
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

242

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0957082412/2012©BEIESP



Abstract- Record linkage is the process of matching records

from several databases that refer to the same entities. When

applied on a single database, this process is known as

deduplication. Increasingly, matched data are becoming

important in many applications areas, because they can contain

information that is not available otherwise, or that is too costly to

acquire. Removing duplicate records in a single database is a

crucial step in the data cleaning process. and also, the complexity

of the matching process becomes one of the major challenge.

Various indexing techniques have been developed for record

linkage and deduplication. They are aimed at reducing the

number of record pairs to be compared in the matching process by

removing obvious non-matching pairs, while at the same time

maintaining high matching quality. This paper presents a survey

of variations of six indexing techniques. Their complexity is

analyzed, and their performance and scalability is evaluated

within an experimental framework using both synthetic and real

data sets.

Keywords - Data matching, data linkage, entity resolution,

index techniques, blocking, experimental evaluation, scalability.

I. INTRODUCTION

AS many businesses, government agencies and research

projects collect increasingly large amounts of data,

techniques that allow efficient processing, analyzing and

mining of such massive databases have in recent years

attracted interest from both academia and industry. One task

that has been recognized to be of increasing importance in

many application domains is the matching of records that

relate to the same entities from several databases. Often,

information from multiple sources needs to be integrated and

combined in order to improve data quality, or to enrich data

to facilitate more detailed data analysis.

The task of record linkage is now commonly used for

improving data quality and integrity, to allow re-use of

existing data sources for new studies, and to reduce costs and

efforts in data acquisition. In the health sector, for example,

matched data can contain information that is required to

improve health policies, information that traditionally has

been collected with time consuming and expensive survey

methods[5],[6]. Linked data can also help in health

surveillance systems to enrich data that is used for the

detection of suspicious patterns Statistical agencies have

employed record linkage for several decades on a routinely

basis to link census data for further analysis. Many

businesses use deduplication and record linkage techniques

with the aim to deduplicate their databases to improve data

quality or compile mailing lists, or to match their data across

organizations.

Manuscript received September 02, 2012.

Sunitha Yeddula, (M.Tech),IInd yr,cse, MITS, Madanapalle, Chittoor dist,
A.P, India,

K.Lakshmaiah, M.tech.,(Ph.D),Associate Profes- or, cse dept, MITS,

Madanapalle, Chittoor dist, A.P, India,

The problem of finding records that relate to the same

entities not only applies to databases that contain information

about people. In the field or information retrieval, it is

important to remove duplicate documents in the results

returned by search engines, in digital libraries or in automatic

text indexing systems [7],[8]. Another application of growing

interest is finding and comparing consumer products from

different online stores.

In situations where unique entity identifiers (or keys) are

available across all the databases to be linked, the problem of

matching records at the entity level becomes trivial: a simple

database join is all that is required. However, in most cases no

such unique identifiers are shared by all databases, and more

sophisticated linkage techniques are required. In commercial

processing of business mailing lists and customer databases,

record linkage is usually seen as a component of ETL

(extraction, transformation and loading) tools.

The indexing step generates candidate record pairs, while

the outputs of the comparison step are vectors containing

numerical similarity values.

Figure 1 outlines the general steps involved in the linking

of two databases. Because most real-world data are dirty and

contain noisy, incomplete and incorrectly formatted

information,

First step: in any record linkage or deduplication project is

data cleaning and standardization [1].

The main task of data cleaning and standardization is the

conversion of the raw input data into well defined, consistent

forms, as well as the resolution of inconsistencies in the way

information is represented and encoded.

Figure 1. Outline of the general record linkage process

Second step: (‘Indexing’) is the topic of this survey, in

which the indexing step generates pairs of candidate records.

These records are compared in detail in the comparison

step using a variety of comparison functions appropriate to

the content of the record fields (attributes). The next step in

the record linkage process is to classify the compared

candidate record pairs into matches, non-matches, and

possible matches, depending upon the decision model used.

If record pairs are classified into

possible matches, a clerical

review process is required where

Investigation of Techniques for Efficient &

Accurate Indexing for Scalable Record Linkage

& Deduplication
Sunitha Yeddula, K.Lakshmaiah

Database A

Database B

Similarity Vector

Classification

Matches

Evaluation

Cleaning &

Standadization

Cleaning &

Standadization

Record Pair

Comparsion

Non

Matches

Possible

Matches

Clerical

Review

Indexing

Investigation of Techniques for Efficient & Accurate Indexing for Scalable Record Linkage &

Deduplication

243

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0957082412/2012©BEIESP

these pairs are manually assessed and classified into matches

or no matches. Measuring and evaluating the quality and

complexity of a record linkage project is a final step in the

record linkage process.

II. INDEXING FOR RECORD LINKAGE &

DEDUPLICATION

When two databases, A and B, are to be matched,

potentially each record from A needs to be compared with

every record from B, resulting in a maximum number of |A| ×

|B| comparisons between two records. Similarly, when

deduplicating a singe database A, the maximum number of

possible comparisons is |A|× (|A|− 1)/2, because each record

in A potentially needs to be compared with all other records.

The performance bottleneck in a record linkage or

deduplication system is usually the expensive detailed

comparison of field (attribute) values between records,

making the naive approach of comparing all pairs of records

not feasible when the databases are large.

At the same time, assuming there are no duplicate records

in the databases to be matched, then the maximum possible

number of true matches will correspond to min(|A|, |B|).

Similarly, for a deduplication the number of unique entities in

a database is always smaller than or equal to the number of

records in it. Therefore, while the computational efforts of

comparing records increase quadratically as databases are

getting larger, the number of potential true matches only

increases linearly in the size of the databases.

It is clear that the vast majority of comparisons will be

between records that are not matches. The aim of the

indexing step is to reduce this large number of potential

comparisons by removing as many record pairs as possible

that correspond to non matches. The traditional record

linkage approach[3],[4] has employed an indexing technique

commonly called blocking[2], which splits the databases into

non-overlapping blocks, such that only records within each

block are compared with each other. A blocking criterion,

commonly called a blocking key, is either based on a single

record field (attribute), or the concatenation of values from

several fields. an important criteria for a good blocking key is

that it can group similar values into the same block. What

constitutes a ‘similar’ value depends upon the characteristics

of the data to be matched. Similarity can refer to similar

sounding or similar looking values based on phonetic or

character shape characteristics.

Several important issues need to be considered when

record fields are selected to be used as blocking keys.

 The first issue is that the quality of the values in these

fields will influence the quality of the generated candidate

record pairs. Ideally, fields containing the fewest errors,

variations or missing values should be chosen. Any error in a

field value used to generate a BKV will potentially result in

records being inserted into the wrong block, thus leading to

missing true matches.

A second issue that needs to be considered when defining

blocking keys is that the frequency distribution of the values

in the fields used for blocking keys will affect the size of the

generated blocks. Often this will be the case even after

phonetic or other encodings have been applied. The largest

blocks generated in the indexing step will dominate

execution time of the comparison step, because they will

contribute a large portion of the total number of candidate

record pairs. Therefore, it is of advantage to use fields that

contain uniformly distributed values because they will result

in blocks of equal sizes.

When blocking keys are defined, there is also a tradeoff

that needs to be considered. On one hand, having a large

number of smaller blocks will result in fewer candidate

record pairs that will be generated. This will likely increase

the number of true matches that are missed. On the other

hand, blocking keys that result in larger blocks will generate

an increased number of candidate record pairs that likely will

cover more true matches, at the cost of having to compare

more candidate pairs.

III. INDEXING TECHNIQUES

When two databases In this section, the traditional

blocking approach and five more recently developed

indexing techniques and variations of them are discussed in

more detail.

The estimated number of candidate record pairs will be

calculated for two different frequency distributions of BKVs.

The first assumes a uniform distribution of values, resulting

in each block containing the same number of records. The

second assumes that the frequencies of the BKVs follow

Zipf’s law[9], a frequency distribution that is commonly

found in data sets that contain values such as personal names.

Zipf’s law states that in a list of words ranked according to

their frequencies. Conceptually, the indexing step of the

record linkage process can be split into the following two

phases:

1) Build - All records in the database (or databases) are

read, their BKVs (blocking key value) are generated, and

records are inserted into appropriate index data structures.

For most indexing techniques, an inverted index can be used.

The BKVs will become the keys of the inverted index, and

the record identifiers of all records that have the same BKV

will be inserted into the same inverted index list. Figure 2

illustrates this for a small example data set.

Identifiers Surnames BKVs (Soundex encoding)

R1 Smith S530

R2 Miller M460

R3 Peters P362

R4 Myler M460

R5 Smyth S530

R6 Millar M460

R7 Smyth S530

R8 Miller M460

M460 P362 S530

Figure 2. Example records with surname values and their

soundex encodings used as blocking key values, and the

corresponding inverted index data structure as used for

traditional blocking.

When linking two databases,

either a separate index data

structure is built for each

R5

R7

R4

R6

R8

R2 R1 R3

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

244

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0957082412/2012©BEIESP

database, or a single data structure with common key values

is generated. For the second case, each record identifier needs

to include a flag that indicates from which database the

record originates.

2) Retrieve - For each block, its list of record identifiers is

retrieved from the inverted index, and candidate record pairs

are generated from this list. For a record linkage, all records

in a block from one database will be paired with all records

from the block with the same BKV from the other database,

while for a deduplication each record in a block will be paired

with all other records in the same block. For example, from

the block with key ‘S530’ from Figure2 the pairs (R1, R5),

(R1, R7) and (R5, R7) will be generated.

A. Traditional Blocking

This technique has been used in record linkage since the

1960s [4]. All records that have the same BKV are inserted

into the same block, and only records within the same block

are then compared with each other. Each record is inserted

into one block only (assuming a single blocking key

definition). Traditional blocking can be implemented

efficiently using a standard inverted index [9], the identifiers

of all records in the same block are retrieved and the

corresponding candidate record pairs are generated. While

traditional blocking does not have any explicit parameters,

the way blocking keys are defined will influence the quality

and number of candidate record pairs that are generated.

A major drawback of traditional blocking is that errors and

variations in the record fields used to generate BKVs will

lead to records being inserted into the wrong block. This

drawback can be overcome by using several blocking key

definitions based on different record fields, or different

encodings applied on the same record fields. A second

drawback of traditional blocking is that the sizes of the blocks

generated depend upon the frequency distribution of the

BKVs, and thus it is difficult in practice to predict the total

number of candidate record pairs that will be generated.

B. Sorted Neighbourhood Indexing

This technique was first proposed in the mid 1990s [10]. Its

basic idea is to sort the database(s) according to the BKVs,

and to sequentially move a window of a fixed number of

records w (w > 1) over the sorted values. Candidate record

pairs are then generated only from records within a current

window.

1) Sorted Array Based Approach

In this first approach, as originally proposed, the BKVs are

inserted into an array that is sorted alphabetically. The

window is then moved over this sorted array and candidate

record pairs are generated from all records in the current

window. In case of a record linkage, the BKVs from both

databases will be inserted into one combined array and then

sorted alphabetically, but candidate record pairs are

generated in such a way that for each pair one record is

selected from each of the two databases.

2) Inverted Index Based Approach

It is an alternative approach [11] for the sorted

neighborhood. Rather than inserting BKVs into a sorted

array, this approach utilizes an inverted index similar to

traditional blocking. The index keys contain the

alphabetically sorted BKVs, the window is moved over these

sorted BKVs, and candidate record pairs are formed from all

records in the corresponding index lists. Similar to the sorted

array based approach, most candidate record pairs are

generated in several windows, but each unique candidate pair

will again only be compared once in the comparison step. The

number of generated candidate record pairs with this

approach depends upon the number of record identifiers that

are stored in the inverted index lists.

3) Adaptive Sorted Neighbourhood Approach

Recent research has looked at how the sorted

neighbourhood indexing technique based on a sorted array

can be improved. The issue of having a fixed block size w

which can result in missed true matches (because not all same

BKVs fit into one window) has been addressed through an

adaptive approach to dynamically set the window size. Due

to the adaptive nature of the approach, where block sizes are

determined by the similarities between BKVs.

C. Q-gram Based Indexing

This technique aims to allow for ‘fuzzy’ blocking, by

converting the blocking key values into lists of q-grams

(sub-strings of length q), and, based on sub-lists of these

q-gram lists, each record is inserted into several blocks

according to a Jaccard - based similarity threshold. While this

technique improves entity resolution for data that contains a

large proportion of errors and modifications, its

computational complexity makes it unsuitable for large

databases.

D. Suffix Array Based Indexing

The basic idea of this suffix array based indexing technique

[12] is to insert the blocking key values and their suffixes into

a suffix array based inverted index. A suffix array contains

strings or sequences and their suffixes in an alphabetically

sorted order. Similar to canopy clustering, each record might

be inserted into several blocks, depending upon the length of

their blocking key values. Record pairs will then be formed

from all pairs that are in the same inverted index list.

1) Robust Suffix Array Based Indexing

An improvement upon the original suffix array based

indexing technique has recently been proposed. Similar to

adaptive blocking, the inverted index lists of suffix values

that are similar to each other in the sorted suffix array are

merged. An approximate string similarity measure is

calculated for all pairs of neighboring suffix values, and if the

similarity of a pair is above a selected threshold t, then their

lists are merged to form a new larger block.

E. Canopy Clustering

This technique is based on the idea of using a

computationally cheap clustering approach to create

high-dimensional overlapping clusters, from which blocks of

candidate record pairs can then be generated[13],[14].

Clusters are created by calculating the similarities between

BKVs using measures such as Jaccard or TF-IDF/cosine.

Both of these measures are based on tokens, which can be

characters, qgrams or words. They can be implemented

efficiently using an inverted index which has tokens, rather

than the actual BKVs, as index keys.

1) Threshold Based Approach

In this originally proposed

approach [13],[14], two

Investigation of Techniques for Efficient & Accurate Indexing for Scalable Record Linkage &

Deduplication

245

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0957082412/2012©BEIESP

similarity thresholds are used to create the overlapping

clusters. All records rx that are within a loose similarity, tl, to

rc are inserted into the current cluster (e.g. all records with tl

≤ sJ). Of these, all records that are within a tight similarity

threshold tt (with tt ≥ tl), will be removed from the pool of

candidate records. This process of randomly selecting a

centroid record rc, calculating the similarities between this

and all other records in the pool, and inserting records into

clusters, is repeated until no candidate records are left in the

pool. If tl = tt, the clusters will not be overlapping, which

means each record will be inserted into one cluster only. If

both tl = 1 and tt = 1 (i.e. exact similarity only), canopy

clustering will generate the same candidate record pairs as

traditional blocking.

2) Nearest Neighbour Based Approach

An alternative to using two thresholds is to employ a

nearest neighbor based approach to create the overlapping

clusters. The idea is to replace the two threshold parameters,

tl and tt, with two nearest neighbour parameters, nl and nt

(with nl ≥ nt). The first parameter, nl, corresponds to the

number of record identifiers that are inserted into each

cluster, while nt is the number of record identifiers that are

removed from the pool of candidate records in each step of

the algorithm. Similar to the threshold based approach, the

process of creating overlapping clusters starts by randomly

selecting a record rc from the pool of initially all records.

Similarities are then calculated between the rc and the records

rx that have tokens in common in the inverted index. The nl

records closest to rc are inserted into the current cluster, and

of these the nt records closest to rc are removed from the

pool.

This approach will result in all clusters containing nl record

identifiers, independently of the frequency distribution of the

BKVs. Therefore, blocks of uniform size will be created,

allowing the calculation of the number of generated record

pairs. The number of clusters only depends upon the number

of records in the database(s) to be matched or deduplicated,

and the values of nl and nt. The number of clusters generated

corresponds to nA/nt and nB/nt, respectively, and each

cluster will contain nl records.

F. String-Map Based Indexing

This indexing technique [15] is based on mapping BKVs to

objects in a multi-dimensional euclidean space, such that the

distances between pairs of strings are preserved. Any string

similarity measure that is a distance function can be used in

the mapping process. Groups of similar strings are then

generated by extracting objects in this space that are similar

to each other. The approach is based on a modification of the

FastMap algorithm, called StringMap that has a linear

complexity in the number of strings to be mapped. Similar to

canopy clustering based indexing; overlapping clusters can

be extracted from the multidimensional grid index. An object

(referring to a BKV) is randomly picked from the pool of

(initially all) objects in the grid based index, and the objects

in the same, as well as in neighbouring grid cells, are

retrieved from the index. Similar to canopy clustering, either

two thresholds, tl and tt, or the number of nearest neighbours,

nl and nt, can be used to insert similar objects into clusters,

and remove objects from the pool with a similarity larger than

tt, or that are the nt nearest objects to the centroid object.

IV. EXPERIMENTAL EVALUATIONS

The aim of the experiments conducted was to evaluate the

presented indexing techniques within a common framework,

to answer questions such as: How do parameter values and

the choice of the blocking key influence the number and

quality of the candidate record pairs generated? How do

indexing techniques perform with different types of data?

Which indexing techniques show better scalability to larger

databases?

A. Test Data Sets

Two series of experiments were conducted, the first using

four ‘real’ data sets that have previously been used by the

record linkage research community, and the second using

artificial data sets. Table 3 summarizes these data sets. The

aim of the first series of experiments was to investigate how

different indexing techniques are able to handle various types

of data, while the second series was aimed at investigating the

scalability of the different indexing techniques to larger data

sets. The first three ‘real’ data sets were taken from the

Second String toolkit1. ‘Census’ contains records that were

generated by the US Census Bureau based on real census

data; ‘Cora’ contains bibliographic records of machine

learning publications; and ‘Restaurant’ contains records

extracted from the Fodor and Zagat restaurant guides. The

‘CDDB’ data set contains records of audio CDs, such as their

title, artist, genre and year. The true match status of all record

pairs is available in all four data sets.

Artificial data sets were generated using the Febrl data

generator. This generator first creates original records based

on frequency tables that contain real name and address

values, as well as other personal attributes; followed by the

generation of duplicates of these records based on random

modifications.

In Table 1, the data sets used in experiment are artificial

data sets containing 1000, 5000, 10000, 50000 and 100000

records, respectively, were generated.

Table 1

Data sets used in experiments.
Data set

name

Task Number of

records

Total number

of true

matches

Census Linkage 544+479 390

Restaurant Deduplication 820 108

Cora Deduplication 1560 19145

CDDB Deduplication 9763 607

Clean Linkage 1000-100000 200-20000

Dirty Linkage 1000-100000 400-40000

As shown in Table, two series of artificial data sets were

created. The ‘Clean’ data contain 80% original and 20%

duplicate records, with up to three duplicates for one original

record, a maximum of one modification per attribute, and a

maximum of three modifications per record. The ‘Dirty’ data

contain 60% original and 40% duplicate records, with up to

nine duplicates per original record, a maximum of three

modifications per attribute, and a maximum of ten

modifications per record.

B. Quality and Complexity Measures

Four measures are used to assess the complexity of the

indexing step and the quality of

the resulting candidate record

pairs [9], [10]. The total number

of matched and non-matched

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

246

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D0957082412/2012©BEIESP

record pairs are denoted with nM and nN, respectively, with

nM + nM = nA × nB for the linkage of two databases, and nM

+ nN = nA(nA − 1)/2 for the deduplication of one database.

The number of true matched and true non-matched candidate

record pairs generated by an indexing technique is denoted

with sM and sN, respectively, with sM + sN ≤ nM + nN.

The reduction ratio, RR = 1.0− (sM+sN) / (nM+nN),

measures the reduction of the comparison space, i.e. the

fraction of record pairs that are removed by an indexing

technique. The higher the RR value, the less candidate record

pairs are being generated.

Table 2

The label used in the result figures, the number of different

parameter setting evaluated, and the run-times in

milli-seconds per candidate pair required to build each of the

evaluated indexing techniques.

Indexing
techniques

Label used
in figures

No. of
settings

Time in milli-seconds per candidate record pair

Minimum Median Average
Maximu

m

Traditional

blocking
TB1o 1 0.002 0.585 0.521 0.986

Sorted neighborhood

Array based SorAr 5 0.011 0.059 0.081 0.352

Inverted Index SorII 5 0.002 0.031 0.275 3.032

Adaptive AdSor 8 0.002 0.952 1.228 6.721

Q-Gram

Q-gram based
indexing

QGr 4 0.005 2.118 1270.716
193454.6

11

Canopy clustering

Threshold CaTh 8 0.003 4.252 38.194 440.265

Nearest

Neighborhood
CaNN 8 0.005 1.045 1.912 19.127

String map

Threshold STMTh 32 0.004 0.488 21.715 466.890

Nearest

Neighborhood
StMNN 32 0.018 2.033 25.254 392.322

Suffix Array

Suffix Array SuAr 6 0.024 1.115 12.493 264.967

Suffix Array

With Sub

Strings

SuArSu 6 0.015 2.542 18.188 338.102

Robust RoSuA 48 0.009 0.334 0.456 12.588

However, reduction ratio does not take the quality of the

generated candidate record pairs into account (how many are

true matches or not). Pairs completeness, PC = sM+nM , is

the number of true matched candidate record pairs generated

by an indexing technique divided by the total number of true

matched pairs. Finally, pairs quality, PQ = sM/sM+sN , is the

number of true matched candidate record pairs generated by

an indexing technique divided by the total number of

candidate pairs generated. A high PQ value means an

indexing technique is efficient and generates mostly true

matched candidate pairs.

V. CONCLUSION

The number of candidate record pairs generated by these

techniques has been estimated and their efficiency and

scalability has been evaluated using various data sets. These

experiments highlight that one of the most important factors

for efficient and accurate indexing for record linkage and

deduplication is the proper definition of blocking keys.

Because training data in the form of known true matches and

non-matches is often not available in real world applications.

The indexing techniques in this investigation are heuristic

approaches that aim to split the records in a database into

blocks such that matches are inserted in to the same block and

non-matches in to different blocks.

ACKNOWLEDGMENT

Students work is incomplete until they thank the almighty

& his teachers. I sincerely believe in this and would like to

thank Mr.K. Lakshmaiah, M.Tech (Ph.D), Associate prof., of

the department of Computer Science & Engineering, MITS

Madanapalle, for his encouragement, motivation and for

guiding me to write this paper. Also I am grateful to

Dr.S.Murali Krishna, M.Tech., Ph.D. Prof., in CSE and Head

Of the Department of Computer Science, MITS,

Madanapalle .

REFERENCES

1. T. Churches, P. Christen, K. Lim, and J. X. Zhu, “Preparation of name

and address data for record linkage using hidden Markov models,”
BioMed Central Medical Informatics and Decision Making, vol. 2, no.

9, 2002.

2. R. Baxter, P. Christen, and T. Churches, “A comparison of fast
blocking methods for record linkage,” in ACM SIGKDD’03 workshop

on Data Cleaning, Record Linkage and Object Consolidation,

Washington DC, 2003, pp. 25–27.
3. W. E. Winkler, “Overview of record linkage and current research

directions,” US Bureau of the Census, Tech. Rep. RR2006/02, 2006.

4. . P. Fellegi and A. B. Sunter, “A theory for record linkage,” Journal of
the American Statistical Society, vol. 64, no. 328, 1969.

5. D. E. Clark, “Practical introduction to record linkage for injury

research,” Injury Prevention, vol. 10, pp. 186–191, 2004.
6. C. W. Kelman, J. Bass, and D. Holman, “Research use of linked health

data – A best practice protocol,” Aust NZ Journal of Public Health, vol.

26, pp. 251–255, 2002
7. H. Hajishirzi, W. Yih, and A. Kolcz, “Adaptive near-duplicate

detection via similarity learning,” in ACM SIGIR’10, Geneva,

Switzerland, 2010, pp. 419–426.
8. W. Su, J. Wang, and F. H. Lochovsky, “Record matching over query

results from multiple web databases,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 4, pp. 578–589, 2009.
9. I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes, 2nd ed.

Morgan Kaufmann, 1999.

10. M. A. Hernandez and S. J. Stolfo,“The merge/purge problem for large
databases,” in ACM SIGMOD’95, San Jose, 1995.

11. P. Christen, “Towards parameter-free blocking for scalable record

linkage, “Department of Computer Science, The Australian National
University, Canberra, Tech. Rep. TR-CS-07-03, 2007.

12. A. Aizawa and K. Oyama, “A fast linkage detection scheme for

multi-source information integration,” in WIRI’05, Tokyo, 2005.
13. W. W. Cohen and J. Richman, “Learning to match and cluster large

high-dimensional data sets for data integration,” in ACM SIGKDD’02,

Edmonton, 2002, pp. 475–480.
14. A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of

high-dimensional data sets with application to reference matching,” in

ACM SIGKDD’00, Boston, 2000, pp. 169–178.
15. L. Jin, C. Li, and S. Mehrotra, “Efficient record linkage in large data

sets,” in DASFAA’03, Tokyo, 2003, pp.137.

