
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

91

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0894072412/2012©BEIESP

Abstract— With the introduction of many-core GPUs, there is

widespread interest in using GPUs to accelerate non-graphics

applications such as bioinformatics, energy, finance and several

research areas. Even though the GPUs provide highly parallel

processing capability, the communication interface between CPU

and GPU could be a performance bottleneck due to heavy data

transfer. If data transfer time is overwhelming the computation

time on GPU, it would be better keep the computation on CPU

instead of using GPUs. In this paper, we characterize the

HMMER 3.0 and investigate performance hotspot functions. The

HMMER is a bioinformatics application which is used in

searching sequence databases for protein sequences. For our

experiment, we use Nvidia CUDA that abstracts the GPU

hardware. Based on the hotspot analysis of HMMER 3.0, we

consider two factors for partial CUDA acceleration: one is the

performance impact of major hotspot functions and the other one

is data transfer overhead. Also, we verified that hotspot analysis

based partial CUDA acceleration could provide better

performance than full CUDA implementation.

Index Terms—CUDA acceleration, GPGPU, HMMER,

Many-core processors

I. INTRODUCTION

 Future microprocessor development efforts will continue

to concentrate on adding cores rather than increasing

single-thread performance [1]. Highly parallel graphics

processing unit (GPU) is rapidly gaining maturity as a

powerful engine for computationally demanding applications.

The GPU’s performance and potential offer a great deal of

promise for future computing systems. However, the

architecture and programming model of the GPU are slightly

different from the commodity of single-chip or heterogeneous

processors.

Even with powerful and massively parallel GPUs, it is

difficult to achieve peak performance without the knowledge

of graphics or graphics dedicated APIs However, with the

introduction of new programming models such as Nvidia’s

CUDA that abstracts the GPU hardware, non-graphics users

can easily map wide range of applications into many-core

GPUs [1][2].

The GPGPU (General-purpose computing on graphics

processing unit) is a technical snapshot of using a GPU, which

has high data-parallel processing capability and typically

handles computation only for computer graphics, to perform

the computation in general-purpose applications traditionally

handled by general-purpose CPU. Applications for GPGPU

include bioinformatics, energy, finance and various research

Manuscript received September 02, 2012.

Fahian Ahmed, Department of Electrical and Computer Engineering,

University of Texas at San Antonio, USA .

Saddam Quirem, Department of Electrical and Computer Engineering,

University of Texas at San Antonio, USA.

Gak Min, Department of Engineering, Korea Broadcasting System,

Korea.

Byeong Kil Lee, Department of Electrical and Computer Engineering,

University of Texas at San Antonio, USA .

areas [1].

In this paper, we focus on HMMER 3.0 for hotspot analysis

and partial CUDA acceleration. The HMMER is a

bioinformatics application which is used in searching

sequence databases for protein sequences. No GPGPU

acceleration research on HMMER 3.0 is found based on our

knowledge and investigation. Compare to existing version,

HMMER 3.0 has more performance improvement features

such as a heuristic filter, a log-likelihood model, etc. we

characterize the HMMER 3.0 and investigate performance

hotspot functions. Based on the hotspot analysis results, we

investigate the performance impact from each hotspot

acceleration and full acceleration. Also, we observe that the

performance bottleneck can be from a structural issue

between host device and GPU as a co-processor. Data transfer

overhead between heterogeneous processors could be a

performance bottleneck. We could solve this issue through

the coarse-grain hotspot analysis and remove the cause of

performance bottleneck.

The rest of paper is organized as follows: section II describes

related works. Scalability and Performance hotspot analysis

of HMMER is presented in section III. Section IV shows

partial CUDA implementation of HMMER. Finally,

concluding remarks and future works are presented in the last

section.

II. RELATED WORKS

Major genetic applications known to make use of the GPU

include Gromacs, NAMD, HMMER and most notably

Folding@home. NVIDIA GPUs account for over 35% of

Folding@home’s native TFLOPS. HMMER itself is a

database search application, and like many similar

applications, GPUs have been applied for acceleration.

Bakkum et al. [3] have previously ported SQLite to CUDA

resulting in at least 20x speedups in query time. For HMMER

application, various types of coprocessors were utilized for

acceleration. Perhaps most interesting acceleration is done

with the FPGA by Steve Derrie and Patrice Quinton [4]. This

is where the P7Viterbi algorithm was implemented in

hardware as a set of MUXs and LUTs. This FPGA

implementation achieved a 50x speedup in one case. A

CUDA implementation of HMMER is also present. Walters

et al accelerated HMMER by focusing on the P7Viterbi

algorithm at the core of the application. Using a single Tesla

GPGPU, GPU-HMMER was capable of a 30x speedup with a

large HMM size (number of states). Likewise, an earlier

implementation of HMMER utilizing streaming processors

(which includes NVIDIA GPUs), known as ClawHMMER,

took a similar approach by targeting the P7Viterbi algorithm

[5]. While previous implementations are with old version of

HMMER, we focus on newer version of HMMER with

different memory allocation

schemes.

Hotspot Analysis Based Partial CUDA

Acceleration of HMMER 3.0 on GPGPUs
Fahian Ahmed, Saddam Quirem, Gak Min and Byeong Kil Lee

Hotspot Analysis Based Partial CUDA Acceleration of HMMER 3.0 on GPGPUs

92

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0894072412/2012©BEIESP

It is well known that PCI Express bandwidth can cause a

throughput bottleneck when a significant amount of data is

transferred between a CPU and a GPU in a heterogeneous

system. A number of researchers have discussed bandwidth

troubles that can arise with frequent or poorly managed data

movement between devices. Schaa and Kaeli [6] examine

multiple GPU systems and acknowledge that unless a full

working set of data can fit into the memory on a GPU; the PCI

Express will be a bottleneck. Owens et al. [7] express similar

concerns. Fan et al. [8], Cohen and Molemaker [9] and

Dotzler et al. [10] all recommend rewriting algorithms to limit

PCI Express transfers as much as possible. The

aforementioned studies have served as our motivation for this

paper, and we decided to quantify the memory transfer

overheads for HMMER.

III. SCALABILITY AND PERFORMANCE

HOTSPOT ANALYSIS OF HMMER 3.0

A. Scalability Analysis on GPU simulator

Since there is a limitation to use many GPU hardware

components for scalability analysis, we used a GPU

simulator, called GPGPU‐Sim [11].

 (a) cache configuration (b) DRAM queue size

 (c) CTA (b) Number of threads per core

Figure 1: Speedup of HMMER (in IPC) for variation

of cache configuration, bit size of DRAM, cooperative

thread arrays (CTAs) and no of threads/core

Figure 1 shows speedup in IPC for variation of cache

configuration (L1 and L2), bit size of DRAM queue,

cooperative thread arrays (CTAs) and number of threads per

core. Figure 1 (a) shows the performance measured in IPC

and normalized to L1 Cache of 0. It is clear that for all

programs, GPU performance is worst with no cache, most

likely due to the large data transfer time between registers and

the global memory. However, as the L1 and L2 cache size

increases, HMMER speedup increases gradually. Figure 1 (b)

shows the IPC variation for increasing the DRAM queue size

for each program, normalized to DRAM queue size of 32. The

outcome is not a surprise because if the bit size is increased

and everything else kept the same, there would be an increase

in delay due to larger packets being sent back and forth from

global memory. Figure 1 (c) shows performance variation for

Cooperative Thread Array (CTAs) or more commonly known

as the number of blocks in the CUDA architecture. Figure 1

(d) shows the performance impact from the variation of

threads per cores. In both cases as the CTAs and number of

threads/cores increases, the performance of HMMER

increases gradually. Based on this simulation, we observe that

the performance of HMMER application can be scalable with

the number of functional units and the number of other

resources.

B. Hotspot analysis of HMMER 3.0

The Intel VTune Performance Analyzer [12] provides

detailed information on the execution of the code. The VTune

shows the performance issues, enabling to focus tuning effort

and get the best performance boost in the least amount of time.

Table 1 shows the machine configuration for CPU and GPU

which is a heterogeneous computing. In our experiment, we

use 12 cores Intel Xeon workstation with Nvidia CUDA

support GPGPU which as GTX 460 and Tesla X1060.

Table 1: Heterogeneous machine configuration

Configuration
Intel Xeon

W5590

Nvidia

GTX 460

Tesla

C1060

No. of Cores 12 336 240

Main Memory 12GB 1GB 4GB

Memory I/O 64-bit 256-bit 512-bit

The Hotspots analysis helps understand the application

flow and identify sections of code that took a long time to

execute (hotspots). A large number of samples collected at a

specific process, thread, or module can imply high processor

utilization and potential performance bottlenecks. The

HMMER 3.0 is applied to the Vtune to extract hotspot

functions. There are several sub‐programs in HMMER

application like phmmer, jackhammer, hmmbuild,

hmmsearch, hmmscan, smmaligh, etc. Each sub‐program

shows similar hotspot results, but here we only discuss about

jackhammer. Jackhmmer program is for searching a single

sequence query iteratively against a sequence database. The

VTune Analyzer creates and run an activity that collects

performance data of the application. An activity means

lunching application onto Vtune profiler. Table 2 shows the

sampling summary view of the Jackhmmer.

The Sampling summary provides data on the top most

active functions in the system during the data collection. Each

Row represent active functions with function name

corresponding number of samples, percentage of CPU clock

and total number of thread events.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

93

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0894072412/2012©BEIESP

Table 2 Hotspot analysis: sampling summary view of

the Jackhmmer

Name
Thread

samples

CPU

clock (%)

Thread

events

forward_engine 64 36.57% 136192000

backward_engine 54 30.86% 114912000

p7_Viterbi 34 19.43% 72352000

p7_Decoding 9 5.14% 19152000

p7_Null2_ByExpectation 7 4.00% 14896000

p7_alidisplay_Create 1 0.57% 2128000

p7_oprofile_FGetEmission 1 0.57% 2128000

is_multidomain_region 1 0.57% 2128000

rescore_isolated_domain 1 0.57% 2128000

p7_MSVFilter 1 0.57% 2128000

get_postprob 1 0.57% 2128000

esl_hmm_Forward 1 0.57% 2128000

C. Hotspot analysis based CUDA acceleration

A key issue of programming with the GPU is the fact that

before computations may be performed on the GPU, memory

blocks must be allocated onto it, data transferred to it, and

finally the data must be transferred back to the host after the

computations are performed. This ultimately means that when

working with smaller pieces of data, the CPU will

undoubtedly outperform the GPU. There are multiple

methods that aim to alleviate this issue, but cannot fully

remove it. Thus, we aim to observe the borderline between

CPU vs. GPU performance.

 (a) Forward module speedup

(b) Backward module speedup

(c) P7_ Viterbi module speedup

(d) Combined module speedup

Figure 2: Performance comparison of Hotspot-based partial CUDA and full CUDA implementation

Hotspot Analysis Based Partial CUDA Acceleration of HMMER 3.0 on GPGPUs

94

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0894072412/2012©BEIESP

According to the Table 2 (hotspot analysis of HMMER),

forward_engine, backward_engine and p7_Viterbi functions

are the dominant of CPU clock which takes 37%, 31% and

20% of the total respectively. These three modules are the

three canonical problems to solve with HMM (Hidden

Markov Model). Actually, The Hidden Markov Model

(HMM) is a variant of a finite state machine having a set of

hidden states, an output alphabet (observations), transition

probabilities, and output (emission) probabilities. Forward

and Backward module compute the probability of a particular

output sequence. On the other hand p7_Viterbi module finds

the most likely sequence of (hidden) states which could have

generated a given output sequence. Based on hotspot analysis,

we investigate of performance improvement for these three

individual modules with CUDA acceleration respectively. By

comparison to full CUDA conversion, we can figure out

which function has most impact from data transfer overhead

between CPU and GPU.

With each implementation of the HMMER’s modules,

timers were utilized in order to properly compare the results.

For the CPU version, the elapsed time was simply measured

between the start of the function and after the completion of

the function. The GPU implementations utilize two timers

that measure the total time taken to allocate memory storage

and transfer memory onto the GPU and back, and the kernel

execution time. The second timer simply measures the time

taken to execute the CUDA kernels.

IV. HOTSPOT ANALYSIS BASED PARTIAL CUDA

ACCELERATION

A. Partial CUDA acceleration for individual hotspot

module

The Forward Algorithm is a recursive algorithm for

calculating the observation sequence. Figure 2 (a) shows the

speedup of forward engine only CUDA acceleration. Based

on our experiments, the CUDA implementation of the

forward engine shows an about 2.27x speedup over the

original CPU-only implementation (C-version). The number

of queries and sequence length is ranging from 16 to 32,768.

Backward engine is exactly same with forward engine which

calculates recursively backward variables going backward

along the observation sequence. Figure 2 (b) shows an about

1.58x speedup for backward engine only CUDA modeling.

P7_viterbi Module chooses the best state sequence that

maximizes the likelihood of the state sequence for the given

observation sequence. The P7_Viterbi algorithm iterates

through every observation, from 1 to L (Sequence length),

and determines a score for each state from 1 to M (queries). It

is not possible to calculate the scores for each observation in

parallel. Based on our experiments, the CUDA

implementation of the P7Viterbi algorithm shows an about

1.50x speedup over the original implementation. The speedup

increased exponentially as the number of threads launched

(number of queries) doubled.

We also tried to combine three modules to see the

performance impact. Figure 2 (d) shows all three modules,

speedup is around 2.10x over the original implementation of

the functions. It is interesting to note that among four

combinations (forward, backward, p7-viterbi and combine),

forward engine shows better speedup. The lowest

performance is shown by p7-viterbi. The reason is coming

from hotspot analysis. Since forward engine has highest clock

time among three it is the most dominant module and CUDA

conversion of forward module shows large impact on

speedup. Backward engine is the second one and p7-viterbi

shows least speedup according to hotspot analysis based

partial acceleration. Combine modules shows a mixed

speedup which lies between forward and backward module.

B. Data transfer overhead investigation

In order to investigate the real speedup from CUDA

acceleration, we investigate the cycle time of memory storage

allocation and data transfer time and include them to total

cycle time. If we use a full CUDA acceleration with forward,

backward and p7-viterbi, the highest speedup is 6.91x and the

average speedup is around 2.10x as shown in Figure 3 (a).

However, if we consider total time taken to additional

overhead, then the highest speedup reduces to 3.24x over the

original implementation. Figure 3 (a) and 3 (b) show the

speedup of kernel itself and total execution time which

includes kernel and data transfer overhead. Based on this

investigation, it is clear that data transfer time has a great

impact on speedup. If we consider the kernel execution time

only, speedup looks much better. But if we consider both

kernel and additional overhead, then speedup reduces

significantly.

 (a) Kernel speedup of Combined module

(b) Total speedup of Combined module

Figure 3: Performance comparison of Kernel only and

combined module

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

95

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0894072412/2012©BEIESP

The reason is that some functions show higher data transfer

time than kernel computations on GPU, but others are not.

Therefore, full CUDA modeling could not be an ideal

solution for all applications. Static or dynamic scheduling

could be one solution to decide whether it will be CUDA

compiled or executed to achieve maximum performance.

V. CONCLUSION

The GPGPU (General purpose computing on graphics

processing unit) is a technique of using a GPU, which has high

data-parallel processing capability and typically handles

computation only for computer graphics, to perform the

computation in general purpose applications traditionally

handled by CPU. With the introduction of manycore GPUs,

there is widespread interest in using GPUs to accelerate non

graphics applications such as Hmmer.

Even though the GPUs provide highly parallel processing

capability, the communication interface between CPU and

GPU could be a performance bottleneck due to heavy data

transfer. If data transfer time is overwhelming the

computation time on GPU, it would be better keep the

computation on CPU instead of using GPUs. We characterize

the HMMER 3.0 and investigate performance hotspot

functions. The VTune analyzer shows the performance issues,

enabling to focus tuning effort and get the best performance

boost in the least amount of time. The Hotspots analysis helps

understand the application flow and identify sections of code

that took a long time to execute (hotspots). Based on the

hotspot analysis of HMMER 3.0, we consider two factors for

partial CUDA acceleration: one is the performance impact of

major hotspot functions and the other one is data transfer

overhead. Also, we verified that hotspot analysis based partial

CUDA acceleration could provide better performance than

full CUDA acceleration.

Based on the hotspot analysis, we do CUDA modeling on a

hotspot function and it shows significant performance

improvement on GPGPU with minimal efforts. We also tried

with the various data size to see its performance sensitivity,

and we see that one of the performance bottlenecks would be

data transfer overhead between CPU and GPU. From the

preliminary checking of CPU-GPU task scheduling, we see

that most hotspot module on CPU is not always most

performance factors when applying CUDA implantation with

GPUs. One of the reasons would be communication overhead

between CPU and GPU, which should be investigated more

thoroughly. That way, we can exploit more effective

CPU-GPU task scheduling with static or dynamic mapping

techniques. Also, more non-graphics applications need to be

characterized and investigate its fitness to heterogeneous

system.

REFERENCES

1. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and

Phillips, J. C. GPU computing. IEEE Proceedings, 879-899, May

2008.

2. Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, Jack Dongarra, "The

PlayStation 3 for High-Performance Scientific Computing,"

Computing in Science and Engineering, vol. 10, no. 3, pp. 84-87,

May/June, 2008.

3. P. Bakkum and K. Skadron “Accelerating SQL database

operation on a GPU with CUDA,” in proceedings of the 3rd workshop

on general purpose computation on graphics processing units, ACM,

pp.94-103, 2010.

4. Steven Derrie and Patrice Quinton, “Parallelizing HMMER for

Hardware Acceleration on FPGAs”, Proceedings in IEEE 18th

International Conference Application-specific Systems, Architectures

and Processors, 2007.

5. Daniel Horn, Mike Houston and Pt Hanrahan, “ClawHMMER: A

Streaming HMMer-Search Implementation”, presented at

Supercomputing 2005, Washington, D.C., 2005.

6. D.Schaa and D. Kaeli, “Exploring the multiple GPU design space,” in

International Parallel and Distributed Processing Symposium., pp.

1–12, May 2009.

7. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,

“GPU computing,” Proceedings of the IEEE, vol. 96, no.5, pp.

879–899,May 2008.

8. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU cluster for

high performance computing,” in ACM/IEEE Conference on

Supercomputing, Pittsburgh, PA, pp. 47–58, November 2004.

9. J. Cohen and M. Molemaker, “A fast double precision CFD code using

CUDA,” in Parallel Computational Fluid Dynamics: Recent Advances

and Future Directions, Moffett Field, CA, pp. 414–429, May 2009.

10. G. Dotzler, R. Veldema, and M. Klemm, “JCUDAmp: OpenMP/Java

on CUDA,” in 3rd International Workshop on Multicore Software

Engineering, pp. 10–17, May 2010.

11. Ali Bakhoda, George L. Yuan, W.L. Fung, Henry Wong and Tor M.

Aamodt, “Analyzing CUDA workloads using a detailed GPU

Simulator,” 2009 IEEE International Symposium on Performance

Analysis of Systems and Software, 2009.

12. Vtune: Intel Performance Analyzer,

13. http://www.software.intel.com/en-us/intel-vtune/

