
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

222

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0949082412/2012©BEIESP



Abstract - Prioritizing test cases enables test suites to be

scheduled in a manner that optimize the objective of reducing

effort to test exhaustively. Of various techniques/methods

available, a need is felt to further improve existing schemes. In

this paper, we propose clustering based prioritization and support

our effort with average percentage of fault detection (APFD)

measure. We target the significant test suites to get priority. Our

method can considerably help realization of overall clustering

approach.

Keywords: APFD

I. INTRODUCTION

Testing has a very vast application area; it may range from

small subroutines to very large system applications having

millions of statements. Now a day’s software is written and

used by the same organization [8]. Many organizations

believe that independent software development and operation

leads to better security and better testing. The sole objective

of testing revolves around bugs’ prevention. If test cases are

designed suitably then it may help to achieve the ultimate

goal of software quality [13]. Designing test cases is a

challenging task. Starting from familiar predicates, testing

uses predefined procedures and has predictable outcomes;

only whether or not the program passes the test is

unpredictable. Testing can and should be planned, designed,

scheduled and prioritized. Testing shows faults in code,

designing or possibly correctness. Testing proves programs

failures. Automation can be achieved in execution and

design. The central idea of prioritization is minimizing test

suites satisfying some rational, non arbitrary criteria [15].

Prioritizing in this manner entails which features of current

software are essential and the possibilities if some of features

are not taken into account. Test case prioritization schedules

test cases for regression testing in an order that attempts to

maximize some objective function. For example, testers

might wish to schedule test cases in an order that achieves

code coverage at the fastest rate possible. Minimization

technique can lower cost by reducing a test suite to a minimal

subset [16]. For instance following priority categories may

be determined for the test cases:

Priority 1. The test cases must be executed before the final

product is released to remove the critical bugs.

Priority 2. If time permits, the test cases may be executed.

Priority 3. The test cases are not important prior to the

current release. It may be tested shortly after the

release of the current software version.

Priority 4. The test case is never important, as its impact is

nearly negligible.

Such a priority scheme ensures that low priority test cases

do not create problems for software [9]. At times customers

Manuscript received September 02, 2012.

Arvind Kumar Upadhyay, Deptt. of Computer Sc. and Engg. EIT
Faridabad (HR)-India.

A. K. Misra, Deptt. of Computer Sc. and Engg, MNNIT Allahabad

(UP)-India.

demand that some important features of software be tested

and presented in the first version of software itself. There

important features become criteria. Priority can be

advertisement based because the company might have

promised about essential features to customers [5]. Fault

detection rate of a test suite reveals about the likelihood of

faults earlier. Coverage criteria should be met earlier in test

process.

II. TEST CASE PRIORITIZATION

It schedules test suites according to some criterion. The

objective of this technique is to enhance the possibility that if

the test suites are used for regression testing in the given

order, they will more closely meet some objective than they

would if they were executed in some other order.

Test case prioritization can address a wide variety of

objectives, as given below:

1. Software developers/testers intend to increase the rate of

fault detection.

2. Detecting the high-risk faults earlier in testing life cycle.

3. To increase the possibility of regression errors related to

specific code changes very early in testing process.

4. To enhance the coverage of coverable code at a faster

rate.

5. To make a system more reliable.

2.1. Prioritizing Rate of Fault Detection

For an objective, many prioritization techniques may be

applied to test suites. For instance, to attempt to meet the first

objective stated above, we may prioritize test cases in terms

of the failure rates, measured historically; of the modules

they exercise [17]. Else, we may prioritize test cases in terms

of their increasing cost-per-coverage of code components, or

in terms of their increasing cost-per-coverage of requirement

features [7]. In nutshell, the intent behind the choice of a

prioritization criterion is to increase the likelihood that the

prioritized test suite can better meet the objective than would

a random ordering of test cases. In our approach, we wish to

increase the possibility of revealing faults earlier in the

testing process. We illustrate this objective, informally, as

one of improving our test suite’s rate of fault detection: we

intend to use APFD measure [18]. The inspiration for

meeting this objective is an improved rate of fault detection

during regression testing. As it can provide faster feedback

on the system under test, or early evidence that quality goals

have not been met; it can also let debuggers begin their work

earlier than might otherwise be possible [5]. We consider

nine different test case prioritization techniques described as

following:

T1: No prioritization. Quite ironically, we begin without

any prioritisation at all [3]. But yes, the success of an

untreated test suite in meeting

an objective may depend upon

the manner in which it is

initially formulated.

Prioritizing Test Suites using Clustering

Approach in Software Testing
Arvind Kumar Upadhyay, A. K. Misra

Prioritizing Test Suites Using Clustering Approach in Software Testing

223

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0949082412/2012©BEIESP

T2: Random prioritization. For empirical studies, test

suites may be prioritised randomly.

T3: Optimal prioritization. To measure the effects of

prioritization techniques on rate of fault detection, our

empirical study utilize programs that contain known faults.

We can determine, for any test suite, which test cases

expose which faults, and thus we can determine an optimal

ordering of test cases in a test suite for maximizing that

suite’s rate of fault detection [21]. In practice, of course,

this is not a practical technique, as it requires knowledge of

which test cases will expose which faults; however, by

using it in our study, we gain insight into the success of

other practical heuristics.

T4: Total branch coverage prioritization. By

instrumenting a program, we can determine, for any test

case, the number of decisions (branches) in that program

that were exercised by that test case. We can prioritize

these test cases according to the total number of branches

they cover simply by sorting them in order of total branch

coverage achieved [14]. This prioritization can thus be

accomplished in time for programs containing branches.

T5: Additional branch coverage prioritization. Total

branch coverage prioritization schedules test cases in the

order of total coverage achieved. However, having

executed a test case and covered certain branches, more

may be gained in subsequent test cases by covering

branches that have not yet been covered[21]. Additional

branch coverage prioritization iteratively selects a test case

that yields the greatest branch coverage, then adjusts the

coverage information on subsequent test cases to indicate

their coverage of branches not yet covered, and then

repeats this process, until all branches covered by at least

one test case have been covered. Having scheduled test

cases in this fashion, we may be left with additional test

cases that cannot add additional branch coverage. We

could order these next using any prioritization technique;

in this work we order the remaining test cases using total

branch coverage prioritization[9]. Because additional

branch coverage prioritization requires recalculation of

coverage information for each unprioritized test case

following selection of each test case,

T6: Total statement coverage prioritization. Total

statement coverage prioritization is the same as total

branch coverage prioritization, except that test coverage is

measured in terms of program statements rather than

decisions.

T7: Additional statement coverage prioritization.

Additional statement coverage prioritization is the same as

additional branch coverage prioritization, except that test

coverage is measured in terms of program statements

rather than decisions [23]. With this technique too, we

require a method for prioritizing the remaining test cases

after complete coverage has been achieved, and in this

work we do this using total statement coverage

prioritization.

T8: Total fault-exposing-potential (FEP) prioritization.

Statement and branch-coverage-based prioritization

considers only whether a statement or branch has been

exercised by a test case [2]. This consideration may mask a

fact about test cases and faults: the ability of a fault to be

exposed by a test case depends not only on whether the test

case reaches (executes) a faulty statement, but also, on the

probability that a fault in that statement will cause a failure

for that test case [19]. Although any practical

determination of this probability must be an

approximation, we wished to determine whether the use of

such an approximation could yield a prioritization

technique superior in terms of rate of fault detection than

techniques based on simple code coverage.

T9: Additional fault-exposing-potential (FEP)

prioritization. Analogous to the extensions made to

total branch (or statement) coverage prioritization to

additional branch (or statement) coverage

prioritization, we extend total FEP prioritization to

create additional fault-exposing-potential (FEP)

prioritization [10]. This lets us account for the fact that

additional executions of a statement may be less

valuable than initial executions. In additional FEP

prioritization, after selecting a test case 0, we lower the

award values for all other test cases that exercise

statements exercised by 0.

The purpose of Test case prioritization lies in ordering test

cases based on a particular technique [21]. It takes into

account that if such a scheme is followed then it is more

likely to meet the objective than it would otherwise. Test

case prioritization can address a wide variety of objectives as:

1. To increase the rate of fault detection so that faults may

be revealed earlier in regression test.

2. To focus on high-risk faults and detect them earlier in

testing process.

3. To speed up the regression errors connected to code

changes as early as possible.

4. To cover code coverage in the system under test at a

faster rate.

5. To enhance reliability confidence in the system under

test at a faster rate.

III. CLUSTERING BASED PRIORITIZATION

3.1 Motivation

The total number of comparisons required for pair-wise

comparison is O(n
2
) comparisons[20]. Redundancy makes

pair-wise comparison very robust but the high cost incurred

discourages it from being applied to test case prioritization.

The maximum number of comparisons a human can make

consistently is approximately 100 [1]; above this threshold,

inconsistency grows significantly, leading to reduced

effectiveness. But to require less than 100 pair-wise

comparisons, the test suite could contain no more than 14 test

cases. In real world scenario the issue of scalability is

challenging. For example, suppose there are 1,000 test cases

to prioritize; the total number of required pair-wise

comparisons would be 499,500. Obviously it is unrealistic to

expect a human tester to provide reliable responses for such a

large number of comparisons [8]. Our approach using

K-means cluster based prioritization reduces the number of

comparisons and can be very effective. Instead of prioritizing

individual test cases, clusters of test cases are prioritized

using techniques such as clustering based prioritisation.

3.2 K-means clustering criteria

Broadly speaking, there are two methods of clustering i.e.

data can be arranged as a group of individuals or as a

hierarchy of groups. It can thereafter be established that

whether the data group belong

to some preconceived ideas or

suggest new ones [4]. Cluster

analysis groups data objects into

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

224

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0949082412/2012©BEIESP

clusters such that objects belonging to the same cluster are

similar, while those belonging to different ones are

dissimilar. Clustering techniques could be categorized into

modes Partitional or Hierarchical:

Partitional: Given a database of objects, a partitional

clustering algorithm constructs partitions of the data, where

each cluster optimizes a clustering criterion, such as the

minimization of the sum of squared distance from the mean

within each cluster [6]. The complexity of Partitional

clustering is large because it enumerates all possible

groupings and tries to find the global optimum. Even for a

small number of objects, the number of partitions is huge.

That’s why; common solutions start with an initial, usually

random, partition and proceed with its refinement. A better

practice would be to run the partitional algorithm for different

sets of initial points (considered as representatives) and

investigate whether all solutions lead to the same final

partition [13]. Partitional Clustering algorithms try to locally

improve a certain criterion. First, they compute the values of

the similarity or distance, they order the results, and pick the

one that optimizes the criterion [11]. Hence, the majority of

them could be considered as greedy-like algorithms.

Hierarchical: Hierarchical algorithms create a

hierarchical decomposition of the objects. They are either

agglomerative (bottom-up) or divisive (top-down):

(a) Agglomerative algorithms start with each object being a

separate cluster itself, and successively merge groups

according to a distance measure [14]. The clustering may

stop when all objects are in a single group or at any other

point the user wants. These methods generally follow a

greedy-like bottom-up merging.

(b) Divisive algorithms follow the opposite strategy [12].

They start with one group of all objects and successively split

groups into smaller ones, until each object falls in one cluster,

or as desired [10]. Divisive approaches divide the data

objects in disjoint groups at every step, and follow the same

pattern until all objects fall into a separate cluster. This is

similar to the approach followed by divide-and-conquer

algorithms.

K-means clustering method:

K-means clustering methods produce clusters from a set of

objects based upon the squared-error objective functions:

Being minimized [2, 3]. In the above expression, ci are the

clusters, p is a point in a cluster ci and mi the mean of cluster

ci. The mean of a cluster is given by a vector, which contains,

for each attribute, the mean values of the data objects in this

cluster, input parameter is the number of clusters, k[22]. As

an output the algorithm returns the centers, or means, of

every cluster ci, most of the times excluding the cluster

identities of individual points. The distance measure usually

employed is the Euclidean distance [4]. Both for the

optimization criterion and the proximity index, there are no

restrictions, and they can be specified according to the

application or the user’s preference. The algorithm is as

follows:

1. Select k objects as initial centers;

2. Assign each data object to the closest center;

3. Recalculate the centers of each cluster;

4. Repeat steps 2 and 3 until distribution of data objects

in clusters do not change;

The algorithm is relatively scalable.

IV. THE EXPERIMENT

4.1. Research Questions

We are interested in the following research question.

Q: How can clustering technique facilitate test case

prioritization of test suites?

Q: Can test case prioritization improve the rate of fault

detection of test suites?

4.2. Efficacy and Clustering based prioritization Measures

We apply our clustering based prioritization technique on

the famous quadratic equation problem. This problem reads

a, b, c as the three coefficients of a quadratic equation ax
2
+

bx + c =0. It determines the nature of the roots of this

equation. First, we write its procedure:

Proc roots

A. Int a, b, c;

B. D= b*b - 4*a*c;

C. If (D<0)

D. real = -b/2 * a; // imaginary roots

 D = -D;

 num = pov ((double) D, (double) 0.5);

 image = num/ (2*a);

E. else if (D==0)

F. root 1 = -b/(2*a)

 root 2 = root 1;

G. else if (D>0)

H. root 1 = (-b + sqrt (d)/2 *a ;

 root 2 = (-b - sqrt (d)/2 *a ;

I. end

Figure 1: Flow graph of quadratic equation problem

4.2.1 Cyclomatic complexity

We first draw the flow graph of the procedure of finding

roots of the quadratic equation. The flow graph has been

drawn as shown in figure 1. With the help of flow graph, we

can evaluate the cyclomatic complexity as follows:

A

B

D C

F E

G
H

Prioritizing Test Suites Using Clustering Approach in Software Testing

225

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0949082412/2012©BEIESP

1. V (G) = P+1, P is number of predicates.

 = 3+1

 = 4

2. V(G) = Number of regions +1

 = 3 + 1

 = 4

3. V(G) = e – n +2

 Where e is number edges, n is number of

 Nodes.

 = 11- 9 +2 =4

Thus we see that the cyclomatic complexity of above

problem is four.

4.2.2 Independent paths

In the above problem, the independent path would be 4,

Path 1: A- B-C-H

Path 2: A-B-D-E-H

Path 3: A-B-D-F-G-H

Path 4: A-B-D-F-A

4.2.3. Test Cases for each path:

Path 1: test case 1

 a,b,c : valid input

 expected results: D<0, imaginary roots

Path 2: test case 2

 a,b,c : valid input

 expected result : D=0 , equal roots

Path 3: test case 3

 a,b,c : valid input

 expected results : D>0, root 1 root 2 are real

Path 4 : test case 4

 a,b,c : valid input

 expected results : D is not >0, read a,b,c again

IV. RESULT & ANALYSIS

We now apply the k-means clustering method for quadratic

equation problem. For this we make use of independent paths

of 4.2.2. In this there are four paths in every path testing

criteria. Initially we took two clusters as k-value and by using

the algorithm we finally calculate that two clusters to have

following combination:

C1: path1, path2, path4

C2: path3

In our prioritization, we priorities the clusters according to

dendrogram method. So for our example the test cases would

be executed in the order: path2, path4, path1, path3, i.e. path

2 gets the highest priority and there after the sequence is

followed. In the following figure, we have shown the

dendrogram to show the prioritization of test cases.

Figure 2: Dendrogram of test cases

We there after use the APFD method to calculate

effectiveness of our method by using the formula:

APFD (average percentage of faults detected)

= 1- ((TF1 + TF2 +…….TFM)/nm) + 1/2n

Where

 TFi is the position of the first test suite T that exposes faults

i. m is the total number of faults exposed in the system or

module under T n is the total number of test cases in T.

Now, when we do not apply any clustering based

dendrogram methods for prioritization then the APFD

value is 0.5 but when we apply clustering based

dendrogram method for prioritization method then there is

significant improvement in average percentage of faults

detected and the value is 0.625.

V. CONCLUSION & FUTURE WORK

Test case prioritization involves scheduling of test cases in

an order that increases their effectiveness in meeting some

performance goals. One such goal is APFD(average

percentage of faults detected) measure that increases the

chances of finding faults earlier in the software testing

lifecycle and may facilitate the ultimate goal of software

development by improving quality. We want to use many

more techniques which help in this direction, particularly the

data mining techniques. As it is well known that test suite

development is quite expensive and more often , running an

entire suite is not possible in its entirety as it takes more time

to run and more human resources are required to actually

execute them. Our method can address this issue very

successfully.

REFERENCES

1. Gregg Rothermel, Roland H.Untch,Mary Jean Harrold,”Prioritizing
Test Cases For Regression Testing,” IEEE Transaction on Software

Engineering, Vol.27, No.10 October 2001.

2. G. J. Myers. The Art of Software Testing. Revised and Updated by
Tom Badgett and Todd M.Thomas with Corey Sandler, John Wiley &

Sons, Inc, Second Edition. 2004, pp. 1-255.

3. Boris Beizer. Software System Testing and Quality Assurance. Van
Nostrand, New York, 1984.

2 4 1 3

10

20

30

40

50

60

70

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

226

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0949082412/2012©BEIESP

4. Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold,

Inc, New York NY, 2nd edition, 1990. ISBN 0-442-20672-0.
5. Richard A. DeMillo, W. Michael McCracken, Rhonda J. Martin, and

John F. Passafiume.Software and Evaluation.Benjamin/Cummings,

Menlo Park CA, 1987.
6. Siripong Roongruangsuwan, Jirapun Daengdej,”Test Case

prioritization techniques,” Journal of theoretical and applied

informational technology,2005
7. Mao ye, boqinFeng, yao Lin 7Li Zhu. “Neural Networks Based Test

Case Selection” Proc of IEEEtransactions,2006.

8. T.Y. Chen, Pak-lok poon, t.h. Tse.”A choice Relation framework for
supporting Category-partition Test Case generation” IEEE transactions

on software Engineering, vol.29, No.7, July 2003.

9. Sebastian Elbaum, Alexey G.Malishevsky, Gregg Rothermel.”Test
Case Prioritization” IEEE transactions on software Engineering,

vol.28, No.2, February 2002.

10. Kuo –Chung Tainand Yu Lei. “A Test generation strategy for
Pairwisetesting” IEEE transactions on software Engineering, vol.28,

No.1, January 2002.

11. Christoph C. Michael, gary McGraw, Michael A. Schatz. “Generating
software test data by Evolution”. IEEE transactions on software

Engineering, vol.27, No.12, December 2001.

12. Shino yahoo & Mark Harman ,Paolo tonella & Angelo susi,

“Clustering test cases to Effective & scalable prioritisation

incorporating Expert knowledge,” ISSTA 09,July 19-23, 2009,

Chicago, USA.
13. Gregg rothermel , roland h. untch, chengyun chu, mary jean harrold, “

Test case prioritization : An Empirical study,” Proceedings of the
international conference on software maintenance, oxford ,U.K.,

September, 1999, IEEE

14. Wei-Tek Tsai and Lian Yu, Feng Zhu, Ray Paul. “Rapid embedded
system testing using verification patterns” . IEEE software 2005.

15. S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test

cases for regression testing. In International Symposium on Software
Testing and Analysis, pages 102–112. ACM Press, 2000.

16. Martina marre and Antonia Bertolino, “using spanning sets for

coverage testing”. IEEE transactions on software Engineering, vol.29,
No.11, November 2003.

17. H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled

experimentation with testing techniques: an infrastructure and its
potential impact. Empirical Software Engineering, 10 (4): 405–435,

2005.

18. H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnit Test cases: an

empirical assessment and cost-benefits analysis.Empirical Software

Engineering, 11: 33–70, 2006.

19. P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison Wesley,

Upper Saddle River, NJ, 2007.

20. S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.Prioritizing test
cases for regression testing. ACM SIGSOFT Software Engineering

Notes, 25 (5): 102–112, 2000.

21. S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: a family of empirical studies. IEEE Transactions on

Software Engineering, 28 (2): 159–182, 2002.

22. S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky.
Selecting a cost-effective test case Prioritization technique. Software

Quality Control, 12 (3): 185–210, 2004.

23. David Gustafson,”Theory and Problem of Software Egineering,”
Computing and Information science Department Kansas state
University.

