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Abstract—A coding and decoding scheme for energy-based 

target localization in wireless sensor networks (WSNs) is 

presented in this paper. This scheme can improve target 

localziation performance when WSNs are deployed in noisy 

environments. Simulation results showed that the energy-based 

target localization method using this coding and decoding scheme 

could produce better localization performance than the 

energy-based target localziation method which did not use this 

scheme. Moreover, the root mean square (RMS) errors given by 

the proposed method were close to the Cramer-Rao lower bound 

(CRLB). 
 

Index Terms—Cramer-Rao lower bound, maximum likelihood 

estimation, quantization, Wireless sensor networks. 

I. INTRODUCTION 

Wireless sensor networks (WSNs) have drawn significantly 

attentions recently and target localization is a very popular 

research topic in WSNs [1-7]. The fusion center can estimate 

the target position by gathering information from sensors and 

employing appropriate estimation methods. 

To solve the target localization problem in WSNS, an 

energy-based target localization method was presented in [8]. 

In this method, sensors measure the signal from a target. If the 

target is close to the sensor, the signal received will be strong. 

If the target is far away from the target, the signal received 

will be weak. Then, sensors send the measurements to the 

fusion centre. The fusion centre estimates the target position 

using the maximum likelihood estimation (MLE) method 

based on the measurements from sensors [8].  

However, the energy-based target localization method 

suffers from some problems. For example, usually, WSNs are 

deployed in environments, where noise, interference and 

disturbances frequently make the sensor fail. To counter 

sensor failure, in [9][10], the sensor failure model was 

incorporated into the energy-based target localization 

method. To counter the communication channel errors, three 

communication channel models were included in the MLE 

method for a nonlinear estimation model [11]. For a linear 

estimation model, one method to counter communication 

channel errors was presented in [12]. However, if severe noise 

and interference are present, the MLE method may not 

produce satisfactory results.  

A coding and decoding scheme is needed to counter severe 

noise and interference. This paper will present a coding and 

decoding scheme for the energy-based target localization 

method.  
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The main contribution of this paper is the presentation of a 

coding and decoding scheme for the energy-based target 

localization method. Due to the limitation of computational 

resources, sensors can only use a simple coding and decoding 

scheme. In this paper, we use a simple repetition code and the 

majority decision rule. Simulation results showed that a 

coding and decoding scheme can improve target localization 

performance.  

Section II presents the coding and decoding scheme for the 

energy-based target localization method.  In Section III, we 

discuss the simulation setup, followed by simulation results 

and analysis in Section IV. Section V delivers concluding 

remarks. 

II. A CODING AND DECODING SCHEME FOR THE 

ENERGY-BASED TARGET LOCALIZATION 

METHOD 
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Figure 1: Sensor field 

In the sensor field shown in Figure 1, small circles indicate 

non-fired sensors and big circles indicate fired sensors. 

Following the setup in [8], signals received by sensors from a 

target can be calculated by the signal decay model 

                              
 

2 0

2

0

i

i

i

'G P
a =

d d
.                              (1) 

In (1), 0d  is a reference distance, 
0P  is the signal power 

from the target measured at 0d , and the gain of the thi sensor 

is iG . If we assume that 1iG   and 10d  ,  then, model (1) 

can be simplified as  
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For a given 
0P , the signal received by the thi sensor is a 

function of the distance between the target at ( )t tx , y  and the 

thi sensor at ( )i ix , y . The distance can be determined by 

     ( ) ( )2 2

i i t i td = x - x + y - y .                    (3) 

In this paper, to avoid numerical problems, we assume that 

the minimum value of 
id  is 1 [8]. 

Because of the presence of environmental noise, the signal 

received at the thi  sensor can be expressed as 

        i i is = a +w
                            (4) 

In (4), 
iw is a Gaussian noise with zero mean and variance 

2σ .   

Usually, sensors can send the signal strength information to 

the fusion centre either by analog data or by quantized data 

[8]. Quantized data can save energy and communication 

bandwidths. Therefore, we will use quantized data in this 

paper.  

According to the threshold set 
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the thi sensor quantizes 
is  into 

im . Given a  , 
im  takes 

value m  with probability  
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In (6),  Q x is defined as 
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The decision vector made by sensors can be expressed by 

      1 2[ ... ]T

Nm m mΜ .                        (8) 

Because sensors usually are deployed in environments 

where noise and interference are common, the decision vector 

sent to the fusion centre will be significantly distorted. Using 

distorted decisions to estimate the target position will degrade 

target localization performance. A coding and decoding 

scheme can improve target localization performance. The 

diagram of the coding and decoding scheme is shown in 

Figure 2. 
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      Figure 2: Diagram of the coding and decoding scheme. 

 

However, limited by computational resources, sensors 

cannot use complicated coding and decoding schemes. We 

will use a very simple decoding and decoding scheme: 

repetition code and majority decision rule [14]. In the 

repetition code, sensors simply send the decision to the fusion 

n  times ( n is an odd number). If binary decisions 0s and 1s 

are used, then, the fusion centre considers the transmitted 

decision to be 0 if it receives more 0s than 1s. Similarly, if the 

fusion centre receives more 1s than 0s, it considers the 

transmitted decision to be 1. If the decision made by the 

thi sensor is im  and the final decision made by the fusion 

centre is im~ , then the transition probabilities between im   

and im~  can be calculated by  
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After the decision vector
1 2[ ... ]T

Nm m mΜ arrived the 

fusion center, the fusion centre estimates 0[ ]T

t tP x y  by 

finding the   value to maximize 
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The estimation result is ̂  

        ˆ max ln .p


  M                              (12) 

If the size of the decision vector Μ is large enough, the 

estimation result θ̂ will be unbiased. The estimation 

performance of MLE can be compared with Cramer-Rao 

lower bound (CRLB), which is given by  
1ˆ ˆ{[ ][ ] }TE θ( )-θ θ( )-θ M M J              (13) 

       lnTE p θ 
    
 

J M                  (14) 

where J is the Fisher information matrix (FIM). The 

method to derive elements of FIM can be found in [11]. 

III. SIMULATION SETUP 

To show the effectiveness of the coding and decoding 

scheme in reducing the error probability of the equivalent 

communication channel, the error probabilities of the 

equivalent communication channel were calculated. In this 

paper, the equivalent communication channel is the channel 

between the sensor and the fusion centre if the coding and 

decoding scheme is used. The communication channel is the 

physical communication channel between the sensor and the 

fusion centre without using the coding and decoding scheme. 

To generate Figure 3, we assumed the error probability of the 

communication channel was 0.1 and the length of code was 

changed from 1, 3, 5, 7, to 9. 

To show the performance of the coding and decoding 

scheme, RMS errors given by this scheme were compared 

with the CRLB. The performance of the coding scheme was 

compared to the performance of the non-coding scheme. We 

set ( )=(12, 13)t tx , y , 0 10,000P  , and 1 6  for all sensors. 

The error probability of the communication channel was 0.1. 

The sensor layout used is similar to the one shown in Figure 1. 

However, the size of the sensor field was [-90, -90], [-90, 90], 

[90, -90], and [90, 90]. The RMS errors in Figure 4 were 

calculated based on 100 Monte Carlo simulations.  
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Similar simulations were conducted to show the effect of 

the error probability of the communication channel on target 

localization performance. In these simulations, RMS errors 

given by the coding and decoding scheme were compared 

with the CRLB. Moreover, the performance of the coding 

scheme was compared with performance of the non-coding 

scheme. In these simulations, we 

set ( )=(12, 13)t tx , y ,
0 10,000P  , and 

1 6  for all sensors. 

The length of the code was set to 5. All points involving RMS 

errors in Figure 5 were calculated based on 100 Monte Carlo 

simulations.  

IV. RESULTS AND ANALYSIS 

The error probabilities of the equivalent communication 

channel are shown in Figure 3. It is clear that the longer the 

code was, the lower the error probability was. However, 

longer code uses more communication bandwidth and 

transmitting longer code consumes more energy. Therefore, 

the appropriate code length should be determined based on 

the localization performance requirement and communication 

and energy resources available.  
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Figure 3: Error probabilities of the equivalent 

communication    channel as a function of code length 

(The error probability of the physical communication 

channel was set to 0.1) 
The RMS errors given by the coding and decoding scheme 

were compared with the CRLB when the length of code varied 

(Figure 4). When the length of code was low, the RMS errors 

corresponding to the coding scheme were high. When the 

length of code was high, the RMS errors corresponding to the 

coding scheme were low (Figure 4). The RMS errors given by 

the coding scheme were close to the CRLB. Moreover, the 

non-coding scheme gave much higher RMS errors. The RMS 

errors corresponding to the non-coding scheme were constant 

in Figure 4 because the length of code did not affect the 

performance of the target localization method using the 

non-coding scheme.  
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Figure 4: Target localization performance as a function of 

code length 
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Figure 5: Target localization performance as a function of 

the error probability of the physical communication 

channel 

If the error probability of the physical communication 

channel was varied, the RMS errors corresponding to both the 

coding scheme and the noncoding scheme also varied.  When 

the error probability of the physical communication channel 

was low, the RMS errors corresponding to the coding scheme 

were also low. When the error probability of the physical 

communication channel was high, the RMS errors 

corresponding to the coding scheme were also high (Figure 

5). The RMS errors given by the coding scheme were also 

close to the CRLB. However, the non-coding scheme gave 

much higher RMS errors compared with the coding scheme 

when the error probability of the physical communication 

channel was high. When the error probability of the physical 

communication channel was low, both schemes gave similar 

RMS errors (Figure 5).  

V. CONCLUSIONS 

In this paper, we presented a coding and decoding scheme 

for the energy-based target localization method.  
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In this coding and decoding scheme, repetition code and 

majority decision rule are used because of the simplicity of 

the repetition code and the majority decision rule. Simulation 

results showed that this scheme was effective at reducing the 

RMS estimation errors. In practice, one can choose an 

appropriate length of code to provide satisfactory results 

without wasting much computational resources and 

communication bandwidth.  
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