
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

382

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: C0806062312 /2012©BEIESP

Specification Representation and Automatic Test

Case Generation using System Model

Ashish Kumari, Noor Mohammad, Chetna

Abstract: Finite State Machine is used to model the

requirement specification of the system by formal description

languages. In this paper, I have presented a approach which is

used to represent the requirement specification and automatically

generate all possible test cases which should be executed to test

that particular system [5].Requirement specification are

represented using extended finte state machine which uses the

state transition diagram that shows how system changes states

and action and variable used during each transition. Based on

information given in the state transition diagram, all possible test

cases are generating by traversing the graph using Depth First

Search.

KEYWORDS: Regression testing, extended finite state

machine, Specification-based testing, State Transitions, path,

Data dependency, Control dependency, SDG

I. INTORDUCTION

Specification-based testing confers a number of

advantages to the software development process.

A specification provides an exact description of the

software’s fundamental aspects while excluding more

detailed information. This allows a tester to extract the

product’s basic functionality without wading through
inessential details. By deriving tests from the software

specification, tests can be produced before the software

itself. Since many faults occur during the design phase, early

identification of them can reduce total development times

and costs [9].

In addition, developing tests forces a detailed look at the

specification itself, which may reveal ambiguities and/or

inconsistencies. These can then be fixed early in the

development cycle at a minimum of cost.

Extended Finite-state machines are comprised of states,

transitions, events and actions that emphasize the flow of

control from one state to another. Finite-state machines best
describe the dynamic behavior of a system, and finite- state

model based testing has been studied extensively.

EFSM can be used to represent the behavior of

communication protocols, graphical user interfaces and

other event-driven systems. Model-based testing approaches

can automatically derive executable tests from system model

thus providing benefits like systematic testing and test

adequacy. Since a key requirement of software testing is to

ensure test adequacy, these features make finite state

machine based testing very useful.

II. SPECIFICATION REPRESENTATION USING

EXTENDED FINITE STATE MACHINE [1]

Manuscript received on July, 2012.

Ashish Kumari, M.Tech (Scholar) S.E.C, Jhunjhunu, RTU,

Kota(Rajasthan),India
Noor Mohammad, Assistant. Professor S.E.C, Jhunjhunu, RTU,

Kota(Rajasthan),India

Chetna, M.Tech (Scholar) Jagannath University, Jaipur

(Rajasthan),India

An EFSM is a 5-tuple <S, I, O.V, T> where:

 S is a nonempty finite set of states with two states
designated as Start and Exit states of the EFSM

 I is a nonempty finite set of input interactions, each with

a (possibly empty) set of input interaction parameters

 O is a nonempty finite set of output interactions, each

with a (possibly empty) set of output interaction

parameter

 V is the nonempty finite set of all variables which is the

union of set of all local variables and set of all

interaction parameters

 T is a nonempty finite set of transitions

Each transition t of T is a 6-tuple <s
s
, s

t
, i, c, o, a> where:

• s
s
, s

t
∈ S are the starting and terminating states of t

• i ∈ I is the input interaction of t

• c is the enabling condition of t which is a Boolean

expression defined over the set of all local variables and

set of all input interaction parameters

• o ∈ O is the output interaction of t

• a is a sequence of actions of t expressed as functions f:
V → V

EFSM models are graphically represented as graphs

where states are represented as nodes and transitions as

directed edges between states.

The following elements are associateowith each transition :-

(1) Event

(2) Condition and

(3) Sequence of actions

Figure 1 Graphical Representation of an EFSM

Transition [1, 2, 11]

In a given EFSM model, it is assumed that every state is

reachable from Start and Exit is reachable from every state.

In an EFSM model of a simplified ATM system was given.

This EFSM, which is shown

in Figure 1, will be used as a

running example throughout

Specification Representation and Automatic Test Case Generation using System Model

383

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0806062312 /2012©BEIESP

this paper. Note that we are interested in modifications on

transitions instead of states, since transitions represent active

elements of the EFSM model.

III. REQUIREMENT ECIFICATION FOR ATM

MACHINE

Finite State Machine model to specify the following ATM
transaction behavior is given in Figure2. Once a card is

inserted and PIN validated, the transactions deposit,

withdrawal may be carried out. If invalid PIN entries are

made, there is a limit to the number of re-entries. To

generate executable tests from the state transition diagram

provided in Figure 1, the events PIN, Withdrawal Amount

and ContinueTransaction are modeled as data-flow graphs
as shown in figure1. Each time a deposit or withdraw is

made into the account, the variable Balance is updated

Figure 2 State Transition Diagram for ATM [1]

Details of each transition in an ATM system are given

below:

Transition T1:

Variable defined: attempt

Varibale initialized: pin, balance

Variable used: none

Event: card is inserted

Condition: none

Action: prompt for pin

Transition T2:

Variable defined: attempt

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

384

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: C0806062312 /2012©BEIESP

Varibale initialized: p

Variable used: p, pin, attempt

Event: pin_no is entered

Condition: pin_no! =p & attempt<=3

Action: if condition is true

 1. Display error
 2. Attempt=attempt+1

 3. Prompt for pin

Transition T3:

Variable defined: none

Varibale initialized: p

Variable used: p, pin, attempt

Event: pin_no is entered

Condition: pin_no! =p & attempt==3

Action: if condition is true

 1. Display error

 2. Eject card

Transition T4:

Variable defined: none

Varibale initialized: p

Variable used: pin

Event: pin_no is entered

Condition: pin_no==p & attempt<=3

Action: if condition is true

1. Display menu

Transition T5:

Variable defined: balance

Varibale initialized: none

Variabl_used: balance,withdraw_amount

Event: withdraw button is pressed

Condition: amount<= balance

Action: if condition is true

 1. balance-=withdraw_amt

Else

 Display error

Transition T6:

Variable defined: balance

Varibale initialized: none
Variabl_used: balance, deposit_amount

Event: deposit button is pressed

Condition: none

Action: balance+=deposit_amt

Transition T7:

Variable defined: none

Varibale initialized: none

Variable_used: none

Event: none

Action: display menu

Transition T8:

Variable defined: none

Varibale initialized: none

Variable_used: none

Event: none

Action: eject card

IV. AUTOMATIC TEST CASE GENERATION

An EFSM system model becomes an input to an EFSM

test generator that may support a variety of the existing

EFSM model-based test generation strategies.Depending on

the selected testing strategy, the generator automatically

generates a set of tests (paths an initial state to the final

state) in the EFSM model satisfies the selected strategy. For
each path, appropriate test values (inputs) that lead to the

traversal of the selected path are identified. Clearly, a test

case consist sequence of events (transitions) with

appropriate input values [2, 10]. The following is an

example of a test case for ATM system shown of Figure 2

[2]:

Card (1234, 100.00); PIN (1234); Withdrawl (50);

Receipt; Exit.

Therefore, the test shown above is represented as the

following sequence of transitions:

TI, T4, T5, T7, T8.

Most of the existing EFSM model-based test generation
strategies are mainly used to test the whole system, referred

to as complete system testing. Several testing strategies

exist, e.g., transition coverage, path coverage, and

constrained path coverage [2][4][10]:

A.Transition coverage strategy:

This requires that every transition in the model be

traversed at least once.

B. Path coverage strategy:

This requires that every path in the model be traversed at
least once; this strategy is frequently not practical because of

an unacceptable number of test cases generated in the

presence of cycles in the model.

C.Modified path strategy /constrained path strategy:

This strategy limits the test explosion by limiting a

number of times each transition can be traversed. This

strategy requires that every path in the model be traversed at

least once where each path can contain at most n
"occurrences" of the same transition (any transition can be

traversed at most n times in a path).

EFSM having the two types of dependencies between the

transition nodes:

1. Data dependency

2. Control dependency

A data dependency[6] between two transition Ti and Tk
w.r.t. variable v , if Ti transition defined variable v and

transition Tk use the same variable v and a path exists

between these two transitions Ti and Tk in EFSM model

along which variable v is not modified.

Control dependence

Means that one transition may affect the traversal of
another transition. Control dependence between transitions

is defined in terms of the concept of post-dominance.

Suppose that S1 and S2 are two distinct states, and t is an

outgoing transition from S1 in an EFSM. Then, S2 post-

dominates S1 if and only if S2 is on every path from S1 to

exit and S2 post -dominates t if and only if S2 is on every

path from S1 to exit through t.

State coverage, Transition coverage, Path coverage,

constrained path coverage [1, 2, 4] are the various technique

which are used to generate the

test cases in EFSM with the

help of dependency. Data

Specification Representation and Automatic Test Case Generation using System Model

385

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0806062312 /2012©BEIESP

dependencies and control dependencies between the

transitions are the main elements which serve as the input

for designing the Static Dependency Graph (SDG).

EFSM system model is already shown in Figure1. And

constrained path strategy is frequently used testing strategy

in model-based testing.
A tester decides to generate a complete system test suite

using a constrained path coverage testing strategy. The

resulting complete system test suite contains 64 tests for n =

3; for n = 4, the complete system test suite size is 160. In

this paper we are implementing the modified path strategy

or constrained path coverage technique.

V. ALGORITHIM FOR FINDING DATA

DEPENDENCY AND CONTROL DEPENDENCY

Data_ dependency (Struct transition T1, Struct transition

T2)

Begin

 For each defined variable d in T1

 For each used variable k in T2

 If (d==k)

 For each path p from T1 to T2

 Search for a transition in path p which is

defining the variable

 If (! found) ,Then

 Display “Transition T1 has data

dependency with transition T2 for variable

d”

 Insert the entry into data dependency
matrix.

 Go to first step.

End

Post_ dominate (struct transition T1, struct transition

T2)

Begin

If (! post_ state (T2.start, T1.start) and post_ transition

(T2.start, T1))

 Display “transition T1 post dominate transition T2”

 Insert the entry for control dependency into dependency

matrix

Else

 Display “transition T1 does not post dominate transition

T2”

End

The algorithm for finding out whether T2.Start post

dominates T1.start:

Post_ state (State S2, State S1)

Begin

1. Find out all the transitions t1,t2 …….tn whose

starting state is S1

2. For each transition t in set t1,t2,…tn

2.1 For each the possible path
 for transition t to exit state

2.1.1 Search for the

 transition in path

2.1.2 If! (Found)

 Then

 Set post_ dominate=0

 and go to step3.

3. If post_ dominate=0

Then

Display “state S2 post dominate state S1”

Return 1

Else

Display “state S2 does not post dominate state S1”

Return 0;

End

The algorithm for finding out whether T2.start post

dominates transition T1:
post_ transition(State S1, Transition T1)

Begin

1. Find out all the destination state S of T1.

2. Find out all the transition t1, t2 ….tn whose starting

state S.

3. For each transition t in set t1,t2…..tn

3.1 For each possible path P from transition t to

exit state

3.1.1 Search for the transition whose

starting state is S1

3.1.2 If (!found)

Then
Set Post_ dominate=0and go to

step 4.
4. If post_ dominate=0

Then

Display “state S2 post

dominate state S1”

Return 1

Else

 Display “state S2 does

 not post dominate

 state S1”

 Return 0;

End

VI. ALGORITHIM FOR GENERATING ALL

POSSIBLE PATH/TEST CASES USING

CONSTRAINED PATH STRATEGY

The algorithim define below based on depth first search and

gives details to findout the possible path or test cases from

a finite state machine represented using state transition

diagram. The algorithim path_generate is invoked on the

start state of the finite state machine.

Transition of the ATM state transition diagram contains the

following details [12]:

Struct transition

{

int no;

int source;

int dest;

int no_of_variable_used;

char *action[no_of_action];

char *events[no_of _events];

char *var[no_of _var_used];

int accurance;

}

Algorithim:

Path_generation (struct transition T1)

{

If (T1.occurance<n)

Insert this particular transition T1 into the stack.

 T1.occurance+=1; /* Transition would be traversed upto n

times in path when there is

cycle to avoid infinite no. of

possible test cases. */

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

386

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: C0806062312 /2012©BEIESP

If (T1.dest==exit_state)

Display the contents of the stack array from 0 to top of

the stack.

/*which consist of the sequence of transition traversed in

executing this particular path or test case.*/

Else

Repeat the step for all adjacent transition T to

transition T1.

 /* adjacent transitions are those whose source state is same

as destination state of T1.*/

Path_generation (T)

 /*call path_generation for the next adjacent

transition to T1*/

Pop ();

/* pop out the last transition from the stack. This algo is

based on depth first search so after finding out the one

path the. We backtrack to second last node of the path and

findout another node who is adjacent. */
}

Test Cases generated for ATM machine when n=3

This section contains all test cases or paths which are

generated by the algorithm path _ generate. Path contains

only the sequence of the transition which is traversed during

the execution of that particular path or test cases. As this

will find out all possible path so condition associated with

the transition is evaluated as true and false.

Here n=3 means that atmost three times a transaction can be

traversed in a path if there is cycle encounter in the path

among the transition.
As we know “start” is starting state for STD and “exit” is

exit state. So every test case transition whose source state is

“start” and ends with transition whose destination state is the

“exit state.”

Now the following test cases like:

Test case - T1T2T4T8

T1 (CARD INSERTED) T2 (WRONG PIN ENTERED) T4

(CORRECT PIN ENTERED) T8 (EXIT WITHOUT ANY

TRANSACTION).

Here I have write without any transaction bcoz T8 is

selected just after the T4.

Test case-T1 T2 T2 T4 T6 T7 T8
T1 (CARD INSERTED) T2 (WRONG PIN ENTERED) T2

(AGAIN WRONG PIN ENTERED) T4 (CORRECT PIN

ENTERED) T6 (3000rs DEPOSITED) T7 (RECEIPT) T8

(EXIT).

Using this way we can expand all possible test cases given

below.

List of Test cases or all possible paths in ATM’s state

transition diagram:

 1 T1 T3

 2 T1 T2 T3

 3 T1 T4 T8
 4 T1 T2 T2 T3

 5 T1 T2 T4 T8

 6 T1 T2 T2 T2 T3

 7 T1 T2 T2 T4 T8

 8 T1 T4 T5 T7 T8

 9 T1 T4 T6 T7 T8

10 T1 T2 T2 T2 T4 T8

11 T1 T2 T4 T5 T7 T8

12 T1 T2 T4 T6 T7 T8

13 T1 T2 T2 T4 T5 T7 T8

14 T1 T2 T2 T4 T6 T7 T8
15 T1 T4 T5 T7 T5 T7 T8

16 T1 T4 T5 T7 T6 T7 T8

17 T1 T4 T6 T7 T5 T7 T8

18 T1 T4 T6 T7 T6 T7 T8

19 T1 T2 T2 T2 T4 T5 T7 T8

20 T1 T2 T2 T2 T4 T6 T7 T8

21 T1 T2 T4 T5 T7 T5 T7 T8
22 T1 T2 T4 T5 T7 T6 T7 T8

23 T1 T2 T4 T6 T7 T5 T7 T8

24 T1 T2 T4 T6 T7 T6 T7 T8

25 T1 T2 T2 T4 T5 T7 T5 T7 T8

26 T1 T2 T2 T4 T5 T7 T6 T7 T8

27 T1 T2 T2 T4 T6 T7 T5 T7 T8

28 T1 T2 T2 T4 T6 T7 T6 T7 T8

29 T1 T4 T5 T7 T5 T7 T5 T7 T8

30 T1 T4 T5 T7 T5 T7 T6 T7 T8

31 T1 T4 T5 T7 T6 T7 T5 T7 T8

32 T1 T4 T5 T7 T6 T7 T6 T7 T8

33 T1 T4 T6 T7 T5 T7 T5 T7 T8
34 T1 T4 T6 T7 T5 T7 T6 T7 T8

35 T1 T4 T6 T7 T6 T7 T5 T7 T8

36 T1 T4 T6 T7 T6 T7 T6 T7 T8

37 T1 T2 T2 T2 T4 T5T7 T5T7T8

38 T1 T2 T2 T2 T4 T5 T7 T6 T7 T8

39 T1 T2 T2 T2 T4 T6 T7 T5 T7 T8

40 T1 T2 T2 T2 T4 T6 T7 T6 T7 T8

41 T1 T2 T4 T5 T7 T5 T7 T5 T7 T8

42 T1 T2 T4 T5 T7 T5 T7 T6 T7 T8

43 T1 T2 T4 T5 T7 T6 T7 T5 T7 T8

44 T1 T2 T4 T5 T7 T6 T7 T6 T7 T8
45 T1 T2 T4 T6 T7 T5 T7 T5 T7 T8

46 T1 T2 T4 T6 T7 T5 T7 T5 T7 T8

47 T1 T2 T4 T6 T7 T6 T7 T5 T7 T8

48 T1 T2 T4 T6 T7 T6 T7 T6 T7 T8

49 T1 T2 T2 T4 T5 T7 T5 T7 T5 T7 T8

50 T1 T2 T2 T4 T5 T7 T5 T7 T6 T7 T8

51 T1 T2 T2 T4 T5 T7 T6 T7 T5 T7 T8

52 T1 T2 T2 T4 T5 T7 T6 T7 T6 T7 T8

53 T1 T2 T2 T4 T6 T7 T5 T7 T5 T7 T8

54 T1 T2 T2 T4 T6 T7 T5 T7 T5 T7T8

55 T1 T2 T2 T4 T6 T7 T6 T7 T5 T7 T8

56 T1 T2 T2 T4 T6 T7 T6 T7 T6 T7 T8
57 T1 T2 T2 T2 T4 T5 T7 T5 T7 T5 T7 T8

58 T1 T2 T2 T2 T4 T5 T7 T5 T7 T6 T7 T8

59 T1 T2 T2 T2 T4 T5 T7 T6 T7 T5 T7 T8

60 T1 T2 T2 T2 T4 T5 T7 T6 T7 T6 T7 T8

61 T1 T2 T2 T2 T4 T6 T7 T5 T7 T5 T7 T8

62 T1 T2 T2 T2 T4 T6 T7 T5 T7 T5 T7 T8

63 T1 T2 T2 T2 T4 T6 T7 T6 T7 T5 T7 T8

64 T1 T2 T2 T2 T4 T6 T7 T6 T7 T6 T7 T8

VII. CONCLUSION

In this paper, we have presented a novel approach for

specification representation and automatic test case
generation. Implementation of the above said approach is

developed in C language.This approach automatically

generates the path for all possible test cases which are

executed to test the system. In the future, I plan to perform

an experimental study to investigate the presented approach

of path generation for different types of system models,

including industrial models, to determine the effectiveness

of the presented approach

even with models with large

no of states. At present we

Specification Representation and Automatic Test Case Generation using System Model

387

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0806062312 /2012©BEIESP

have generate a sequence of transition which should be

followed for a test case. In future I plan to generate the

automatic test case script which can automate the testing.

REFERENCES:

1. Ynaping Chen, Robert L. Probert and Hasan Ural, “Regression Test

Reduction Using Extended Dependence Analysis” in SOQUA’07,

September 3-4 2007, ACM Transaction, Dubrovnik, Croatia, 2007.

2. Korel, B., Tahat, L.H., and Vaysburg, B., “Model-based regression

test reduction using dependence analysis”, In Proc. of ICSM’02

(Montréal, Canada, October 3-6, 2002). IEEE Computer Society

Press, Washington, DC, 2002, 214-223.

3. Chen, Y., Rosenblum, D., VO, K., "Testtube: A System for Selective

Regression Testing," Proceedings of the 161h International

Conference on Software Engineering.
4. Tahat, L., Vaysburg, B., Korel, B., Bader, A., "Requirement-Based

Automated Black-Box Test Generation," Proceedings of the 25th

Annual IEEE International Computer Software and Applications

Conference (COMPSAC), Chicago, IL, pp. 489-495

5. Vaysburg, B., Tahat, L., Korel, B., Bader, A., " Automating Test Case

Generation from SDL Specifications," Proceedings of the 18th
International Conference on Testing Computer Software (TCS),

Bethesda, MD, pp. 130-139.

6. Dick, J., Faivre, A., "Automating the Generation and Sequencing of

Test Case from Model-Based Specification," Proceedings of the

Industrial Strength Formal Methods, 51h International Symposium on

Formal Methods, pp. 268-284, Springer-Verlag, Apri11992.

7. Dssouli, R., Saleh, K., Aboulhamid, E., En-Nouaary, A., Bourhfir, C.,

"Test Development For Communication Protocols: Towards

Automation," Computer Networks, 31, pp. 1835-1872, 1999

8. Ferrante K., Ottenstein K., Warren J., "The Program Dependence

Graph and its Use in Optimization," ACM Transactions on

Programming Languages and Systems, 9(5),pp. 319-349, 1987.

9. Ryan Voigt, Kareem Fazal, Hassan Reza,“Specification-based

Testing Method Using Testing Flow Graphs” ICSEA '07 Proceedings

of the International Conference on Software Engineering Advances,

ISBN:0-7695-2937-2

10. Vaysburg, B., Tahat, L., Korel, B., "Dependence Analysis in

Reduction of Requirement Based Test Suites," to appear in

Proceedings of IEEE International Symposium on Software Testing

and Analysis (ISSTA), Rome, Italy, 2002.

11. Ashish Kumari, Dr. Rahul Rishi, “Specification Representation and

Test Case Reduction by Analyzing the Interaction Patterns in System

Model”, Proceedings of IJCSMS, Vol. 12, Issue 01, January 2012,

ISSN (Online): 2231-5268.

