
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

194

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0939082412/2012©BEIESP

Abstract– Using pattern as proved solution helps to achieve

SOA strategic goals. Maturity models are parental framework for

SOA roadmaps, and Architecture is an important dimension for

maturity models. Architecture has different views, Usually

Reference architecture and pattern languages present runtime

view of architecture dimension. This paper presents pattern

language that creates allocation view for service oriented

architecture. This view shows mapping between services and

enterprise parts.

Keywords- service oriented architecture, pattern language,

reference architecture, allocation view

I. INTRODUCTION

In recent years different computing models such as cloud

computing, grid computing and service computing have been

proposed. These computing models can be use for

improvement in IT resource usage. Business and IT alignment,

cost reduction, organization agility and workload reduction

are some of strategic goals in service oriented computing.

SOA acceptance is a complex process and there are

different roadmaps for it. SOA maturity models with the aim

of clarifying the SOA confusion, offers a parental framework

for SOA roadmaps [1]. OSIMM is a maturity model that is

standard and independent from any vendor and relatively has

coverage for all aspects of SOA adaption process. Maturity

levels in this model are based on service integration. The

seven dimensions of this model are: Business, governance,

method, architecture, application, information and

infrastructure [2]. A set of activities in maturity model

dimension should be done to achieve SOA complete solution.

OSIMM is a tool to evaluate solution in service oriented

computing.

In SOA acceptance process there are various challenges.

Inspecting root of this challenges, has determined that service

computing strategic goals in first level and in continue design

principals in next level are root of this challenges. With

implementing these design principals in method dimension,

other challenges appear and other dimensions are affected by

method dimension. These Challenges are in different

granularity. Service identification, place service in logical

domain, service orchestration and routing, service

deployment, service Meta data management, latency in

execution for loosely coupling and conform to several

standards, are some of challenges in service computing.

Proved solutions must be used to solve these challenges.

Patterns are set for this purpose. Pattern is a documented,

proved and recurrent experience. Pattern is abstraction from

proved, repeatable solution that solves one problem in

specific context [3]. Pattern catalog is a set of patterns that

solve set of challenges and pattern language is a set of related

Manuscript received September 02, 2012.

Mohammadreza Shahlaei, Department of Computer Engineering,

Science and Research Branch, Islamic Azad University, Tehran, Iran.

Seyyed Mohsen Hashemi, Department of Computer Engineering,

Science and Research Branch, Islamic Azad University, Tehran, Iran.

pattern that used for solve set of related problems. Pattern

language shows the correct meaning and usage of patterns.

Patterns and pattern languages can be used to solve

challenges in SOA but they have narrow coverage in SOA

challenges and creating a complete solution for SOA based on

them is difficult and maybe impossible.
Architecture is one of the main dimensions in OSIMM that

affect other dimensions. Main decisions in service oriented

design must be considered in architecture dimension.

Architecture in SOA documented using views that are like

software architecture. Patterns and pattern language can be

used for building views in the architecture.

One important view in architecture is allocation view that is

inspired from allocation view in software architecture. This

view show mapping between software element, and non

software element [4]. Allocation view can be used in SOA. In

this paper allocation view is constructed with pattern

language and shows the mapping between service as software

element and enterprise parts as non software element.
Second section reviews the set of pattern catalog and

pattern languages. Third section reviews architecture

dimension and some of specification. In fourth section pattern

language is presented and last section is for conclusion.

II. HISTORY OF PATTERNS IN SOA

The goal is to use patterns and pattern languages to solve

SOA challenges. Different pattern languages have been

presented for SOA, but some of them are based on specific

technology and some of them are about very fine grain

challenges that are not discussed in this section.

The pattern language that published by Arsanjani (2005) [5]

is about component integration using service encapsulation.

This pattern language is based on specific methodology in

service oriented computing. Loosely coupled service

integration is a main purpose in this pattern language. The

patterns in this pattern language place in method dimension or

architecture dimension and there is no care about governance

and business dimension.

Another instance of pattern language is one that provided

by Haritha Kilaru (2006) [6]. This pattern language is based

on software stability models. Service oriented concepts in it

are general and independent from any special implementation.

Software stability model comes in three levels. Service

oriented design principals are in first level. In next level set of

patterns are presented to realize the principals. Finally in the

third level there is ability to implement special instance for

SOA. Service oriented system that is based on this patterns,

has an effective design and architecture. This pattern

language like previous pattern language doesn't cover

business and governance dimensions. And architecture,

method and application are coverage dimensions.

Pattern catalog presented by Thomas Erl [7] pays the basic

concepts of service orientation.

Toward a Pattern Language for a Allocation

View in SOA
Mohammadreza Shahlaei, Seyyed Mohsen Hashemi

Toward a Pattern Language for Allocation View in SOA

195

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0939082412/2012©BEIESP

 This catalog is classified with four levels of architecture.

Patterns presented in this catalog, each of them are based on a

series of design principles. The main dimension is method but

furthermore there are patterns for challenges in architecture,

information and governance dimensions.

By respecting to OSIMM, pattern languages usually are

related to IT dimension of service orientation. Most of the

pattern languages focus on the methodology and architecture

dimensions and there is low coverage for business and

governance dimension. Some of dimension in OSIMM

doesn’t have special documented pattern or solutions are not

in pattern format. Patterns don’t have coverage to all

dimensions and levels in maturity model or even don’t have

full coverage for a special dimension. The patterns and

pattern languages that represented for service oriented

computing have narrow coverage for complete solution.

In the first years of the emergence of service orientation,

that is restricted to service oriented architecture and was

considered as an architectural style. The main goals in these

years are system integration and reusability. But in recent year

the goals are changed. The business and IT alignment, and full

coverage for organization requirements are strategic goals for

service orientation.

By considering patterns, it is clear that architecture

dimension is still an important dimension. Challenges in this

dimension are inspired from design principals and strategic

goals in service orientation and Main decisions in service

oriented design must be considered in architecture dimension.

For importance of architecture dimension, Next section is

about architecture dimension.

III. ARCHITECTURE DIMENSION

In this section, first part is about architecture definition and

related concepts. In second part some of reference

architectures are reviewed and last part specifies patterns role

in architecture dimension.

A. Architecture definition

Service oriented computing is a software paradigm and

SOA has root in software architecture. Therefore this part

discusses about software architecture foundations.

 Software architecture is composed of elements,

connections or relations among them, and usually some other

aspect or aspects, such as configuration, constraints or

semantics, analyses or properties, or rationale, requirements,

or stakeholders’ needs. Architecture serves as the basis for

system analysis and construction. It also is a primary vehicle

for communication among stakeholders and is a mean of

education [4].

Many systems cannot be understood by a simple

decomposition into parts and subsystems. There are plenty of

interactions between parts. They are eco systems. From a

holistic perspective, a SOA-based system is an eco system.

With a large system, it is clear that nobody is really "in

control" or "in charge" of the whole ecosystem, although there

are definite stakeholders involved, each of whom has some

control and influence over the community [9].

The view concept is emerged from this complexity. The

view is a representation of the whole system from the

perspective of a related set of concerns. Documenting

architecture is a matter of documenting the relevant views and

then adding documentation that applies to more than one view.

In the year 2000, the IEEE adopted a standard [10]. This

standard advocates creating your own views that serve the

stakeholders and their concerns and associated with your

system.

Architecture styles represent observed architecture

approaches. A style description does not generally include

detailed problem and context information as Architecture

patterns do. Styles and patterns create views in architecture.

B. Reference architecture

Reference architectures are specifications that related to

architecture dimension and are discussed in this part. They

help us to have better knowledge about pattern role in

architecture.

Reference architectures are specifications that act as

indicator for architecture maturity assessment for SOA [2].

Reference architectures are relatively complete solution.

Reference architecture models the abstract architectural

elements in the domain independent of the technologies,

protocols, and products that are used to implement the

domain.

OASIS presented a Reference architecture that is

conceptual and determines view and concepts that must be

considered in SOA architecture documentation [9].

Reference architecture that presented by open group is a

generic specification that have layers. In these layers there are

building blocks and patterns used for abstraction of the

various relationships between building blocks. Open group

claims that the Reference architecture presented by them have

end to end coverage in SOA IT aspect [8].

Reference architectures usually are in high abstraction

levels and about runtime view of SOA. However some of

them present different view for system.

C. Pattern role in architecture dimensions

For importance of architecture dimension, usually pattern

languages goal is to achieve a complete solution in

architecture dimension.

On the other hand there is a wide gap between patterns and

architecture dimension complete solution. Patterns and

pattern languages have narrow coverage for SOA solution.

Even By restricting pattern language to architecture

dimension, it cannot present complete solution for this

dimension.

But Pattern languages can create a view for architecture

documentation in SOA. Views that constructed with pattern

languages are concrete. These pattern languages and views

that created by them can be a complementary for reference

architectures.

Next section presents a special view. This view is

constructed with a pattern language.

IV. PATTERN LANGUAGE FOR ALLOCATION

VIEW

Allocation view is a view that presented in [4]. This view is

about interaction between software and non software

elements.

For example deployment style describes the mapping

between the software’s components and connectors and the

hardware of the computing platform on which the software

executes.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

196

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0939082412/2012©BEIESP

This style result view that is useful for analyzing

performance, availability, reliability, and security.

Allocation view can be useful for SOA. Pattern language

that presented in this section creates an allocation view.

Patterns of this pattern language describe the mapping

between organization parts as non software element and

service as software elements.

The pattern language creates an allocation view that can be

used for analyzing redundancy, reusability, manageability and

business service coverage.

From SOA pattern catalog that is presented with Thomas

erl [8], four patterns are selected. Figure 1 shows pattern

language of these patterns for allocation view in SOA.

First pattern is Enterprise inventory. Root challenge is that

Delivering services independently via different project teams

across an enterprise establishes a constant risk of producing

inconsistent service and architecture implementations,

compromising Recomposition opportunities. In this condition,

Services for multiple solutions can be designed for delivery

within a standardized, enterprise-wide inventory architecture

wherein they can be freely and repeatedly recomposed.

This pattern allocates all service to one organization in the

inventory template. By using this pattern and further

normalization in service identification, there is maximum

reusability and minimum redundancy in the organization

services.

But establishing a single enterprise service inventory may

be unmanageable for some enterprises, and attempts to do so

may jeopardize the success of an SOA adoption as a whole.

Therefore, Services can be grouped into manageable,

domain-specific service inventories, each of which can be

independently standardized, governed, and owned. The

pattern is named domain inventory.

This pattern is necessary pattern for allocation view and

shows the mapping between organization parts as non

software element and service as software elements. Using this

pattern, increase redundancy and reduce reusability but

increase manageability.

However Standardization disparity between domain

service inventories imposes transformation requirements and

reduces the overall benefit potential of the SOA adoption.

Fig1. Pattern language for allocation view in SOA

The Third pattern is inventory endpoint. A group of

services that delivered for a specific inventory may provide

capabilities that are useful to services outside of that

inventory. However, for security and governance reasons, it

may not be desirable to expose all services or all service

capabilities to external consumers. In this condition, abstract

the relevant capabilities into an endpoint service that acts as

an official inventory entry point, dedicated to a specific set of

external consumers.

This pattern show special relationship between patterns and

organization parts. Using this pattern increase reusability and

reduce redundancy of service in SOA.

The last pattern is Cross-Domain Utility Layer. While

domain service inventories may be required for independent

business governance, they can impose unnecessary

redundancy within utility service layers. Solution is to use a

common utility service layer can be established, spanning two

or more domain service inventories.

This pattern presents another special relationship between

service and organization parts. And this pattern increases

reusability and reduce redundancy of service in SOA.

The relation between services and organization parts is like

to message passing mechanisms. Inventory endpoint is

multicast one service to multiple organization part. In contrast,

Cross utility layer any cast one service for all organization

parts.

Based on these patterns there are three types of relations

between services and organization parts.
 Services that restrict to special domain

 Services that are share between all domains

 Service within one domain that other domain can use it

V. CONCLUSION

Architecture is an important dimension in capability

maturity model of SOA. Main decisions in service oriented

design must be considered in architecture dimension. Using

pattern languages creates confident in system design.

Therefore pattern language can improve architecture decision

quality.

Architecture is documented in multiple views. One useful

view for architecture is allocation view.

Pattern language that presented in this paper creates

allocation view. This view shows mapping between services

and organization parts.

Analyzing redundancy, reusability and manageability are

benefit of this view. Furthermore this view is basis of

establishing SOA in organizations.

REFERENCES

1. F.Meier, Service Oriented Architecture Maturity Models: A guide to

SOA Adoption, University of Skovde Sweden, 2006

2. The Open Group Service Integration Maturity Model (OSIMM),

Version 2, The Open Group, 2011

3. F. Buschmann, R. Meunier, H. Rohnert, P.Sommerlad and M.Stal.

Pattern-Oriented Software Architecture, John Wiley&Son, 1996

4. P.Clements, F.Bachmann, L.Bass, D.Garlan, J.Ivers, R.Little, P.

Merson, R.Nord & A. Stafford, Documenting Software Architectures:

Views and Beyond, Second Edition. Addison- Wesley Professional,

2010

5. A.Arsanjani, Toward a pattern language for Service Oriented

Architecture and Integration, Part 1: Build a service eco-system,2005

6. H.Kilaru , A pattern language for service-oriented architecture, San

Jose State University,2006

7. Thomas Erl, SOA Design Patterns, Prentice Hall, 2009

8. The Open Group SOA Reference Architecture, Technical Standard,

October 2010 (C104), available at:

../../../../../../../thesis/project-refrences-defence/main%20refrences/Toward%20a%20pattern%20language%20for%20Service-Oriented%20Architecture%20and%20Integration,%20Part%201%20%20Build%20a%20service%20eco-system.htm#author1

Toward a Pattern Language for Allocation View in SOA

197

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0939082412/2012©BEIESP

9. www.opengroup.org/bookstore/catalog/c104.htm.

10. The OASIS Reference Architecture for SOA, Version 1.0, OASIS

Standard, 23 April 2008, available at:

11. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf.

12. Recommended Practice for Architectural Description of Software-

Intensive Systems, 2000, IEEE Product No.: SH94869-TBR.: IEEE

Standard No. 1471-2000

AUTHORS PROFILE

Mohammadreza Shahlaei received master degree in Software Engineering

from Science and Research Branch of Islamic Azad University of Tehran.

His current research interest includes Service Oriented Computing, software

engineering Process, Software Methodology and software architecture.

Seyyed Mohsen Hashemi received the M.S degree in Computer Science

from AmirKabir University of technology (Tehran Polytechnic University)

in 2003, and the PhD degree in Computer Science from the Azad University

in 2009, Moreover he is currently Dean of the Software Engineering and

Artificial Intelligence Department Assistant Professor at Science and

Research Branch, Islamic Azad University, Tehran, IRAN. His current

research interest includes software intensive system, E-X system

(E-Commerce, E-Government, E-Business, and so on), Global Village

Service, Grid Computing, IBM SSME, Business Modeling, Agile Enterprise

Architecting through ISRUP, and Globalization Governance through IT/IS

services.

