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Scattered Domination in Graphs 

Rajesh Kumar Tripathi, Minakshi Gaur 

Abstract- In this paper, we want to compute an optimal 

scattered domination for domination graph. In this paper, we 

also show optimal broadcast domination is in path P. We first 

prove that every graph has an optimal scattered domination in 

which the subset of vertices dominated by the same vertex is 

ordered in a path or a cycle. Using this, we give a polynomial 

time algorithm for computing optimal broadcast domination of 

arbitrary graphs. 

 

Keywords- Domination graph, scattered domination graph, 

path, broadcast domination of graph. 

I. INTRODUCTION 

A dominating set in a graph is a subset of the vertices of the 

graph such that every vertex of the graph either belongs to 

the dominating set or has a neighbor in the dominating set 

.A vertex outside of the dominating set is said to be 

dominated by one of its neighbors in the dominating set. The 

standard optimal domination problem seeks to find a 

dominating set of minimum cardinality. Since the 

introduction of this problem [2],[1],many domination related 

parameters have been introduced and studied , and 

domination in graphs is one of the most well known and 

widely studied subjects within graph algorithms[7]. In this 

paper, we show that, quite surprisingly, optimal broadcast 

domination is in path P. We first prove that every graph has 

an optimal scattered domination in which the subset of 

vertices dominated by the same vertex is ordered in a path or 

a cycle. Using this, we give a polynomial time algorithm for 

computing optimal broadcast domination of arbitrary 

graphs. Our algorithm computes minimum weight path in an  

auxiliary graph , and thus differs from standard methods of 

proving polynomial time bounds, like reductions to 2-SAT 

or 2-dimensional matching. 

II.  DEFINITIONS AND TERMINOLOGY 

In this chapter we work with unweighted, undirected, 

connected, and simple graphs as input graphs to our 

problem. Let G = (V, E) be a graph with 

Vn  and Em  . For any vertex Vv the 

neighborhood of v is the set  EuvuvNG  :)( . 

Similarly, for any set SvNSNVS SvG   )()(,  . 

We let G(S) denote the sub graph of G induced by S.The 

distance between two vertices u and v in G, denoted 

by ),( vudG , is the minimum number of edges on a path 

between u and v.  
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The eccentricity of a vertex v, denoted by e (v), is the largest 

distance from v to any vertex of G. The radius of G, denoted 

by rad (G), is smallest eccentricity in G. The diameter of G, 

denoted by diam (G), is the largest distance between any 

pair of vertices in G. 

A function  )(,........1,0: GdiamVf  is a scattered on 

G. The set of scattered dominators defined by f is the 

set  1)(:  vfVvV f . A broadcast is dominating if 

for every vertex Vu there is a vertex fVv such 

that )(),( vfvud  . In this case f is also called a scattered 

domination. The cost of scattered f incurred by a set 

)()( vfScisVS Svf   . Thus, )(Vc f is the total 

cost incurred by broadcast function f on G.For a vertex 

Vv  and an integer 1p , we define the ball 

),( pvBG to be the set of vertices that are the distance 

p from v in G. Thus ))(,( vfvBG is the set of all 

vertices that are dominated by v(including v itself) if 

1)( vf . We will omit the subscript G in the notation for 

balls, since a ball will always refer to the input graph G. A 

scattered domination f on G is efficient if 

 ))(,())(,( vfvBufuB  for all pairs of distinct 

vertices Vvu , .For an efficient scattered domination f on 

G, we define the domination 

graph

})))(,()))(,((:{(  vfvBufuBNuvVG Gff . 

Hence the domination can be seen as a modification of G in 

which every ball ))(,( vfvB is contracted to the single 

vertex v, and neighborhoods are preserved. Since G is 

connected and f is dominating, fG is always connected. An 

example is given in Figure1 

 
Fig.1.On the left hand side, a graph G with an efficient 

scattered domination f is shown. 
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         The optimal scattered domination problem on a given 

graph G asks to compute domination on G with the 

minimum cost. Note that if f is an optimal scattered 

domination on G = (V,E) , then )()( GradVc f  since 

one can always choose a vertex v of smallest eccentricity 

and dominate all other vertices with 

)()()().()()( vfGradVcifGradvevf f  for 

a single vertex v in G, then f is called a radial scattered 

domination. 

We now add the following results. 

In [4], Dunbar shows that every graph has an optimal 

scattered domination that is efficient. In particular, the 

following lemma is implicit from the proof of this result. 

 

Lemma1. (Dunbar et al. [4]) For any non efficient scattered 

domination f on a graph G = (V, E), there is an efficient 

scattered domination 
'f on G such that 

)()('''
VcVcandVV fff

f
  

 

Lemma 2. Let f be an efficient scattered domination on G = 

(V, E). If the domination graph fG has vertex of degree >2, 

then there is an efficient scattered domination 
'f  on G such 

that )()('''
VcVcandVV fff

f
 . 

Proof. Let v be a vertex with degree >2 in fG , and let x,y , 

and z be three of the neighbors of v in fG . By the way the 

domination graph fG  is defined, v, x , y , and z are also 

vertices in G , and they all have scattered powers 1 in f . 

Since f is efficient, 

1)()(),(1)()(),(,.1)()(),(  zfvfzvdandyfvfyvdsimilarlyxfvfxvd GGG

. Assume without loss of generality 

that )()()( zfyfxf  . If )()()( zfyfxf  then 

we construct a new 
'f on G with 

 zyxvVuverticesallforufuf ,,,\)()('  .Further

more, we let 

0)()()(

),()()()()(

'''

'





zfyfxfand

zfyfxfvfvf
 The new 

'f  is 

dominating since every vertex that was previously 

dominated by one of v, x, y, or z now dominated by v. Thus 

1)(2)(),(  zfvfvudG by our assump- tions. 

Since )(2)()(' zfvfvf  , vertex u now dominated by 

v in
'f . The cost of 

'f is the same as that of f, and the 

number of dominators in 
'f  is smaller.Let now 

)()()( zfyfxf  .As we mentioned above, there is a 

path P in G between v and z of length 1)()(  zfvf . 

Let w be a vertex on P such that the number of edges 

between w and z on P is )()()( yfxfvf  . Since f is 

efficient, f (w) = 0. We construct a new 
'f  on G such 

that  zyxwvVuverticesallforufuf ,,,,\)()('  . 

Furthermore, we let. 

),()()()()(' zfyfxfvfwf   

0)()()()( ''''  zfyfxfvfand  

By the way ),( wzdG is defined, any vertex that was 

dominated by z or v in f is now dominated by w, 

since )(),( zfwvdG  . Let u be the vertex that was 

dominated by y in f. The distance between u and 

 

fortrueissameThewbyateddonowisuThus

wfxfzfvfyf

xfzfvfyfyfxf

vfzfvfyfisGinw

.min

).()()()()(

)(2)()()()()(

)(2)()(2)(2

'





 

any vertex that was dominated by x in f since we assumed 

that )()( yfxf  . Thus 
'f is domination. Clearly, the 

cost of 
'f  and f are the same, and 

'f has fewer 

dominators. 

 Thus we have shown how to compute a new 

domination 
'f  as desired. If 

'f  is not efficient, then by 

Lemma 1 there exists an efficient domination with the same 

cost and fewer dominators, so the lemma follows.  

We now ready to state the main result of this section, on 

which our algorithm will be based. 

 

Theorem 1. For any graph G, there is an efficient optimal 

domination f on G , such that the domination graph fG is 

either a path or a cycle. 

 

Proof. Let f be any efficient optimal domination on G = 

(V,E) . If fG  has a vertex of degree>2 then by the Lemma 

2, an efficient domination 
'f on G with 

)()('''
VcVcandVV fff

f
 exists. The proofs of both 

lemmas 1 and 2 are constructive, so we know how to 

obtain
'f . As long as there are vertices of degree >2 in the 

domination graph, this process can be repeated. Since we 

always obtain a new domination graph with a strictly 

smaller number of vertices, the process has to stop after <n 

steps. Since domination graphs are connected, the theorem 

follows. 

 

Corollary 1. For any graph G = (V,E) , there is an 

efficient optimal scattered domination f on G such that 

removing the vertices of B(v,f(v)) from GF results in at 

most two connected components , for every fVv . 

 

Corollary 2. For any graph G = (V,E) , there is an efficient 

optimal domination f on G such that fVx satisfies the 

following : )))(,(\(' xfxBVGG  is connected (or 

empty), and 
'G has an efficient optimal domination 

'
''
fGthatsuchf is a path (or empty). 
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Computing an Optimal Scattered Domination  

 

By Theorem 1 we know that an efficient optimal f on G 

must exist such that fG is a path or a cycle. We will first 

give an algorithm for handling the case when fG  is a path. 

III. OPTIMAL SCATTERED DOMINATION 

WHEN THE DOMINATION GRAPH IS A 

PATH 

In this section, we want to find an efficient domination of 

minimum cost over all dominations f on G = (V, E) such 

that fG is a path. Our approach will be as follows: for each 

vertex u of G, we will compute a new graph uG , and use 

this to find the best possible domination f such that fG  is a 

path and u belongs to a ball corresponding to one of the 

endpoints of fG . We will repeat this process for every u in 

G, and choose at the end the best f ever computed. 

Given a vertex Vu , we define a directed 

graph uG with weights assigned to its vertices as follows: 

For each Vv and each )](,..,1[ Gradp , there is a 

vertex (v, p) in uG if and only if one of the following is true 

: 

 )),(\( pvBVG is connected or empty and 

),( pvBu  

 )),(\( pvBVG  has at most two connected 

components and ),( pvBu . 

Thus uG have a total of at most n.rad (G) vertices. 

Following corollaries 1 and 2, each vertex (v,p) represents 

the situation that f(v) = p in the domination f that we are 

aiming to compute . We define the weight of each vertex 

(v,p) to be p. 

The role of u is to define the “left” endpoint of the path 

that we will compute. All edges will go from “left” to 

“right”. We partition the vertex set uG into four subsets: 

  ),()),(\(|),( pvBuandconnectedispvBVGpvAu 

 

  componentsconnectedtwohaspvBVGpvBu )),(\(|),(

 

  ),()),(\(|),( pvBuandconnectedispvBVGpvCu 

 

  VpvBpvDu  ),(|),(  

For each vertex (v,p) , let ),( pvLu be the connected 

components of )),(\( pvBVG that contains u ( i.e. , the 

component to the left of B(v,p)) , and let ),( pvRu be the 

connected component of  

)),(\( pvBVG that does not contain u ( i.e. the 

component to the right of B(v,p)). Thus ),( pvLu
for 

every uu DApv ),( , and ),( pvRu
 for every 

uu DCpv ),(  . 

      The edges of uG are directed and defined as follows: a 

directed edge ),(),( qwpv  is an edge of uG if and only 

if all of the following three conditions are satisfied: 

 GinqwBpvB  ),(),(  

   ),(),( qwLandpvR uu  

 
GinqwBpvRpvBNand

pvBqwLqwBN

uG

uG

),()),()),(((

),()),(),(((




 

To restate the last requirement in plain text : B(v,p) must 

contain all neighbors of B(w,q) in ),( qwLu , and B(w,q) 

must contain all neighbors of B(v,p) in ),( pvRu . 

Lemma 3. Given G = (V,E) and a vertex u in G, let 

),(....,),(),( 2211 kk pvpvpv  be a directed path in 

uG with 
uu DApv ),( 11

and 
uukk DCpv ),( . 

Then for ki 1 , the following is 

true: ),(),(1

1 iiujj

i

j pvLpvB 

  

),(),(1 iiujj

k

ij pvRpvBand  . 

Proof. Observing that k = 1 if and only if the path contains a 

vertex of uD , in which case the lemma follows trivially. Let 

us for the rest the proof assume that 2k . 

We first show that ),(),(1

1 iiujj

i

j pvLpvB 

 by 

induction on i, starting from i = 1 and containing i = k. 

Let us consider the base cases i=1 and i=2. When i=1 we 

must show that ),( 11 pvLu , which follows trivially 

since uu DApv ),( 11 . When i =2, we need to show 

that. Since ),(),( 2211 pvpv  is an edge of uG and 

),( 11 pvLu , we know that ),()),(( 2211 pvBpvBNG  . 

By the definition of an edge of uG , we also know that 

),(),()),(( 112222 pvBpvLpvBN uG  . Thus there cannot 

exist a path between a vertex of ),( 22 pvB and a vertex of 

),( 11 pvB and the result follows since ),( 22 pvLu is not 

connected. For the induction step, assume that 

),(),(1

1 iiujj

i

j pvLpvB 

 , and we will show that 

),(),( 111   iiujj

i

j pvLpvB . Because of the edge 

),(),( 11  iiii pvpv , by the proof of Observation 1, we 

know that 

),(),(),(),( 1111 iiuiiiiuii pvRpvBandpvLpvB  

.Thus, by the induction assumption, ),( 11  ii pvB does not 

intersect with ),(1 jj

i

j pvB . Again by the induction 

assumption ),(1 jj

i

j pvB is connected and contains u. 

As a consequence, we can conclude that 

),(),( 111   iiujj

i

j pvLpvB . Now if ),( 11  iiu pvL  

contains a vertex x that does not belong to 

),(1 jj

i

j pvB then due to the 

induction assumption,  

 



 

Scattered Domination in Graphs 

282 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: D0950082412/2012©BEIESP 

there must be a path (possibly a single edge) between x and 

a vertex of ),( ii pvB whose vertices are all outside 

of ),(1 jj

i

j pvB . Consequently, ),( ii pvB must have a 

neighbor y in ),( iiu pvR such that ),( 11  ii pvBx , 

which contradicts the existence of the edge (vi, pi)   (vi+1, 

pi+1).Thus    111 ,,   iiujj

i

j pvLpvBU  and the proof of 

this part is complete. 

Showing that    iiujj

k

ij pvRpvBU ,,1 
 for ki 1  is 

completely analogous, and we skip this part. 

 

Algorithm: Minimum Path Domination-MPD 

Input: A graph G = (V,E). 

Output: An efficient broadcast domination function f of 

minimum cost on G, such that fG is a path 

Begin 

     for each vertex v in G do 

                 f(v) = 0; 

     Let P be a dummy path with W(P) = rad(G)+1; 

For each vertex u in G do 

            Compute uG with vertex sets uuuu DandCBA ,, ; 

             Find a minimum weight path uP starting in vertex 

of uu DA  and  

             ending in a vertex of uu DC  ; 

             if )()( PWPW u  then  

                    uPP  ; 

      end-for 

      for each vertex (v,p) on P do  

                f(v) = p; 

end. 

IV. OPTIMAL SCATTERED DOMINATION FOR 

ALL CASES 

Now we want to compute an optimal broadcast domination 

for any given graph G.Our approach will be as follows. Let 

x be any vertex of G. for each k between 1 and rad(G) such 

that  ),(\' kxBVGG   is connected or empty , we run 

the minimum path broadcast domination algorithm MPD on 
'G . Our algorithm for the general case is given in figure 3. 

In this way, we consider all domination f whose 

corresponding domination graphs are paths or cycles. The 

advantage of this approach is its simplicity. The 

disadvantage is that we also consider many cases that do not 

correspond to a path or a cycle, which we could have 

detected with a longer and more involve algorithm. 

However, these unnecessary cases do not decrease the 

asymptotic time bound. 

Theorem 3. Algorithm OBD computes an optimal 

domination of any given graph. 

Proof. Let G = (V,E) be the input graph . By theorem 1 and 

corollary 2, there is a vertex x in V and an integer 

)](,1[ Gradk such that the graph 

 ),(\' kxBVGG  has an efficient optimal scattered 

domination 
'f where the domination graph '

'
fG is a path , 

and that 
'f  can extended to an optimal domination f for G 

with f(x) = k, f(v) = 0 for 

)()(),( ' vfvfandvxwithkxBv  for all 

other vertices v. Algorithm MPD computes an optimal 

domination of
'G ,and since Algorithm OBD tries all 

possibilities for (x ,k ), the result follows. 

 

Algorithm: Optimal Broadcast Domination-OBD 

Input: A graph G = (V, E). 

Output: An efficient optimal broadcast domination function 

f on G. 

begin  

      opt = rad (G) +1; 

       for each vertex x in G do 

          for k = 1 to rad(G) do  

             if  ),(\' kxBVGG  is connected or empty then 

                  f = MPD(
'G ); 

                   if thenoptkkxBVc f )),(\(  

           opt = kkxBVc f )),(\( ; 

                    f(x) = k ; 

                    for each vertex v in B(x , k) \{x}do 

           end-if 

       end-if 

end. 

  

Note that although there is always an efficient optimal 

domination f such that fG is a cycle or a path, there can of 

course exist other optimal 

dominations )()('

' VcVcwithf ff
 such that 'f

G is not 

a path or a cycle, and such that 
'f is not efficient. The 

optimal broadcast domination returned by algorithm OBD 

does not necessarily correspond to a path or a cycle. 

e full paper, due to limited space here. 

V. CONCLUSION 

In this paper we have shown that the broadcast domination 

problem is solvable in polynomial time on all graphs. Our 

focus has been on polynomial time and not the best possible 

time bound. Our algorithm can be enhanced to run 

substantially faster, as explained. For further research, more 

efficient algorithms for this problem should be of interest. 
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