum likelihood principle. To calculate PMI accurately

using (4), we must know N, the number of documents

indexed by the search engine. Although estimating the

number of documents indexed by a search engine is an

interesting task itself, it is beyond the scope of this work. In

the present work,

Fig 2.. A snippet retrieved for the query “cricket” AND

“sport.”

we set N =1010according to the number of indexed pages

reported by Google. As previously discussed, page counts are

mere approximations to actual word co-occurrences in the

web. However, it has been shown empirically that there exists

a high correlation between word counts obtained from a web

search engine (e.g., Google and Altavista) and that from a

corpus (e.g., British National corpus) Moreover, the

approximated page counts have been successfully used to

improve a variety of language modeling tasks .

2.3 Lexical Pattern Extraction

Page counts-based co-occurrence measures described in

Section 2.2 do not consider the local context in which those

words co-occur. This can be problematic if one or both words

are polysemous, or when page counts are unreliable.

On the other hand, the snippets returned by a search

engine for the conjunctive query of two words provide useful

clues related to the semantic relations that exist between two

words. A snippet contains a window of text selected from a

document that includes the queried words. Snippets are

useful for search because, most of the time, a user can read

the snippet and decide whether a particular search result is

relevant, without even opening the url. Using snippets as

contexts is also computationally efficient because it obviates

the need to download the source documents from the web,

which can be time consuming if a document is large. For

example, consider the snippet in Fig. 2. Here, the phrase is a

indicates a semantic relationship between cricket and sport.

Many such phrases indicate semantic relationships. For

example, also known as, is a, part of, is an example of all

indicate semantic relations of different types. In the example

given

above, words indicating the semantic relation between

cricket and sport appear between the query words. Replacing

the query words by variables X and Y , we can form the

pattern X is a Y from the example given above. Despite the

efficiency of using snippets, they pose two main challenges:

first, a snippet can be a fragmented sentence, second, a

search engine might produce a snippet by selecting multiple

text fragments from different portions in a document.

Because most syntactic or dependency parsers assume

complete sentences as the input, deep parsing of snippets

produces incorrect results. Consequently, we propose a

shallow lexical pattern extraction algorithm using web

snippets, to recognize the semantic relations that exist

between two words. Lexical syntactic patterns have been

used in various natural language processing tasks such as

extracting hypernyms or meronyms, question answering ,

and paraphrase extraction .

Fig. 3. A snippet retrieved for the query “ostrich ….bird.”

Although a search engine might produce a snippet by

selecting multiple text fragments from different portions in a

document, a predefined delimiter is used to separate the

different fragments. For example, in Google, the delimiter

“...” is used to separate different fragments in a snippet.

 We use such delimiters to split a snippet before we run the

proposed lexical pattern extraction algorithm on each

fragment.

Given two words P and Q, we query a web search engine

using the wildcard query “P …Q” and download snippets.

The “.” operator matches one word or none in a webpage.

Therefore, our wildcard query retrieves snippets in which P

and Q appear within a window of seven words.

Because a search engine snippet contains ca. 20 words on

average, and includes two fragments of texts selected from a

document, we assume that the seven word window is

sufficient to cover most relations between two words in

snippets. In fact, over 95 percent of the lexical patterns

extracted by the proposed method contain less than five

words. We attempt to approximate the local context of two

words using wildcard queries. For example, Fig. 3 shows a

snippet retrieved for the query “ostrich…. bird.”

For a snippet δ, retrieved for a word pair (P:Q)first, we

replace the two words P and Q, respectively, with two

variables X and Y . We replace all numeric values by D, a

marker for digits. Next, we generate all subsequences of

words from δ that satisfy all of the following conditions:

1. A subsequence must contain exactly one occurrence of

each X and Y.

2. The maximum length of a subsequence is L words.

3. A subsequence is allowed to skip one or more

Words. However, we do not skip more than g

Number of words consecutively. Moreover, the total

number of words skipped in a subsequence should not exceed

G.

4. We expand all negation contractions in a context. For

example, didn’t is expanded to did not. We do not skip the

word not when generating subsequences. For example, this

condition ensures that from the snippet X is not a Y, we do

not produce the subsequence X is a Y. Finally, we count the

frequency of all generated subsequences and only use

subsequences that occur more than T times as lexical

patterns.

The parameters L,g,G, and T are set experimentally, It is

noteworthy that the Proposed pattern extraction algorithm

considers all the words in a snippet, and is not limited to

extracting patterns only from the mid fix (i.e., the portion of

text in a snippet that appears

between the queried words).

Moreover, the Consideration of

gaps enables us to capture

“Cricket is a sport played between two teams each with eleven players”

Measuring Semantic Similarity between Words Using Web Pages

216

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: C0777062312/2012©BEIESP

relations between distant words in a snippet. We use a

modified version of the prefix span algorithm to generate

subsequences From a text snippet. Specifically, we use the

Constraints (2-4) to prune the search space of candidate

subsequences. For example, if a subsequence has reached the

maximum length L, or the number of skipped words is G,

then we will not extend it further. By pruning the search

space, we can speed up the pattern generation process.

However, none of these modifications affect the accuracy

of the proposed semantic similarity measure because the

modified version of the prefixspan algorithm still generates

the exact set of patterns that we would obtain if we used the

original prefixspan algorithm (i.e., without pruning) and

subsequently remove patterns that violate the above

mentioned constraints. For example, some patterns extracted

from the snippet shown in Fig. 3 are: X, a large Y, X a

flightless Y, and X, large Y lives.

2.3 Snippets

It is a brief window of text extracted by a search engine

around the query term in a document.It provides useful

information regarding the local context of the query term.

Snippets, a brief window of text extracted by a search engine

around the query term in a document, provide useful

information regarding the local context of the query term.

Semantic similarity measures defined over snippets, have

been used in query expansion, personal name

disambiguation], and community mining . Processing

snippets is also efficient because it obviates the trouble of

downloading webpages, which might be time consuming

depending on the size of the pages. However, a widely

acknowledged drawback of using snippets is that, because of

the huge scale of the web and the large number of documents

in the result set, only those snippets for the topranking results

for a query can be processed efficiently. Ranking of search

results, hence snippets, is determined by a complex

combination of various factors unique to the underlying

search engine. Therefore, no guarantee exists that all the

information we need to measure semantic similarity between

a given pair of words is contained in the top-ranking

snippets. .

Drawback Because of the huge scale of the web and the

large no. of documents in the results set, only those snippets

for the top ranking results for a query can be processed

efficiently.

2.5 Lexical Pattern Clustering

Typically, a semantic relation can be expressed using more

than one pattern. For example, consider the two distinct

patterns, X is a Y, and X is a large Y. Both these patterns

indicate that there exists an is-a relation between X and Y.

Identifying the different patterns that express the same

semantic relation enables us to represent the relation between

two words accurately. According to the distributional

hypothesis, words that occur in the same context have similar

meanings. The distributional hypothesis has been used in

various related tasks, such as identifying related words , and

extracting paraphrases . If we consider the word pairs that

satisfy (i.e., co-occur with) a particular lexical pattern as the

context of that lexical pair, then from the distributional

hypothesis, it follows that the lexical patterns which are

similarly distributed over word pairs must be semantically

similar.

We represent a pattern a by a vector a of word-pair

frequencies. We designate a, the word-pair frequency vector

of pattern a. It is analogous to the document frequency vector

of a word, as used in information retrieval. The value of the

element corresponding to a word pair (P:Q)in a, is the

frequency, f(PiQi,a), that the pattern a occurs with the word

pair(Pi:Qi). As demonstrated later, the proposed pattern

extraction algorithm typically extracts a large number of

lexical patterns. Clustering algorithms based on pairwise

comparisons among all patterns are prohibitively time

consuming when the patterns are numerous. Next, we

present a sequential clustering algorithm to efficiently cluster

the extracted patterns.

Given a set A of patterns and a clustering similarity

Threshold θ, Algorithm 1 returns clusters (of patterns) that

express similar semantic relations. First, in Algorithm 1, the

function SORT sorts the patterns into descending order of

their total occurrences in all word pairs. The total occurrence

µ(a) of a pattern a is the sum of frequencies over all word

pairs, and is given by µ(a)=f(Pi,Qi,a).

After sorting, the most common patterns appear at the

beginning in Λ, whereas rare patterns (i.e., patterns that

occur with only few word pairs) get shifted to the end. Next,

in line 2, we initialize the set of clusters, C, to the empty set.

The outer for loop (starting at line 3), repeatedly takes a

pattern ai from the ordered set Λ, and in the inner for loop

(starting at line 6), finds the cluster, C*(Є C) that is most

similar to ai. First, we represent a cluster by the centroid of

all word-pair frequency vectors corresponding to the patterns

in that cluster to compute the similarity between a pattern

and a cluster. Next, we compute the cosine similarity

between the cluster centroid (Cj), and the word-pair

frequency vector of the pattern (aj). If the similarity between

a pattern ai, and its most similar cluster, C*, is greater than

the threshold θ, we append ai to C*(line14). We use the

operator to denote the vector addition between C* and ai.

Then, we form a new cluster {ai} and append it to the set of

clusters, C, if ai is not similar to any of the existing clusters

beyond the threshold θ.

By sorting the lexical patterns in the descending order of

their frequency and clustering the most frequent patterns

first, we form clusters for more common relations first. This

enables us to separate rare patterns which are likely to be

outliers from attaching to otherwise clean clusters. The

greedy sequential nature of the algorithm avoids pairwise

comparisons between all lexical patterns. This is particularly

important because when the number of lexical patterns is

large as in our experiments (e.g., over 100,000), pairwise

comparisons between all patterns are computationally

prohibitive. The proposed clustering algorithm attempts to

identify the lexical patterns that are similar to each other

more than a given threshold value. By adjusting the

threshold, we can obtain clusters with different granularity.

Algorithm 1: Sequential pattern clustering algorithm

Input: patterns ={a1,….an},threshold θ

Output: clusters C

1: SORT (Λ)

2: C {}

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

217

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0777062312/2012©BEIESP

3: for pattern ai Λ do

4: max -

5: c* null

6: for cluster cj do

7: sim cosine(ai,cj)

8: if sim>max then

9: max sim

10: c* cj

11: end if

12: end for

13: if max > θ then

14: c* c* {ai}

15: else

16: C←C {ai}
17: end if

18: end for

19: return C

The only parameter in Algorithm 1, the similarity

threshold, θ ranges in [0,1]. It decides the purity of the

formed clusters. Setting θ to a high value ensures that the

patterns in each cluster are highly similar. However, high θ

values also yield numerous clusters (increased model

complexity). the effect of θ on the overall performance of the

proposed relational similarity measure.

 The initial sort operation in Algorithm 1 can be carried

out in time complexity of O(nlogn) where n is the number of

patterns to be clustered. Next, the sequential assignment of

lexical patterns to the clusters requires complexity ofO(n|c|),

where |C| is the number of clusters. Typically, n is much

larger than |c|. Therefore, the overall time complexity of

Algorithm 1 is dominated by the sort operation, hence

O(nlogn). The sequential nature of the algorithm avoids

pairwise comparisons among all patterns.

Moreover, sorting the patterns by their total word-pair

frequency prior to clustering ensures that the final set of

clusters contains the most common relations in the data set.

 2.6 SVM (Support Vector Machine)

 SVMs are currently among the best performers for a

number of classification tasks ranging from text to genomic

data SVMs can be applied to complex data types beyond

feature vectors (e.g. graphs, sequences, and relational data)

by designing kernel functions for such data.SVM was trained

using page count co-occurrence measures, lexical pattern

clustering & snippets to extract the synonymous &

non-synonymous word pairs which give semantic similarity.

To train the two-class SVM. We require both synonymous

and nonsynonymous word pairs. We use WordNet, a

manually created English dictionary, to generate the training

data required by the proposed method. For each sense of a

word, a set of synonymous words is listed in WordNet

synsets. We randomly select 3,000 nouns from WordNet, and

extract a pair of synonymous words from a synset of each

selected noun. If a selected noun is polysemous, then we

consider the synset for the dominant sense. Obtaining a set of

nonsynonymous word pairs (negative training instances) is

difficult, because there does not exist a large collection of

manually created nonsynonymous word pairs. Consequently,

to create a set of nonsynonymous word pairs, we adopt a

random shuffling technique. Specifically, we first rand omly

select two synonymous word pairs from the set of

synonymous word pairs created above, and exchange two

words between word pairs to create two new word pairs. For

example, from two synonymous word pairs A;B and C;D, we

generate two new pairs A;C and B;D. If the newly created

word pairs do not appear in any of the word net synsets, we

select them as nonsynonymous word pairs. We repeat this

process until we create 3,000 nonsynonymous word pairs.

Our final training data set contains 6,000 word pairs (i.e.,

3,000 synonymous word pairs and 3,000 nonsynonymous

word pairs). Next, we use the lexical pattern extraction

algorithm to extract numerous lexical patterns for the word

pairs in our training data set. We experimentally set the

parameters in the pattern extraction algorithm to L ¼ 5, g ¼

2, G ¼ 4, and T ¼ 5. the number of patterns extracted for

synonymous and nonsynonymous word pairs in the training

data set. As can be seen from Table 1, the proposed pattern

extraction algorithm typically extracts a large number of

lexical patterns.Because of the noise in web snippets such as,

ill-formed snippets and misspells, most patterns occur only a

few times in the list of extracted patterns. Consequently, we

ignore any patterns that occur less than five times. Finally,

we deduplicate the patterns that appear for both synonymous

and nonsynonymous word pairs to create a final set of

3,02,286 lexical patterns. The remainder of the experiments

described in the paper use this set of lexical patterns

3.RESULTS

Measuring Semantic Similarity between Words Using Web Pages

218

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: C0777062312/2012©BEIESP

Testing:

Overview:

The process of executing a system with the intent of finding

errors

Testing is defined as the process in which defects are

identified, isolated, subjected for rectification and ensured

that product is defect free in order to produce the quality

product and hence customer satisfaction.

Quality is defined as justification of the requirements

Defect is nothing but deviation from the requirements.

Defect is nothing but bug.

Testing----the presence of bugs

Testing can demonstrate the presence of bugs, but not their

absence

Debugging and Testing are not the same thing!

Testing is systematic attempt to break a program or the

AUT

Debugging is the art or method of uncovering why the

script/program did not execute properly.

Testing Methodologies:

Black box Testing: is the testing process in which tester

can perform testing on an application without having any

internal structural knowledge of application.

Usually Test Engineers are involved in the black box

testing.

White box Testing: is the testing process in which tester

can perform testing on an application with having internal

structural knowledge.

Usually the Developers are involved in white box testing.

Gray box Testing: is the process in which the

combination of black box and white box tonics’ are used.

4. Conclusion

We proposed a semantic similarity measure using both

page counts and snippets retrieved from a web search engine

for two words. Four word co-occurrence measures were

computed using page counts. We proposed a lexical pattern

extraction algorithm to extract numerous semantic relations

that exist between two words. Moreover, a sequential pattern

clustering algorithm was proposed to identify different

lexical patterns that describe the same semantic relation.

Both page counts-based co-occurrence measures and lexical

pattern clusters were used to define features for a word pair.

A two-class SVM was trained using those features extracted

for synonymous and nonsynonymous word pairs selected

from WordNet synsets. xperimental results on three

benchmark data sets showed that the proposed method

outperforms various baselines as well as previously proposed

web-based semantic similarity measures, achieving a high

correlation with human ratings.

REFERENCES

 International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0777062312/2012©BEIESP

1. A. Kilgarriff, “Googleology Is Bad Science,” Computational Linguistics,

vol. 33, pp. 147-151, 2007.

2. M. Sahami and T. Heilman, “A Web-Based Kernel Function for

Measuring the Similarity of Short Text Snippets,” Proc. 15th Int’l World

Wide Web Conf., 2006.

3. D. Bollegala, Y. Matsuo, and M. Ishizuka, “Disambiguating Personal

Names on the Web Using Automatically Extracted Key Phrases,” Proc.

17th European Conf. Artificial Intelligence, pp. 553- 557, 2006.

4. H. Chen, M. Lin, and Y. Wei, “Novel Association Measures Using Web

Search with Double Checking,” Proc. 21st Int’l Conf. Computational

Linguistics and 44th Ann. Meeting of the Assoc. for Computational

Linguistics (COLING/ACL ’06), pp. 1009-1016, 2006.

5. M. Hearst, “Automatic Acquisition of Hyponyms from Large Text

Corpora,” Proc. 14th Conf. Computational Linguistics (COLING), pp.

539-545, 1992.

6. E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Pasca, and A. Soroa,

“A Study on Similarity and Relatedness Using Distributional and

Wordnet-Based Approaches,” Proc. Human Language Technologies:

The 2009 Ann. Conf. North Am. Chapter of the Assoc. for Computational

Linguistics (NAACL-HLT ’09), 2009.

7. G. Hirst and D. St-Onge, “Lexical Chains as Representations of Context

for the Detection and Correction of Malapropisms,” WordNet: An

Electronic Lexical Database, pp. 305-332, MIT Press, 1998.

8. T. Hughes and D. Ramage, “Lexical Semantic Relatedness with Random

Graph Walks,” Proc. Joint Conf. Empirical Methods in Natural Language

Processing and Computational Natural Language Learning

(EMNLP-CoNLL ’07), pp. 581-589, 2007.

9. E. Gabrilovich and S. Markovitch, “Computing Semantic Relatedness

Using Wikipedia-Based Explicit Semantic Analysis,” Proc. Int’l Joint

Conf. Artificial Intelligence (IJCAI ’07), pp. 1606-1611, 2007.

10. Y. Matsuo, J. Mori, M. Hamasaki, K. Ishida, T. Nishimura, H. Takeda,

K. Hasida, and M. Ishizuka, “Polyphonet: An Advanced Social Network

Extraction System,” Proc. 15th Int’l World Wide Web Conf., 2006.

