
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

180

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0932082412/2012©BEIESP

Abstract—The Fault tolerance degradation is the property that

enables a system (often computer-based) to continue operating

properly in the event of the failure of (or one or more faults

within) some of its components. To designing a new 32-bit

Arithmetic Logic Unit (ALU) that is secure against many attacks

or faults and able to correct any 5-bit fault in any position of its 32

bits input register of ALU. Because the radiation effects on

electronic circuits may cause to be inverted data bits of registers or

memories. If one bit of main storage system is changed the

mission of system would be completely different. The high

motivation in choice of BCH (Bose, chaudhuri, and

Hocquenghem) codes is that, it is able to correct multiple errors

and these classes of codes are kind of powerful random error

correcting cyclic codes. In comparison with area penalty methods,

32-bit fault tolerant ALU using BCH code is a better choice in

terms of area as compared to Triple Modular Redundancy (TMR)

and Residue code. This is due to the fault tolerant method for

32-bit ALU using TMR with single or triplicated voting need

single voting scheme or tripled voter and two extra 32-bit ALU

which has been increased the hardware overhead by 202% and

208% respectively. The Residue code requires hardware

overhead of 148.9%. However, in comparison with T M R a n d

R e s i d u e c o d e , BCH code needs the hardware overhead is 70

to 75%, which causes that the overall cost and power consumption

will get reduces. Thus proposed fault tolerant hardware overhead

has lower hardware and multiple error correction when compared

to the other techniques.

Index Terms—Fault Tolerant, BCH codes, ALU, Residue code,

TMR, Encoder, Decoder, FPGA.

I. INTRODUCTION

This work presents a BCH based hardware implementation

of 32-bit Fault-tolerant ALU in which is compared with the

current techniques such as Residue code[2][3], TMR with

single voting and TMR with triplicated voter that are widely

used in space application to mitigate the upsets, in terms of

area penalty[7]. The various attacks exist in space on

integrated circuits that comes from sun activity. Such as solar

rays which are composed of charged particles. The radiation

from sun effects in integrated circuits makes digital damage

and upsets such as SEU (Single Event Upset), SET (Single

Event Transient) [1] and etc. Such attacks can upset either

combinational logic or sequential logic. In other words a bit

flip can occur in register bits and if one bit of main storage

system is changed the mission of system would be completely

different. In such scenario the error control or fault tolerant

methods are employed to keep integrated circuits against

these attacks in space.

This work consider Error Detection and Correction Codes

(EDAC) method[4]. It is usually used to mitigate Single Event

Manuscript received September 02, 2012.

 Mahadevaswamy V P, ECE, Visvesvaraya Technological University,

Mandya, India,

Dr. Sunitha S.L., ECE, Visvesvaraya Technological University,

Mandya, India,

B.N. Shobha, ECE, Visvesvaraya Technological University, Banglore,

India,

Upset in integrated circuits which are required that the

encoder and the decoder blocks to be able to detect and

correct errors respectively. This technique gives strong faults

coverage and less overhead hardware. This techniques are

requires hardware overhead, increased area and less faults

coverage. So for this reason more sophisticated error

correcting codes are the BCH codes are considered that are a

generalisation of the Hamming codes for multiple-error

correction.

The BCH codes operate over finite fields. The BCH codec

(encoder, decoder) that is implemented on FPGA

hardware[8]. The new implementation of ALU employing

BCH code on Spartan-3 FPGA has been provided. The results

show reduced area requirements compared to the other

technique and it can correct any 5-bit error in any positions of

32-bits input registers of ALU.

A. BCH Code

There are many design based techniques to give the fault

tolerant scheme such as detection techniques and mitigation

techniques. This technique gives strong faults coverage and

less overhead hardware. For this reason we consider the BCH

codes and a binary BCH codes is considered. As a result of

using BCH codes, we have achieved to design encoder and

decoder circuits to detect and correct 5-bit faults.

Encoding Technique: The BCH codes are implemented as

cyclic codes [6][8], that is, the digital logic implementing the

encoding and decoding algorithms is organised into

shift-register circuits that mimic the cyclic shifts and

polynomial arithmetic required in the description of cyclic

codes. Using the properties of cyclic codes, the remainder

b(x) can be obtained in a linear (n-k)-stage shift register with

feedback connections corresponding to the coefficients of the

generator polynomial g(x) = 1 + g1x + g2x
2
 + ... + gn-k-1x

n-k-1
 +

x
n-k

.

b0 b1 b2 bn-k-1

g1 g2 gn-k-1

x
n-k

 i(x)

c(x)

S1

S2

1

2
Figure 1. Encoding circuit for a (n, k) BCH code

The encoder shown in Figure 1 operates as follows

 For clock cycles 1 to k, the information bits are

transmitted in unchanged form (switch S2 in position 2)

and the parity bits are calculated in the LFSR (switch S1 is

on).

Implementation of Fault Tolerant Method using

BCH Code on FPGA
Mahadevaswamy V. P., Sunitha S. L., B. N. Shobha

http://en.wikipedia.org/wiki/System

Implementation of Fault Tolerant Method Using BCH Code on FPGA

181

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0932082412/2012©BEIESP

 For clock cycles k+1 to n, the parity bits in the LFSR are

transmitted (switch S2 in position 1) and the feedback in

the LFSR is switch off (S1 - off).

Decoding Technique: The decoding of BCH code is

composed of three main steps that are expressed as

Calculating the syndromes, Solving the key equation and

Finding the error locations.

Figure 2. Block diagram for decoder system using BCH

code.

Using these steps identify the position of erroneous bit. All

these steps shown in the following block diagram in figure

2.Fortunately, for some BCH codes step number 2 can be

omitted. To decode BCH codes in this work, three different

strategies have been employed, for Single Error Correcting,

Double Error Correcting and Triple and More Error

Correcting BCH codes.

 Regarding step 1, the calculation of the syndromes is

identical for all BCH codes. For Single Error Correcting

codes step number 2 - solving the key equation - can be

omitted, as a syndrome gives rise to the error location

polynomial coefficient. For Double Error Correcting codes

step number two can also be omitted but the error location

algorithm is rather more complicated. Finally, when

implementing the TMEC decoding algorithm all three steps

must be carried out, where step 2 - the solution of the key

equation is the most complicated.

II. IMPLEMENTATION OF BCH CODE

As shown in figure 3. From the Algorithm we generate RTL

(Register transfer level) code. This implies that our Verilog

code describes how data is transformed as it is passed from

register to register. The transforming of the data is performed

by the combinational logic that exists between the registers.

RTL code also applies to pure combinational logic.

Figure 3. Implementation Block Diagram of 32-bit Fault

Tolerant ALU Methods Using BCH code on FPGA

The Design verification is an important aspect of each work

design. Before implementing circuit in the target device.

Functional simulation can be done after a Verilog file has

been created and synthesized. Functional simulation gives

information about the logic operation of the circuit. It does not

provide any information about timing delays. On the other

hand, timing simulation will tell you how fast signals travel

through the gates and how fast the overall circuit can be

operated.

In order to do a timing simulation, one needs to implement

the design in a specific target device. The timing Verification

will give you detailed information about the time it takes for a

signal to pass from one gate to the other (gate delay) and gives

information on the circuit worst-case conditions. The total

delay of a complete circuit will depend on the number of gates

the signal sees and on the way the gates have been placed in

the FPGA or CPLD. Then we perform the power analysis to

verify the reduction in power.

III. RESULTS

The fault tolerant ALU has been implemented in

XC3S400 from Spartan-3 FPGA family and the system has

been simulated on Modelsim 6.2b and its performance has

been verified by ISE 13.1i. The Figure 4 shows the

simulation results. In the comparison of the previous

methods with using the BCH code and TMR, the result

implies that the performance of the proposed fault tolerant

ALU algorithm, an encoding and decoding block have

partially degraded. This is due to the delay of the number of

XOR gates in serial form in codec circuits.

Moreover, as the number of error bits increases, the time

for error correction may take longer. In the TMR method the

delay is occurred in the voter scheme, then the performance

is not deeply affected and it is constant with the number of

bits to be detected. In comparison with area penalty of

methods, 32-bit fault tolerant ALU using BCH code is a

better choice in terms of area as compared to TMR and

Residue code. This is due to the fault tolerant method for

32-bit ALU using TMR with single or triplicated voting

need single voting scheme or tripled voter and two extra

32-bit ALU which has been increased the hardware

overhead by 202% and 208% respectively. In comparison

with fault tolerant method using Residue code, we

need Hardware duplication for boolean operations, residue

codes for arithmetic operation and extra 32-bit ALU which

has been increased the hardware overhead by 148.9%.

However, in comparison with fault tolerant method using

BCH code, we need encoding and decoding block then

the hardware overhead is 70 to 75%, which causes that the

overall cost and power consumption will get reduces. Thus our

fault tolerant hardware overhead has lower hardware and

multiple error correction when compared to the others

technique of TMR and Residue code.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

182

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0932082412/2012©BEIESP

Table 1 shows the performance status

 The Table 1 shows the performance status of BCH code like

project file, module name, target device, project version,

design goal and also it gives utilization summary. Our project

uses 312 slice registers among 5472 and also it uses 516 slice

LUTs among 10944. It uses 141 bounded IOBs among 240. It

uses 58% bounded IO blocks and overall hardware overhead

of BCH Code is 73%. Its performance has been verified by

ISE 13.1i.

Figure 4. Shows the simulation results

The fault tolerant ALU has been implemented in XC3S400

from Spartan-3 FPGA family and the system has been

simulated on Modelsim 6.2b and its performance has been

verified by ISE 13.1i. The figure 4 shows the simulation

results. In the comparison of the previous methods with using

the BCH code and Triple Modular Redundancy, the result

implies that the performance of the proposed fault tolerant

ALU algorithm, an encoding and decoding block have

partially degraded. This is due to the delay of the number of

XOR gates in serial form in codec circuits.

IV. CONCLUSION

The work describes a new implementation of the ALU for

BCH code .We also compared our 32-bit fault tolerant ALU

by using a (63, 36) BCH code with the other Fault tolerant

methods (Residue code, Triple Modular Redundancy with

single voting scheme and Triple Modular Redundancy with

triplicated voting method).

In the comparisons, for instance, fault tolerant method

using BCH shows 70 to 75% hardware overhead. The

implementation provides a high level of fault tolerance with

relatively and small hardware penalty. Further, the proposed

system has been simulated on Modelsim 6.2b and its

performance has been verified by ISE 13.1i. The results

indicate any five bits error in any position of 32-bit input

registers of Arithmetic Logic Unit would be corrected.

REFERENCES

1. S.Bourdarie and M.Xapsos, senior member, IEEE, “The near earth

space radiation environment”, IEEE Transaction on Nuclear Science,

August, 2008.

2. Veeravalli, V.S. “Fault tolerant Arithmetic and Logic Unit”,

IEEE international conference, Rutgers State Univ. of New Jersey,

Piscataway, NJ, USA, March, 2009.

3. R.Hentschke, F.Marques, F.Lima, L.Carro et al. “Analyzing area and

performance p e n a l t y o f protecting different digital modules

with Hammnig code and Triple Modular redundancy”. IEEE

International Conference on Integrated Circuits and Systems Design,

2002.

4. Fernanda Lima Kastensmidt, L.Carro, R.Reis, “Fault tolerant

techniques for SRAM- Based FPGA” June, 2006.

5. Israel Koren and C.Mani K rishna. “Fault- Tolerant System”.Morgan

Kaufmann Publishers 2007.

6. W.W. Peterson, “Encoding and error-correction procedures for the

Bose-Chaudhuri Codes”, IRE Trans. Inf. Theory, IT-6, pp. 459-470,

September 1960.

7. Lin, Shu, and Daniel J. Costello, Jr., “Error Control Coding:

Fundamentals and Applications”, Englewood Cliffs, NJ, Prentice-

Hall, 1983.

8. Vahid Khorasani, B.Vousoghi et al. “Des ign in g a secure 32-bit ALU

using (63, 36) BCH code”, Worldcomp conference, July, 2011.

AUTHORS PROFILE

Mahadevaswamy V. P., was born in Shivapura,

Mysore, in 1982. I received the B.E. degree in ECE

from VTU, Belgaum, Karnataka, in 2008 and M.Tech

degree in VLSI Design and Embedded systems from

VTU, Belgaum in 2012,

