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Abstract— With the introduction of many-core GPUs, there is 

widespread interest in using GPUs to accelerate non-graphics 

applications such as bioinformatics, energy, finance and several 

research areas. Even though the GPUs provide highly parallel 

processing capability, the communication interface between CPU 

and GPU could be a performance bottleneck due to heavy data 

transfer. If data transfer time is overwhelming the computation 

time on GPU, it would be better keep the computation on CPU 

instead of using GPUs. In this paper, we characterize the 

HMMER 3.0 and investigate performance hotspot functions. The 

HMMER is a bioinformatics application which is used in 

searching sequence databases for protein sequences. For our 

experiment, we use Nvidia CUDA that abstracts the GPU 

hardware. Based on the hotspot analysis of HMMER 3.0, we 

consider two factors for partial CUDA acceleration: one is the 

performance impact of major hotspot functions and the other one 

is data transfer overhead. Also, we verified that hotspot analysis 

based partial CUDA acceleration could provide better 

performance than full CUDA implementation.  
 

Index Terms—CUDA acceleration, GPGPU, HMMER, 

Many-core processors   

I. INTRODUCTION 

  Future microprocessor development efforts will continue 

to concentrate on adding cores rather than increasing 

single-thread performance [1]. Highly parallel graphics 

processing unit (GPU) is rapidly gaining maturity as a 

powerful engine for computationally demanding applications. 

The GPU’s performance and potential offer a great deal of 

promise for future computing systems. However, the 

architecture and programming model of the GPU are slightly 

different from the commodity of single-chip or heterogeneous 

processors. 

Even with powerful and massively parallel GPUs, it is 

difficult to achieve peak performance without the knowledge 

of graphics or graphics dedicated APIs However, with the 

introduction of new programming models such as Nvidia’s 

CUDA that abstracts the GPU hardware, non-graphics users 

can easily map wide range of applications into many-core 

GPUs [1][2]. 

The GPGPU (General-purpose computing on graphics 

processing unit) is a technical snapshot of using a GPU, which 

has high data-parallel processing capability and typically 

handles computation only for computer graphics, to perform 

the computation in general-purpose applications traditionally 

handled by general-purpose CPU. Applications for GPGPU 

include bioinformatics, energy, finance and various research 
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areas [1]. 

In this paper, we focus on HMMER 3.0 for hotspot analysis 

and partial CUDA acceleration. The HMMER is a 

bioinformatics application which is used in searching 

sequence databases for protein sequences. No GPGPU 

acceleration research on HMMER 3.0 is found based on our 

knowledge and investigation. Compare to existing version, 

HMMER 3.0 has more performance improvement features 

such as a heuristic filter, a log-likelihood model, etc. we 

characterize the HMMER 3.0 and investigate performance 

hotspot functions. Based on the hotspot analysis results, we 

investigate the performance impact from each hotspot 

acceleration and full acceleration. Also, we observe that the 

performance bottleneck can be from a structural issue 

between host device and GPU as a co-processor. Data transfer 

overhead between heterogeneous processors could be a 

performance bottleneck. We could solve this issue through 

the coarse-grain hotspot analysis and remove the cause of 

performance bottleneck. 

The rest of paper is organized as follows: section II describes 

related works. Scalability and Performance hotspot analysis 

of HMMER is presented in section III. Section IV shows 

partial CUDA implementation of HMMER. Finally, 

concluding remarks and future works are presented in the last 

section. 

II. RELATED WORKS 

Major genetic applications known to make use of the GPU 

include Gromacs, NAMD, HMMER and most notably 

Folding@home. NVIDIA GPUs account for over 35% of   

Folding@home’s native TFLOPS. HMMER itself is a 

database search application, and like many similar 

applications, GPUs have been applied for acceleration.  

Bakkum et al. [3] have previously ported SQLite to CUDA 

resulting in at least 20x speedups in query time. For HMMER 

application, various types of coprocessors were utilized for 

acceleration. Perhaps most interesting acceleration is done 

with the FPGA by Steve Derrie and Patrice Quinton [4]. This 

is where the P7Viterbi algorithm was implemented in 

hardware as a set of MUXs and LUTs. This FPGA 

implementation achieved a 50x speedup in one case. A 

CUDA implementation of HMMER is also present. Walters 

et al accelerated HMMER by focusing on the P7Viterbi 

algorithm at the core of the application. Using a single Tesla 

GPGPU, GPU-HMMER was capable of a 30x speedup with a 

large HMM size (number of states).  Likewise, an earlier 

implementation of HMMER utilizing streaming processors 

(which includes NVIDIA GPUs), known as ClawHMMER, 

took a similar approach by targeting the P7Viterbi algorithm 

[5]. While previous implementations are   with old version of 

HMMER, we focus on newer version of HMMER with 

different memory allocation 

schemes.  
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It is well known that PCI Express bandwidth can cause a 

throughput bottleneck when a significant amount of data is 

transferred between a CPU and a GPU in a heterogeneous 

system. A number of researchers have discussed bandwidth 

troubles that can arise with frequent or poorly managed data 

movement between devices. Schaa and Kaeli [6] examine 

multiple GPU systems and acknowledge that unless a full 

working set of data can fit into the memory on a GPU; the PCI 

Express will be a bottleneck. Owens et al. [7] express similar 

concerns. Fan et al. [8], Cohen and Molemaker [9] and 

Dotzler et al. [10] all recommend rewriting algorithms to limit 

PCI Express transfers as much as possible. The 

aforementioned studies have served as our motivation for this 

paper, and we decided to quantify the memory transfer 

overheads for HMMER. 

III. SCALABILITY AND PERFORMANCE 

HOTSPOT ANALYSIS OF HMMER 3.0 

A. Scalability Analysis on GPU simulator 

Since there is a limitation to use many GPU hardware 

components for scalability analysis, we used a GPU 

simulator, called GPGPU‐Sim [11].  

 

  
   

   (a) cache configuration                  (b) DRAM queue size 
 

  

            (c) CTA                     (b) Number of threads per core 

Figure 1: Speedup of HMMER (in IPC) for variation 

of cache configuration, bit size of DRAM, cooperative 

thread arrays (CTAs) and no of threads/core 

Figure 1 shows speedup in IPC for variation of cache 

configuration (L1 and L2), bit size of DRAM queue, 

cooperative thread arrays (CTAs) and number of threads per 

core. Figure 1 (a) shows the performance measured in IPC 

and normalized to L1 Cache of 0. It is clear that for all 

programs, GPU performance is worst with no cache, most 

likely due to the large data transfer time between registers and 

the global memory. However, as the L1 and L2 cache size 

increases, HMMER speedup increases gradually. Figure 1 (b) 

shows the IPC variation for increasing the DRAM queue size 

for each program, normalized to DRAM queue size of 32. The 

outcome is not a surprise because if the bit size is increased 

and everything else kept the same, there would be an increase 

in delay due to larger packets being sent back and forth from 

global memory. Figure 1 (c) shows performance variation for 

Cooperative Thread Array (CTAs) or more commonly known 

as the number of blocks in the CUDA architecture. Figure 1 

(d) shows the performance impact from the variation of 

threads per cores. In both cases as the CTAs and number of 

threads/cores increases, the performance of HMMER 

increases gradually. Based on this simulation, we observe that 

the performance of HMMER application can be scalable with 

the number of functional units and the number of other 

resources. 

B. Hotspot analysis of HMMER 3.0 

The Intel VTune Performance Analyzer [12] provides 

detailed information on the execution of the code. The VTune 

shows the performance issues, enabling to focus tuning effort 

and get the best performance boost in the least amount of time. 

Table 1 shows the machine configuration for CPU and GPU 

which is a heterogeneous computing. In our experiment, we 

use 12 cores Intel Xeon workstation with Nvidia CUDA 

support GPGPU which as GTX 460 and Tesla X1060.     

Table 1: Heterogeneous machine configuration 

Configuration 
Intel Xeon 

W5590 

Nvidia 

GTX 460 

Tesla 

C1060 

No. of Cores 12 336 240 

Main Memory 12GB 1GB 4GB 

Memory I/O 64-bit 256-bit 512-bit 

The Hotspots analysis helps understand the application 

flow and identify sections of code that took a long time to 

execute (hotspots). A large number of samples collected at a 

specific process, thread, or module can imply high processor 

utilization and potential performance bottlenecks. The 

HMMER 3.0 is applied to the Vtune to extract hotspot 

functions. There are several sub‐programs in HMMER 

application like phmmer, jackhammer, hmmbuild, 

hmmsearch, hmmscan, smmaligh, etc. Each sub‐program 

shows similar hotspot results, but here we only discuss about 

jackhammer. Jackhmmer program is for searching a single 

sequence query iteratively against a sequence database. The 

VTune Analyzer creates and run an activity that collects 

performance data of the application. An activity means 

lunching application onto Vtune profiler. Table 2 shows the 

sampling summary view of the Jackhmmer. 

The Sampling summary provides data on the top most 

active functions in the system during the data collection. Each 

Row represent active functions with function name 

corresponding number of samples, percentage of CPU clock 

and total number of thread events. 
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Table 2 Hotspot analysis: sampling summary view of 

the Jackhmmer 

Name 
Thread 

samples 

CPU 

clock (%) 

Thread 

events 

forward_engine 64 36.57% 136192000 

backward_engine 54 30.86% 114912000 

p7_Viterbi 34 19.43% 72352000 

p7_Decoding 9 5.14% 19152000 

p7_Null2_ByExpectation 7 4.00% 14896000 

p7_alidisplay_Create 1 0.57% 2128000 

p7_oprofile_FGetEmission 1 0.57% 2128000 

is_multidomain_region 1 0.57% 2128000 

rescore_isolated_domain 1 0.57% 2128000 

p7_MSVFilter 1 0.57% 2128000 

get_postprob 1 0.57% 2128000 

esl_hmm_Forward 1 0.57% 2128000 

C. Hotspot analysis based CUDA acceleration 

A key issue of programming with the GPU is the fact that 

before computations may be performed on the GPU, memory 

blocks must be allocated onto it, data transferred to it, and 

finally the data must be transferred back to the host after the 

computations are performed. This ultimately means that when 

working with smaller pieces of data, the CPU will 

undoubtedly outperform the GPU.  There are multiple 

methods that aim to alleviate this issue, but cannot fully 

remove it. Thus, we aim to observe the borderline between 

CPU vs. GPU performance. 

 

 

 

 

 

 

 
 (a) Forward module speedup 

 
(b) Backward module speedup 

 
(c) P7_ Viterbi module speedup 

 
(d) Combined module speedup 

Figure 2: Performance comparison of Hotspot-based partial CUDA and full CUDA implementation 
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According to the Table 2 (hotspot analysis of HMMER), 

forward_engine, backward_engine and p7_Viterbi functions 

are the dominant of CPU clock which takes 37%, 31% and 

20% of the total respectively. These three modules are the 

three canonical problems to solve with HMM (Hidden 

Markov Model). Actually, The Hidden Markov Model 

(HMM) is a variant of a finite state machine having a set of 

hidden states, an output alphabet (observations), transition 

probabilities, and output (emission) probabilities. Forward 

and Backward module compute the probability of a particular 

output sequence. On the other hand p7_Viterbi module finds 

the most likely sequence of (hidden) states which could have 

generated a given output sequence. Based on hotspot analysis, 

we investigate of performance improvement for these three 

individual modules with CUDA acceleration respectively. By 

comparison to full CUDA conversion, we can figure out 

which function has most impact from data transfer overhead 

between CPU and GPU. 

With each implementation of the HMMER’s modules, 

timers were utilized in order to properly compare the results. 

For the CPU version, the elapsed time was simply measured 

between the start of the function and after the completion of 

the function. The GPU implementations utilize two timers 

that measure the total time taken to allocate memory storage 

and transfer memory onto the GPU and back, and the kernel 

execution time. The second timer simply measures the time 

taken to execute the CUDA kernels. 

 

IV. HOTSPOT ANALYSIS BASED PARTIAL CUDA 

ACCELERATION 

A. Partial CUDA acceleration for individual hotspot 

module 

The Forward Algorithm is a recursive algorithm for 

calculating the observation sequence. Figure 2 (a) shows the 

speedup of forward engine only CUDA acceleration. Based 

on our experiments, the CUDA implementation of the 

forward engine shows an about 2.27x speedup over the 

original CPU-only implementation (C-version). The number 

of queries and sequence length is ranging from 16 to 32,768. 

Backward engine is exactly same with forward engine which 

calculates recursively backward variables going backward 

along the observation sequence. Figure 2 (b) shows an about 

1.58x speedup for backward engine only CUDA modeling. 

P7_viterbi Module chooses the best state sequence that 

maximizes the likelihood of the state sequence for the given 

observation sequence. The P7_Viterbi algorithm iterates 

through every observation, from 1 to L (Sequence length), 

and determines a score for each state from 1 to M (queries). It 

is not possible to calculate the scores for each observation in 

parallel. Based on our experiments, the CUDA 

implementation of the P7Viterbi algorithm shows an about 

1.50x speedup over the original implementation. The speedup 

increased exponentially as the number of threads launched 

(number of queries) doubled.  

We also tried to combine three modules to see the 

performance impact. Figure 2 (d) shows all three modules, 

speedup is around 2.10x over the original implementation of 

the functions. It is interesting to note that among four 

combinations (forward, backward, p7-viterbi and combine), 

forward engine shows better speedup. The lowest 

performance is shown by p7-viterbi. The reason is coming 

from hotspot analysis. Since forward engine has highest clock 

time among three it is the most dominant module and CUDA 

conversion of forward module shows large impact on 

speedup. Backward engine is the second one and p7-viterbi 

shows least speedup according to hotspot analysis based 

partial acceleration. Combine modules shows a mixed 

speedup which lies between forward and backward module.  

B. Data transfer overhead investigation 

In order to investigate the real speedup from CUDA 

acceleration, we investigate the cycle time of memory storage 

allocation and data transfer time and include them to total 

cycle time. If we use a full CUDA acceleration with forward, 

backward and p7-viterbi, the highest speedup is 6.91x and the 

average speedup is around 2.10x as shown in Figure 3 (a). 

However, if we consider total time taken to additional 

overhead, then the highest speedup reduces to 3.24x over the 

original implementation. Figure 3 (a) and 3 (b) show the 

speedup of kernel itself and total execution time which 

includes kernel and data transfer overhead. Based on this 

investigation, it is clear that data transfer time has a great 

impact on speedup. If we consider the kernel execution time 

only, speedup looks much better. But if we consider both 

kernel and additional overhead, then speedup reduces 

significantly.  

 

 

 

 

 
 (a) Kernel  speedup  of Combined module 

 
(b) Total speedup  of Combined module 

Figure 3:  Performance comparison of Kernel only and 

combined module 
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The reason is that some functions show higher data transfer 

time than kernel computations on GPU, but others are not. 

Therefore, full CUDA modeling could not be an ideal 

solution for all applications. Static or dynamic scheduling 

could be one solution to decide whether it will be CUDA 

compiled or executed to achieve maximum performance. 

V. CONCLUSION 

The GPGPU (General purpose computing on graphics 

processing unit) is a technique of using a GPU, which has high 

data-parallel processing capability and typically handles 

computation only for computer graphics, to perform the 

computation in general purpose applications traditionally 

handled by CPU. With the introduction of manycore GPUs, 

there is widespread interest in using GPUs to accelerate non 

graphics applications such as Hmmer. 

Even though the GPUs provide highly parallel processing 

capability, the communication interface between CPU and 

GPU could be a performance bottleneck due to heavy data 

transfer. If data transfer time is overwhelming the 

computation time on GPU, it would be better keep the 

computation on CPU instead of using GPUs. We characterize 

the HMMER 3.0 and investigate performance hotspot 

functions. The VTune analyzer shows the performance issues, 

enabling to focus tuning effort and get the best performance 

boost in the least amount of time. The Hotspots analysis helps 

understand the application flow and identify sections of code 

that took a long time to execute (hotspots). Based on the 

hotspot analysis of HMMER 3.0, we consider two factors for 

partial CUDA acceleration: one is the performance impact of 

major hotspot functions and the other one is data transfer 

overhead. Also, we verified that hotspot analysis based partial 

CUDA acceleration could provide better performance than 

full CUDA acceleration.   

Based on the hotspot analysis, we do CUDA modeling on a 

hotspot function and it shows significant performance 

improvement on GPGPU with minimal efforts. We also tried 

with the various data size to see its performance sensitivity, 

and we see that one of the performance bottlenecks would be 

data transfer overhead between CPU and GPU. From the 

preliminary checking of CPU-GPU task scheduling, we see 

that most hotspot module on CPU is not always most 

performance factors when applying CUDA implantation with 

GPUs. One of the reasons would be communication overhead 

between CPU and GPU, which should be investigated more 

thoroughly. That way, we can exploit more effective 

CPU-GPU task scheduling with static or dynamic mapping 

techniques. Also, more non-graphics applications need to be 

characterized and investigate its fitness to heterogeneous 

system. 
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