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    Abstract: Semantic similarity measures play an important 

role in the extraction of semantic relations. Semantic similarity 

measures are widely used in Natural Language Processing 

(NLP) and Information Retrieval (IR). The work proposed here 

uses web based metrics to compute the semantic similarity 

between words or terms and also compares with the 

state-of-the-art. For a computer to decide the semantic 

similarity, it should understand the semantics of the words. 

Computer being a syntactic machine, it cannot understand the 

semantics. So always an attempt is made to represent the 

semantics as syntax. There are various methods proposed to find 

the semantic similarity between words. Some of these methods 

have used the precompiled databases like WordNet, and Brown 

Corpus. Some are based on Web Search Engine. The approach 

presented here is altogether different from these methods. It 

makes use of snippets returned by the Wikipedia or any 

encyclopedia such as Britannica Encyclopedia. The snippets are 

preprocessed for stop word removal and stemming. For suffix 

removal an algorithm by M. F. Porter is referred. Luhn’s Idea is 

used for extraction of significant words from the preprocessed 

snippets. Similarity measures proposed here are based on the 

five different association measures in Information retrieval, 

namely simple matching, Dice, Jaccard, Overlap, Cosine 

coefficient. Performance of these methods is evaluated using 

Miller and Charle’s benchmark dataset. It gives higher 

correlation value of 0.80 than some of the existing methods. 

 

    Keywords : Semantic Similarity, Wikipedia, Web Search 

Engine, Natural Language Processing, Information Retrieval, 

Web Mining 

I. INTRODUCTION 

Semantic similarity is a central concept that finds great 

importance in various fields such as artificial intelligence, natural 

language processing, cognitive science and psychology. Accurate 

measurement of semantic similarity between words is essential for 

various tasks such as, document clustering, information retrieval, 

and synonym extraction. For a machine to be able to decide the 

semantic similarity, intelligence is needed. It should be able to 

understand the semantics or meaning of the words. But a computer 

being a syntactic machine, semantics associated with the words or 

terms is to be represented as syntax.  

For this various approaches are proposed till now. Word 

semantic similarity approaches or metrics can be categorized as: 

Pre-compiled database based metrics, i.e., metrics consulting only 

human-built knowledge resources, such as onto logies, 
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Co-occurrence based metrics using WWW, i.e., metrics that assume 

that the semantic similarity between words or terms can be 

expressed by an association ratio which is a function of their 

co-occurrence Context based metrics using WWW, i.e., metrics that 

are fully text-based and understand and utilize the context or 

proximity of words or terms to compute semantic similarity. Several 

Precompiled database based methods have been proposed in the 

literature that use, e.g., WordNet, for semantic similarity 

computation. WordNet is an on-line semantic dictionary—a lexical 

database, developed at Princeton by a group led by Miller. Edge 

counting methods consider the length of the paths that link the 

words, as well as the word positions in the taxonomic 

structure.Information content methods compute similarity between 

words by combining taxonomic features that exist in the used 

resource, e.g., number of subsumed words, with frequencies 

computed over textual corpora [3]. Semantic similarity between 

words changes over time as new words are constantly being created 

and new meaning is also being assigned to the existing words. Also 

there can be a problem with person name detection and alias 

detection. One person may have multiple names to identify. So there 

are some problems with the precompiled databases. The new senses 

of words can not be immediately listed in any precompiled 

database. Maintaining an up-to-date taxonomy of all the new words 

and new usages of existing words is difficult and costly. A solution 

to this problem is : ―The Web can be regarded as a large-scale, 

dynamic corpus of text‖. Danushka Bollegala has proposed 

similarity measures using page count returned by the search engine 

for the given word pair. These similarity measures are modified four 

popular co-occurrence measures; Jaccard, Overlap, Dice, and PMI 

(point-wise mutual information). Page-count-based metrics use 

association ratios between words that are computed using their 

co-occurrence frequency in documents. The basic assumption of this 

approach is that high co-occurrence frequencies indicate high 

association ratios and high association ratios indicate a semantic 

relation between words. Cilibrasi and Vitanyi proposed a 

page-count-based similarity measure, called the Normalized 

Google Distance. 

     ------- 1 

As the semantic similarity between two words increases, the 

distance computed by decreases. This metric is considered to be a 

dissimilarity measure. The metric is also unbounded, ranging from 

0 to ∞. J. Gracia , proposed a variation of Normalized Google 

Distance that defines a similarity measurement. This variation is 

typically referred to as ―Google-based Semantic Relatedness: 

-------    2 

 

The next approach is using TF-IDF representation to represent 

semantics of a word. Here Term Frequency (TF) is the ratio of 

number of occurrences of the considered term (ti) in document dj, 

and the total number of occurrences of all terms in document dj. 

=           ------   
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Elias Iosif [8] proposed text-based or context based similarity 

metrics. The basic assumption behind these metrics is that 

―similarity of context implies similarity of meaning”, i.e., words 

that appear in similar lexical environment (left and right contexts) 

have a close semantic relation. For each occurrence of a word w a 

left and right context of size K is considered. i.e. 

 

[tK,L…..t2,Lt1,L]w[t1,R…..t2,RtK,R] where,  

  and represent the ith word to the left and to the right 

of w respectively.  

Each word is represented as a feature vector as Fw,k=(Vw,1, Vw,2,…. 

Vw,N).There are various feature weighting schemes for computing 

the value of Vw,i, some of 

them are : 
Scheme Acronym 

Binary B 

Term frequency TF 

Add-one TF TF1 

Log of TF LTF 

Add-one LTF LTF1 

TF-inverse Document Freq TFIDF 

Log of TFIDF LTFIDF 

Add-one LTFIDF LTFIDF1 

II. PROPOSED SEMANTIC SIMILARITY METHOD 

Given two words P and Q, we model the problem of measuring 

the semantic similarity between P and Q, as a one of constructing a 

function simðP;QÞ that returns a value in range [0,1] If P and Q are 

highly similar (e.g.,synonyms), we expect simðP;QÞ to be closer to 

1. On the other hand if P and Q are similar, then we expect 

simðP;QÞ to be closer to 0. We define numerous features that 

express the similarity between P and Q using  page counts and 

snippets retrieved from a web search engine for the two words. 

Using this feature representation of words, we train a two-class 

support vector machine to classify synonymous and nonsynonymous 

word pairs. The function simðP;QÞ is then approximated by the 

confidence score of the trained SVM. 

 
Fig.1. Outline of the proposed method 

Fig. 1 illustrates an example of using the proposed method to 

compute the semantic similarity between two words, gem and 

jewel. First, we query a web search engine and retrieve page counts 

for the two words and for their conjunctive (i.e., “gem,” “jewel,” 

and “gem AND jewel”). In Section 2.2, we define four similarity 

scores using page counts. Page counts-based similarity scores 

consider the global co-occurrences of two words on the web. 

However, they do not consider the local context in which two words 

co-occur. On the other hand, snippets returned by a search engine 

represent the local context in which two words co-occur on the web. 

Consequently, we find the frequency of numerous lexical syntactic 

patterns in snippets returned for the conjunctive query of the two 

words. The lexical patterns we utilize are extracted automatically 

using the method described in Section 2.3. However, it is 

noteworthy that a semantic relation can be expressed using more 

than one lexical pattern. Grouping the different lexical patterns that 

convey the same semantic relation, enables us to represent a 

semantic relation between two words accurately. For this 

purpose, we propose a sequential pattern clustering 

algorithm in Section 2.4. Both page counts-based similarity 

scores and lexical pattern clusters are used to define various 

features that represent the relation between two words. Using 

this feature representation of word pairs, we train a two-class 

support vector machine in Section 2.5. 

2.2 Page Count-Based Co-Occurrence Measures 

Page counts for the query P AND Q can be considered as an 

approximation of co-occurrence of two words (or multiword 

phrases) P and Q on the web. However, page counts for the 

query P AND Q alone do not accurately express semantic 

similarity. For example, Google returns 11,300,000 as the 

page count for “car” AND “automobile,” whereas the same is 

49,000,000 for “car” AND “apple.” Although 

automobile is more semantically similar to car than apple is, 

page counts for the query “car” AND “apple” are more than 

four times greater than those for the query “car” AND 

“automobile.” One must consider the page counts not just for 

the query P AND Q, but also for the individual words P and Q 

to assess semantic similarity between P and Q. 

We compute four popular co-occurrence measures; Jaccard, 

Overlap (Simpson), Dice, and Pointwise mutual information 

(PMI), to compute semantic similarity using page counts. For 

the remainder of this paper, we use the 

Notation H(P) to denote the page counts for the query P in a 

search engine. The WebJaccard coefficient between words 

(or multiword phrases) P and Q, WebJaccard (P: Q), is 

defined as  

WebJaccard (P: Q) 

 
Therein, P Q denotes the conjunction query P AND Q. 

Given the scale and noise in web data, it is possible that two 

words may appear on some pages even though they are not 

related. In order to reduce the adverse effects attributable to 

such co-occurrences,weset the WebJaccard coefficient to 

zero if the page count for the queryP  Qis less than a 

threshold c.2 Similarly, we define WebOverlap, WebOverlap 

(P,Q) as 

WebOverlap (P,Q) 

 

 
WebOverlap is a natural modification to the Overlap 

(Simpson) coefficient. We define the WebDice coefficient as 

a variant of the Dice coefficient. WebDice(P:Q) is defined as 

WebDice(P:Q) 

 
Pointwise mutual information [20] is a measure that is 

motivated by information theory; it is intended to reflect the 

dependence between two probabilistic events. We define 

WebPMI as a variant form of 

point wise mutual information 
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Ostrich,a large,flightless bird that lives in the dry 

grasslands of africa 

using page counts as WebPMI(P:Q) 

 

 
Here, N is the number of documents indexed by the search 

engine. Probabilities in (4) are estimated according to the 

maximum likelihood principle. To calculate PMI accurately 

using (4), we must know N, the number of documents 

indexed by the search engine. Although estimating the 

number of documents indexed by a search engine is an 

interesting task itself, it is beyond the scope of this work. In 

the present work, 

 

 

 

Fig 2.. A snippet retrieved for the query “cricket” AND 

“sport.” 

we set N =1010according to the number of indexed pages 

reported by Google. As previously discussed, page counts are 

mere approximations to actual word co-occurrences in the 

web. However, it has been shown empirically that there exists 

a high correlation between word counts obtained from a web 

search engine (e.g., Google and Altavista) and that from a 

corpus (e.g., British National corpus) Moreover, the 

approximated page counts have been successfully used to 

improve a variety of language modeling tasks . 

2.3 Lexical Pattern Extraction 

Page counts-based co-occurrence measures described in 

Section 2.2 do not consider the local context in which those 

words co-occur. This can be problematic if one or both words 

are polysemous, or when page counts are unreliable. 

On the other hand, the snippets returned by a search 

engine for the conjunctive query of two words provide useful 

clues related to the semantic relations that exist between two 

words. A snippet contains a window of text selected from a 

document that includes the queried words. Snippets are 

useful for search because, most of the time, a user can read 

the snippet and decide whether a particular search result is 

relevant, without even opening the url. Using snippets as 

contexts is also computationally efficient because it obviates 

the need to download the source documents from the web, 

which can be time consuming if a document is large. For 

example, consider the snippet in Fig. 2. Here, the phrase is a 

indicates a semantic    relationship between cricket and sport. 

Many such phrases indicate semantic relationships. For 

example, also known as, is a, part of, is an example of all 

indicate semantic relations of different types. In the example 

given 

above, words indicating the semantic relation between 

cricket and sport appear between the query words. Replacing 

the query words by variables X and Y , we can form the 

pattern X is a Y from the example given above. Despite the 

efficiency of using snippets, they pose two main challenges: 

first, a snippet can be a fragmented sentence, second, a 

search engine might produce a snippet by selecting multiple 

text fragments from different portions in a document. 

Because most syntactic or dependency parsers assume 

complete sentences as the input, deep parsing of snippets 

produces incorrect results. Consequently, we propose a 

shallow lexical pattern extraction algorithm using web 

snippets, to recognize the semantic relations that exist 

between two words. Lexical syntactic patterns have been 

used in various natural language processing tasks such as 

extracting hypernyms or meronyms, question answering , 

and paraphrase extraction .  

Fig. 3. A snippet retrieved for the query “ostrich ….bird.” 

Although a search engine might produce a snippet by 

selecting multiple text fragments from different portions in a 

document, a predefined delimiter is used to separate the 

different fragments. For example, in Google, the delimiter 

“...” is used to separate different fragments in a snippet. 

 We use such delimiters to split a snippet before we run the 

proposed lexical pattern extraction algorithm on each 

fragment. 

Given two words P and Q, we query a web search engine 

using the wildcard query “P …Q” and download snippets. 

The “.” operator matches one word or none in a webpage. 

Therefore, our wildcard query retrieves snippets in which P 

and Q appear within a window of seven words. 

Because a search engine snippet contains ca. 20 words on 

average, and includes two fragments of texts selected from a 

document, we assume that the seven word window is 

sufficient to cover most relations between two words in 

snippets. In fact, over 95 percent of the lexical patterns 

extracted by the proposed method contain less than five 

words. We attempt to approximate the local context of two 

words using wildcard queries. For example, Fig. 3 shows a 

snippet retrieved for the query “ostrich…. bird.” 

For a snippet δ, retrieved for a word pair (P:Q )first, we 

replace the two words P and Q, respectively, with two 

variables X and Y . We replace all numeric values by D, a 

marker for digits. Next, we generate all subsequences of 

words from δ that satisfy all of the following conditions: 

1. A subsequence must contain exactly one occurrence of 

each X and Y. 

2. The maximum length of a subsequence is L words. 

3. A subsequence is allowed to skip one or more 

Words. However, we do not skip more than g 

Number of words consecutively. Moreover, the total 

number of words skipped in a subsequence should not exceed 

G. 

4. We expand all negation contractions in a context. For 

example, didn’t is expanded to did not. We do not skip the 

word not when generating subsequences. For example, this 

condition ensures that from the snippet X is not a Y, we do 

not produce the subsequence X is a Y. Finally, we count the 

frequency of all generated subsequences and only use 

subsequences that occur more than T times as lexical 

patterns. 

The parameters L,g,G, and T are set experimentally, It is 

noteworthy that the Proposed pattern extraction algorithm 

considers all the words in a snippet, and is not limited to 

extracting patterns only from the mid fix (i.e., the portion of 

text in a snippet that appears 

between the queried words). 

Moreover, the Consideration of 

gaps enables us to capture 

“Cricket is a sport played between two teams each with eleven players” 
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relations between distant words in a snippet. We use a 

modified version of the prefix span algorithm to generate 

subsequences From a text snippet. Specifically, we use the 

Constraints (2-4) to prune the search space of candidate 

subsequences. For example, if a subsequence has reached the 

maximum length L, or the number of skipped words is G, 

then we will not extend it further. By pruning the search 

space, we can speed up the pattern generation process. 

However, none of these modifications affect the accuracy 

of the proposed semantic similarity measure because the 

modified version of the prefixspan algorithm still generates 

the exact set of patterns that we would obtain if we used the 

original prefixspan algorithm (i.e., without pruning) and 

subsequently remove patterns that violate the above 

mentioned constraints. For example, some patterns extracted 

from the snippet shown in Fig. 3 are: X, a large Y, X a 

flightless Y, and X, large Y lives. 

2.3 Snippets 

It is a brief window of text extracted by a search engine 

around the query term in a document.It provides useful 

information regarding the local context of the query term. 

Snippets, a brief window of text extracted by a search engine 

around the query term in a document, provide useful 

information regarding the local context of the query term. 

Semantic similarity measures defined over snippets, have 

been used in query expansion, personal name 

disambiguation ], and community mining . Processing 

snippets is also efficient because it obviates the trouble of 

downloading webpages, which might be time consuming 

depending on the size of the pages. However, a widely 

acknowledged drawback of using snippets is that, because of 

the huge scale of the web and the large number of documents 

in the result set, only those snippets for the topranking results 

for a query can be processed efficiently. Ranking of search 

results, hence snippets, is determined by a complex 

combination of various factors unique to the underlying 

search engine. Therefore, no guarantee exists that all the 

information we need to measure semantic similarity between 

a given pair of words is contained in the top-ranking 

snippets. . 

Drawback Because of the huge scale of the web and the 

large no. of documents in the results set, only those snippets 

for the top ranking results for a query can be processed 

efficiently. 

2.5 Lexical Pattern Clustering 

Typically, a semantic relation can be expressed using more 

than one pattern. For example, consider the two distinct 

patterns, X is a Y, and X is a large Y. Both these patterns 

indicate that there exists an is-a relation between X and Y. 

Identifying the different patterns that express the same 

semantic relation enables us to represent the relation between 

two words accurately. According to the distributional 

hypothesis, words that occur in the same context have similar 

meanings. The distributional hypothesis has been used in 

various related tasks, such as identifying related words , and 

extracting paraphrases . If we consider the word pairs that 

satisfy (i.e., co-occur with) a particular lexical pattern as the 

context of that lexical pair, then from the distributional 

hypothesis, it follows that the lexical patterns which are 

similarly distributed over word pairs must be semantically 

similar. 

We represent a pattern a by a vector a of word-pair 

frequencies. We designate a, the word-pair frequency vector 

of pattern a. It is analogous to the document frequency vector 

of a word, as used in information retrieval. The value of the 

element corresponding to a word pair (P:Q )in a, is the 

frequency, f(PiQi,a), that the pattern a occurs with the word 

pair(Pi:Qi). As demonstrated later, the proposed pattern 

extraction algorithm typically extracts a large number of 

lexical patterns. Clustering algorithms based on pairwise 

comparisons among all patterns are prohibitively time 

consuming when the patterns are numerous. Next, we 

present a sequential clustering algorithm to efficiently cluster 

the extracted patterns.  

Given a set A of patterns and a clustering similarity 

Threshold θ, Algorithm 1 returns clusters (of patterns) that 

express similar semantic relations. First, in Algorithm 1, the 

function SORT sorts the patterns into descending order of 

their total occurrences in all word pairs. The total occurrence 

µ(a) of a pattern a is the sum of frequencies over all word 

pairs, and is given by µ(a)=f(Pi,Qi,a). 

After sorting, the most common patterns appear at the 

beginning in Λ, whereas rare patterns (i.e., patterns that 

occur with only few word pairs) get shifted to the end. Next, 

in line 2, we initialize the set of clusters, C, to the empty set. 

The outer for loop (starting at line 3), repeatedly takes a 

pattern ai from the ordered set Λ, and in the inner for loop 

(starting at line 6), finds the cluster, C*(Є C) that is most 

similar to ai. First, we represent a cluster by the centroid of 

all word-pair frequency vectors corresponding to the patterns 

in that cluster to compute the similarity between a pattern 

and a cluster. Next, we compute the cosine similarity 

between the cluster centroid (Cj), and the word-pair 

frequency vector of the pattern (aj). If the similarity between 

a pattern ai, and its most similar cluster, C*, is greater than 

the threshold θ, we append ai to C*(line14). We use the 

operator   to denote the vector addition between C* and ai. 

Then, we form a new cluster {ai} and append it to the set of 

clusters, C, if ai is not similar to any of the existing clusters 

beyond the threshold θ. 

By sorting the lexical patterns in the descending order of 

their frequency and clustering the most frequent patterns 

first, we form clusters for more common relations first. This 

enables us to separate rare patterns which are likely to be 

outliers from attaching to otherwise clean clusters. The 

greedy sequential nature of the algorithm avoids pairwise 

comparisons between all lexical patterns. This is particularly 

important because when the number of lexical patterns is 

large as in our experiments (e.g., over 100,000), pairwise 

comparisons between all patterns are computationally 

prohibitive. The proposed clustering algorithm attempts to 

identify the lexical patterns that are similar to each other 

more than a given threshold value. By adjusting the 

threshold, we can obtain clusters with different granularity. 

Algorithm 1: Sequential pattern clustering algorithm 

Input: patterns ={a1,….an},threshold θ 

Output: clusters C 

1: SORT (Λ) 

2: C  {} 
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3: for pattern ai  Λ do 

4: max   -  

5:  c*  null 

6: for cluster cj  do 

7:   sim  cosine(ai,cj) 

8:  if sim>max then 

9:  max  sim 

10: c*  cj 

11: end if 

12: end for 

13: if max > θ then 

14:  c*  c*  {ai} 

15:  else 

16:  C←C  {ai} 
17:  end if 

18:  end for 

19: return C 

The only parameter in Algorithm 1, the similarity 

threshold, θ ranges in [0,1]. It decides the purity of the 

formed clusters. Setting θ to a high value ensures that the 

patterns in each cluster are highly similar. However, high θ 

values also yield numerous clusters (increased model 

complexity). the effect of θ on the overall performance of the 

proposed relational similarity measure. 

 The initial sort operation in Algorithm 1 can be carried 

out in time complexity of O(nlogn) where n is the number of 

patterns to be clustered. Next, the sequential assignment of 

lexical patterns to the clusters requires complexity ofO(n|c|), 

where |C| is the number of clusters. Typically, n is much 

larger than |c|. Therefore, the overall time complexity of 

Algorithm 1 is dominated by the sort operation, hence 

O(nlogn). The sequential nature of the algorithm avoids 

pairwise comparisons among all patterns. 

Moreover, sorting the patterns by their total word-pair 

frequency prior to clustering ensures that the final set of 

clusters contains the most common relations in the data set. 

 2.6  SVM (Support Vector Machine) 

 SVMs are currently among the best performers for a 

number of classification tasks ranging from text to genomic 

data SVMs can be applied to complex data types beyond 

feature vectors (e.g. graphs, sequences, and relational data) 

by designing kernel functions for such data.SVM was trained 

using page count co-occurrence measures, lexical pattern 

clustering & snippets to extract the synonymous & 

non-synonymous word pairs which give semantic similarity. 

To train the two-class SVM. We require both synonymous 

and nonsynonymous word pairs. We use WordNet, a 

manually created English dictionary, to generate the training 

data required by the proposed method. For each sense of a 

word, a set of synonymous words is listed in WordNet 

synsets. We randomly select 3,000 nouns from WordNet, and 

extract a pair of synonymous words from a synset of each 

selected noun. If a selected noun is polysemous, then we 

consider the synset for the dominant sense. Obtaining a set of 

nonsynonymous word pairs (negative training instances) is 

difficult, because there does not exist a large collection of 

manually created nonsynonymous word pairs. Consequently, 

to create a set of nonsynonymous word pairs, we adopt a 

random shuffling technique. Specifically, we first rand omly 

select two synonymous word pairs from the set of 

synonymous word pairs created above, and exchange two 

words between word pairs to create two new word pairs. For 

example, from two synonymous word pairs A;B and C;D, we 

generate two new pairs A;C and B;D. If the newly created 

word pairs do not appear in any of the word net synsets, we 

select them as nonsynonymous word pairs. We repeat this 

process until we create 3,000 nonsynonymous word pairs. 

Our final training data set contains 6,000 word pairs (i.e., 

3,000 synonymous word pairs and 3,000 nonsynonymous 

word pairs). Next, we use the lexical pattern extraction 

algorithm to extract numerous lexical patterns for the word 

pairs in our training data set. We experimentally set the 

parameters in the pattern extraction algorithm to L ¼ 5, g ¼ 

2, G ¼ 4, and T ¼ 5. the number of patterns extracted for 

synonymous and nonsynonymous word pairs in the training 

data set. As can be seen from Table 1, the proposed pattern 

extraction algorithm typically extracts a large number of 

lexical patterns.Because of the noise in web snippets such as, 

ill-formed snippets and misspells, most patterns occur only a 

few times in the list of extracted patterns. Consequently, we 

ignore any patterns that occur less than five times. Finally, 

we deduplicate the patterns that appear for both synonymous 

and nonsynonymous word pairs to create a final set of 

3,02,286 lexical patterns. The remainder of the experiments 

described in the paper use this set of lexical patterns 

3.RESULTS 
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Testing: 

Overview: 

The process of executing a system with the intent of finding 

errors 

Testing is defined as the process in which defects are  

identified, isolated, subjected for rectification and ensured 

that product is defect free in order to produce the quality 

product and hence customer satisfaction. 

Quality is defined as justification of the requirements 

Defect is nothing but deviation from the requirements. 

Defect is nothing but bug. 

Testing----the presence of bugs 

Testing can demonstrate the presence of bugs, but not their 

absence 

Debugging and Testing are not the same thing! 

Testing is systematic attempt to break a program or the 

AUT 

Debugging is the art or method of uncovering why the 

script/program did not execute properly. 

Testing Methodologies: 

Black box Testing: is the testing process in which tester 

can perform testing on an application without having any 

internal structural knowledge of application. 

Usually Test Engineers are involved in the black box 

testing. 

White box Testing: is the testing process in which tester 

can perform testing on an application with having internal 

structural knowledge. 

Usually the Developers are involved in white box testing. 

Gray box Testing: is the process in which the 

combination of black box and white box tonics’ are used. 

4. Conclusion 

We proposed a semantic similarity measure using both 

page counts and snippets retrieved from a web search engine 

for two words. Four word co-occurrence measures were 

computed using page counts. We proposed a lexical pattern 

extraction algorithm to extract numerous semantic relations 

that exist between two words. Moreover, a sequential pattern 

clustering algorithm was proposed to identify different 

lexical patterns that describe the same semantic relation. 

Both page counts-based co-occurrence measures and lexical 

pattern clusters were used to define features for a word pair. 

A two-class SVM was trained using those features extracted 

for synonymous and nonsynonymous word pairs selected 

from WordNet synsets. xperimental results on three 

benchmark data sets showed that the proposed method 

outperforms various baselines as well as previously proposed 

web-based semantic similarity measures, achieving a high 

correlation with human ratings. 
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