
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

234

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0829062312/2012©BEIESP

Abstract : Software metrics are becoming important day by

day. Many metrics have been defined and have been related to

class coupling cohesion etc. First of all it is difficult to choose the

correct metrics for particular software and secondly most of the

metrics only cater to requirements phase. It is to be understood

that the importance of software metrics cannot be undermined in

the design and implementation phase also. The work discusses

the various techniques, their merits and demerits and intends to

propose a new system for measuring the goodness of

implementation phase. The concept of Object Oriented Software

Metrics has also been explored. The proposed metrics uses the

concept of Genetic Algorithms, which are based on the theory of

natural selection. Thus, the work intends to introduce natural

selection techniques for measuring the quality of software.

Keywords : Software Metric, Measure, Object Oriented

Metrics, Genetic Algorithms

I. INTRODUCTION

It is said that “what can be measured can be studied”. The

concept is valid for all types of engineering including

software engineering. Measurements in software are done

using Software metrics. Software metric is a measure of some

property of a piece of software or its specifications. Since

quantitative measurements are essential in all sciences, there

is a continuous effort by computer science practitioners and

theoreticians to bring similar approaches to software

development. The use of software metrics is primarily to

determine the quality of software. However, they are also

used not only to predict the quality of product or process, but

also to improve the quality. There are many types of metrics

ranging from object, component and aspect metrics. The

following work throws some light on the various metrics

also. The goal of the present work is Obtaining objective,

reproducible and quantifiable measurements, which may

have numerous valuable applications in schedule and budget

planning, cost Estimation, quality assurance testing,

software debugging, software performance optimization, and

optimal personnel task assignments. The work proposes the

use of genetic Algorithms in Metrics. The work proposes the

use of Genetic Algorithms in Software metrics. Genetic

Algorithms are based on the theory of natural selection and

the survival of the fittest. The concept is to prioritize the

various elements in a software and then apply GA to select

the fittest whose value is representational as per as software is

Manuscript received on July, 2012.

 Reena Sharma, Department of computer science & application M.D.

university, Rohtak-124001, Haryana,india

R.S.Chhillar. Department of computer science & application M.D.

university, Rohtak-124001, Haryana,india.

concerned. The idea can be a turning point as per as software

measurements are concerned.

II. CLASSIFICATION OF METRICS

Software is robust if it behaves “reasonably”, even in

circumstances that were not anticipated in the requirement

specification-for example, when it encounters incorrect input

data or some hardware malfunction [1]. On the part of

programmer it is naïve to accept ideal input from a common,

unsophisticated user. The software should be capable of

diagnosing certain classes of errors. Robust design reads out

error circumstances to be estimated and error-handling paths

to be set up to deflect. This is attained by exception-handling

mechanism. Many metrics have been proposed by

researchers which measure the desirable characteristics of

software one of which is exception handling. A set of metrics

has been proposed in this work to measure the robustness of

design. The metrics are proposed is to be analyzed on sample

data set.

 APT (applied psychological technology) metrics are

desirable to develop proficient software system. The role of

Object-oriented metrics in this portion cannot be

undermined. One of the most important parts this work

evaluates is the object-oriented software metrics approach to

describe the characteristics of the software system.

Object-oriented systems are efficient software systems and

have reduced size. The classes, number of methods in a class,

the interaction of these methods are some of the factors that

can be considered while evaluating the system. These factors

are capable of providing comprehensive descriptions of

software’s configuration. The objects in these software

systems cooperate while remaining in their own local state.

The object-oriented features can be used to increase the

efficiency of object-oriented systems. Software metrics help

us to determine the software quality and the cost. The metrics

indicating the software quality are measured in the early

phases while the object-oriented software analysis normally

is used in later phase of SDLC. The work compares the

conventional metrics used in the implementation phase and

Object Oriented Metrics.

The Present work clubs the above concepts with the theory

of natural selection to propose an altogether new concept.

The metrics proposed can be applied to large software and

change the way we look at measurements till now.

III. MOTIVATION

The inputs to the implementation phase of a Software Design

Life Cycle are Number of Implementation Plans,

Novel Approach to Software Metrics
Reena Sharma, R.S.Chhillar

Novel Approach to Software Metrics

235

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0829062312/2012©BEIESP

Software Requirements Documents, Number of Software

Design Documents, Design Documents etc. [10].

The outputs of the phase include the Number of Updated

Implementation Plans, Number of Test Plans and the

Number of Test Procedure Documents. So the various things

that we need to measure are as follows:

 The time require to complete the Implementation Phase

 The Cost for Implementation Phase

 The Staff Size for Implementation Phase

In order to measure the above things matrices are needed.

Some of the works have analyzed and studied the above

factors. According to most of the works Defect Metrics, the

Lines of Code (LOC), and the Halstead product metric assist

in the measurements of the implementation phase.

To calculate the number of defects in the system based on

the number of Function Points the rule given by Capers Jones

is used. According to the rule the potential number of defects

is proportional to FP125, FP stands for Function points. The

Lines of Code (LOC) metric specifies the number of lines that

the code has except for the comments [8]. The LOC metric is

often presented on thousands of lines of code (KLOC). LOC

is used during the testing and maintenance phases. Several

LOC tools are enhanced to recognize the number of lines of

code that have been modified or deleted from one version to

another. But there are some reservations as per LOC are

concerned.

The most significant contribution to the Implementation

phase metrics was by Halstead [11]. According to him a

program could be measured by counting the number of

operators and operands. He defined a set of formulas to

calculate the vocabulary, the length and the volume of the

software program [11].

IV. PROGRAM VOCABULARY AND OBJECT-

ORIENTED METRICS

4.1. Vocabulary

The program vocabulary is given by the number of unique

operators plus the number of unique operands

n = n1+n2

n = program vocabulary

 n1 = number of unique operators

n2 = number of unique operands

4.1.1. Program Length

The program length is the total usage of all the operators

appearing in the implementation plus the total usage of all

operands appearing in the implementation.

N =N1+N2

N = program length

N1= all operators appearing in the implementation

N2 = all operands appearing in the implementation

4.1.2 Program Volume

The program volume is defined as the size of the program.

This definition is defined by equation 11.

V= N log2 n

V = program volume

N = program length

n = program vocabulary

4.2. Object Oriented Metrics

Chidambaram and Kemmerer (CK) defined six metrics

[5]. They are Weighted Methods per Class, Response sets for

Class, Lack of Cohesion in Methods, coupling between

Object Classes, Depth of Inheritance Tree of a class and

Number of Children of a class. CK metrics are widely used to

measure the design complexity [6], [7], [8]. There have been

many endeavors to verify the metrics. Several investigational

studies have been carried out to validate CK metrics [9]. The

summary of CK metrics is given as follows.

4.2.1. Weighted Methods per Class:

Number of methods of a certain class without inherited

methods

4.2.2. Response set For Class:

Number of methods that can be performed by a certain

class regarding a received message

4.2.3. Lack of Cohesion in Methods

Number of disjunctive method pairs of a certain class

4.2.4. Coupling between Objects and Classes

Number of couplings between a certain class and all other

classes

4.2.5. Depth of Inheritance :

Maximal depth of a certain class in an inheritance

structure

4.2.6. Number of Children of a Class:

Number of direct subclasses of a certain class

The CK metrics are aimed at the design of object oriented

system rather than implementation. The present work

intends to use these for the implementation phase as well.

V. INTENDED WORK

The intended work is to develop new metrics which

support the work of Halstead and still be more

comprehensive and better. The metrics being developed takes

into account the number of functional units and the type of

coupling [12]. The type of coupling determines the fitness of

a module. This can be the basis of the fitness function of the

genetic algorithm part. The value of delta in the fitness

function is proportional to the coefficient obtained by the type

of coupling. The process of initial population generation will

be followed by crossover. The crossover chromosomes will

find new functional units. The present work does not make

use of mutation, as its need was not realized in the analysis.

The overall metrics will serve the purpose of exhaustively

defining the software implementation. The metrics also take

into account the type of coupling which is rarely done till

now. The designing and the formulas’ have been derived.

The work is at present in the testing phase. The metrics

proposed are being checked against practical examples to

gauge their behavior. The work takes into account the

shortcomings in the present metrics and tries to remove then

as much as possible.

REFERENCES

1. An Introduction to Object oriented Programming and Smalltalk. Pinson

Lewis and Richard S. Wiener Addison- Wesley pp 49-60, 1988.

2. S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented

Design,” IEEE Transactions on Software Engineering, Vol. 20, No. 6, pp.

476–493, 1994.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-3, July 2012

236

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C0829062312/2012©BEIESP

3. A Comprehensive Assessment of Object-Oriented, Software Systems

Using Metrics Approach, Sanjay Kumar Dubey et al., International

Journal on Computer Science and Engineering, Vol. 02, No. 08, 2010,

2726-2730

4. Weyuker's Properties, Language Independency and Object Oriented

Metrics, Published in: · Proceeding ICCSA '09 Proceedings of the

International Conference on Computational Science and Its Applications:

Part II Pages 70 - 81

5. A metrics suite for object oriented design, Software Engineering, IEEE

Transactions on, March 1995, Churcher, N.I. ,Shepperd,

M.J.; Chidamber, S. ; Kemerer, C.F., Volume 21 , Issue: 3, Pages: 263-

265

6. L. Prechelt, B. Unger, M. Philippsen and W. Tichy, “A controlled

experiment on inheritance depth as a cost factor for code maintenance”,

The Journal of Systems and Software, Vol. 65, 2003, pp. 115-126.

7. M. Alshayeb, and M. Li, “An Empirical Validation of Object-Oriented

Metrics in Two Different Iterative Software Processes”, IEEE

Transactions on Software Engineering archive, Vol. 29, 2003, pp.1043 –

1049.

8. M. Cartwright, An Empirical view of inheritance, Information and

Software Technology, Vol. 40, No. 4, 1998, pp. 795-799.

9. M. Tang, M. Kao and M. Chen, An Empirical Study on Object-Oriented

Metrics, 6th IEEE International Symposium on Software Metrics, 1998.

10. Impact of Software Metrics on Object-Oriented Software Development

Life Cycle, International Journal of Engineering Science and Technology,

Vol.2 (2), 2010, 67-76

11. Factor analysis of source code metrics, D Coupal, Journal of Systems and

Software, 1990 – Elsevier

12. Regression Testing Using Coupling and Genetic Algorithms, IJCSIT 3(1)

,Pages : 3255 – 3259, Harsh Bhasin, Manoj

