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 

Abstract- Record linkage is the process of matching records 

from several databases that refer to the same entities. When 

applied on a single database, this process is known as 

deduplication. Increasingly, matched data are becoming 

important in many applications areas, because they can contain 

information that is not available otherwise, or that is too costly to 

acquire. Removing duplicate records in a single database is a 

crucial step in the data cleaning process. and also, the complexity 

of the matching process becomes one of the major challenge.  

Various indexing techniques have been developed for record 

linkage and deduplication. They are aimed at reducing the 

number of record pairs to be compared in the matching process by 

removing obvious non-matching pairs, while at the same time 

maintaining high matching quality. This paper presents a survey 

of variations of six indexing techniques. Their complexity is 

analyzed, and their performance and scalability is evaluated 

within an experimental framework using both synthetic and real 

data sets. 
 

Keywords - Data matching, data linkage, entity resolution, 

index techniques, blocking, experimental evaluation, scalability. 

I. INTRODUCTION 

AS many businesses, government agencies and research 

projects collect increasingly large amounts of data, 

techniques that allow efficient processing, analyzing and 

mining of such massive databases have in recent years 

attracted interest from both academia and industry. One task 

that has been recognized to be of increasing importance in 

many application domains is the matching of records that 

relate to the same entities from several databases. Often, 

information from multiple sources needs to be integrated and 

combined in order to improve data quality, or to enrich data 

to facilitate more detailed data analysis.  

The task of record linkage is now commonly used for 

improving data quality and integrity, to allow re-use of 

existing data sources for new studies, and to reduce costs and 

efforts in data acquisition. In the health sector, for example, 

matched data can contain information that is required to 

improve health policies, information that traditionally has 

been collected with time consuming and expensive survey 

methods[5],[6]. Linked data can also help in health 

surveillance systems to enrich data that is used for the 

detection of suspicious patterns Statistical agencies have 

employed record linkage for several decades on a routinely 

basis to link census data for further analysis. Many 

businesses use deduplication and record linkage techniques 

with the aim to deduplicate their databases to improve data 

quality or compile mailing lists, or to match their data across 

organizations.  
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The problem of finding records that relate to the same 

entities not only applies to databases that contain information 

about people. In the field or information retrieval, it is 

important to remove duplicate documents in the results 

returned by search engines, in digital libraries or in automatic 

text indexing systems [7],[8]. Another application of growing 

interest is finding and comparing consumer products from 

different online stores.  

In situations where unique entity identifiers (or keys) are 

available across all the databases to be linked, the problem of 

matching records at the entity level becomes trivial: a simple 

database join is all that is required. However, in most cases no 

such unique identifiers are shared by all databases, and more 

sophisticated linkage techniques are required. In commercial 

processing of business mailing lists and customer databases, 

record linkage is usually seen as a component of ETL 

(extraction, transformation and loading) tools.  

The indexing step generates candidate record pairs, while 

the outputs of the comparison step are vectors containing 

numerical similarity values. 

Figure 1 outlines the general steps involved in the linking 

of two databases. Because most real-world data are dirty and 

contain noisy, incomplete and incorrectly formatted 

information,  

First step: in any record linkage or deduplication project is 

data cleaning and standardization [1].  

The main task of data cleaning and standardization is the 

conversion of the raw input data into well defined, consistent 

forms, as well as the resolution of inconsistencies in the way 

information is represented and encoded. 

                 
Figure 1. Outline of the general record linkage process 

Second step: (‘Indexing’) is the topic of this survey, in 

which the indexing step generates pairs of candidate records. 

These records are compared in detail in the comparison 

step using a variety of comparison functions appropriate to 

the content of the record fields (attributes). The next step in 

the record linkage process is to classify the compared 

candidate record pairs into matches, non-matches, and 

possible matches, depending upon the decision model used. 

If record pairs are classified into 

possible matches, a clerical 

review process is required where 
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these pairs are manually assessed and classified into matches 

or no matches. Measuring and evaluating the quality and 

complexity of a record linkage project is a final step in the 

record linkage process. 

II. INDEXING FOR RECORD LINKAGE & 

DEDUPLICATION 

When two databases, A and B, are to be matched, 

potentially each record from A needs to be compared with 

every record from B, resulting in a maximum number of |A| × 

|B| comparisons between two records. Similarly, when 

deduplicating a singe database A, the maximum number of 

possible comparisons is |A|× (|A|− 1)/2, because each record 

in A potentially needs to be compared with all other records. 

The performance bottleneck in a record linkage or 

deduplication system is usually the expensive detailed 

comparison of field (attribute) values between records, 

making the naive approach of comparing all pairs of records 

not feasible when the databases are large. 

At the same time, assuming there are no duplicate records 

in the databases to be matched, then the maximum possible 

number of true matches will correspond to min(|A|, |B|). 

Similarly, for a deduplication the number of unique entities in 

a database is always smaller than or equal to the number of 

records in it. Therefore, while the computational efforts of 

comparing records increase quadratically as databases are 

getting larger, the number of potential true matches only 

increases linearly in the size of the databases.  

It is clear that the vast majority of comparisons will be 

between records that are not matches. The aim of the 

indexing step is to reduce this large number of potential 

comparisons by removing as many record pairs as possible 

that correspond to non matches. The traditional record 

linkage approach[3],[4]  has employed an indexing technique 

commonly called blocking[2], which splits the databases into 

non-overlapping blocks, such that only records within each 

block are compared with each other. A blocking criterion, 

commonly called a blocking key, is either based on a single 

record field (attribute), or the concatenation of values from 

several fields. an important criteria for a good blocking key is 

that it can group similar values into the same block. What 

constitutes a ‘similar’ value depends upon the characteristics 

of the data to be matched. Similarity can refer to similar 

sounding or similar looking values based on phonetic or 

character shape characteristics. 

Several important issues need to be considered when 

record fields are selected to be used as blocking keys. 

 The first issue is that the quality of the values in these 

fields will influence the quality of the generated candidate 

record pairs. Ideally, fields containing the fewest errors, 

variations or missing values should be chosen. Any error in a 

field value used to generate a BKV will potentially result in 

records being inserted into the wrong block, thus leading to 

missing true matches. 

A second issue that needs to be considered when defining 

blocking keys is that the frequency distribution of the values 

in the fields used for blocking keys will affect the size of the 

generated blocks. Often this will be the case even after 

phonetic or other encodings have been applied. The largest 

blocks generated in the indexing step will dominate 

execution time of the comparison step, because they will 

contribute a large portion of the total number of candidate 

record pairs. Therefore, it is of advantage to use fields that 

contain uniformly distributed values because they will result 

in blocks of equal sizes. 

When blocking keys are defined, there is also a tradeoff 

that needs to be considered. On one hand, having a large 

number of smaller blocks will result in fewer candidate 

record pairs that will be generated. This will likely increase 

the number of true matches that are missed. On the other 

hand, blocking keys that result in larger blocks will generate 

an increased number of candidate record pairs that likely will 

cover more true matches, at the cost of having to compare 

more candidate pairs.  

III. INDEXING TECHNIQUES 

When two databases In this section, the traditional 

blocking approach and five more recently developed 

indexing techniques and variations of them are discussed in 

more detail. 

The estimated number of candidate record pairs will be 

calculated for two different frequency distributions of BKVs. 

The first assumes a uniform distribution of values, resulting 

in each block containing the same number of records. The 

second assumes that the frequencies of the BKVs follow 

Zipf’s law[9], a frequency distribution that is commonly 

found in data sets that contain values such as personal names. 

Zipf’s law states that in a list of words ranked according to 

their frequencies. Conceptually, the indexing step of the 

record linkage process can be split into the following two 

phases: 

1) Build -    All records in the database (or databases) are 

read, their BKVs (blocking key value) are generated, and 

records are inserted into appropriate index data structures. 

For most indexing techniques, an inverted index can be used. 

The BKVs will become the keys of the inverted index, and 

the record identifiers of all records that have the same BKV 

will be inserted into the same inverted index list. Figure 2 

illustrates this for a small example data set. 

 

Identifiers Surnames BKVs (Soundex encoding) 

R1 Smith S530 

R2 Miller M460 

R3 Peters P362 

R4 Myler M460 

R5 Smyth S530 

R6 Millar M460 

R7 Smyth S530 

R8 Miller M460 

 

M460 P362 S530 

 

 

 
Figure 2. Example records with surname values and their 

soundex encodings used as blocking key values, and the 

corresponding inverted index data structure as used for 

traditional blocking.  

 

When linking two databases, 

either a separate index data 

structure is built for each 

R5 

R7 

R4 

R6 

R8 

R2 R1 R3 
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database, or a single data structure with common key values 

is generated. For the second case, each record identifier needs 

to include a flag that indicates from which database the 

record originates. 

2) Retrieve - For each block, its list of record identifiers is 

retrieved from the inverted index, and candidate record pairs 

are generated from this list. For a record linkage, all records 

in a block from one database will be paired with all records 

from the block with the same BKV from the other database, 

while for a deduplication each record in a block will be paired 

with all other records in the same block. For example, from 

the block with key ‘S530’ from Figure2 the   pairs (R1, R5), 

(R1, R7) and (R5, R7) will be generated. 

A.   Traditional Blocking 

This technique has been used in record linkage since the 

1960s [4]. All records that have the same BKV are inserted 

into the same block, and only records within the same block 

are then compared with each other. Each record is inserted 

into one block only (assuming a single blocking key 

definition). Traditional blocking can be implemented 

efficiently using a standard inverted index [9], the identifiers 

of all records in the same block are retrieved and the 

corresponding candidate record pairs are generated. While 

traditional blocking does not have any explicit parameters, 

the way blocking keys are defined will influence the quality 

and number of candidate record pairs that are generated.  

A major drawback of traditional blocking is that errors and 

variations in the record fields used to generate BKVs will 

lead to records being inserted into the wrong block. This 

drawback can be overcome by using several blocking key 

definitions based on different record fields, or different 

encodings applied on the same record fields. A second 

drawback of traditional blocking is that the sizes of the blocks 

generated depend upon the frequency distribution of the 

BKVs, and thus it is difficult in practice to predict the total 

number of candidate record pairs that will be generated. 

B.   Sorted Neighbourhood Indexing 

This technique was first proposed in the mid 1990s [10]. Its 

basic idea is to sort the database(s) according to the BKVs, 

and to sequentially move a window of a fixed number of 

records w (w > 1) over the sorted values. Candidate record 

pairs are then generated only from records within a current 

window. 

1)  Sorted Array Based Approach 

In this first approach, as originally proposed, the BKVs are 

inserted into an array that is sorted alphabetically. The 

window is then moved over this sorted array and candidate 

record pairs are generated from all records in the current 

window. In case of a record linkage, the BKVs from both 

databases will be inserted into one combined array and then 

sorted alphabetically, but candidate record pairs are 

generated in such a way that for each pair one record is 

selected from each of the two databases. 

2)  Inverted Index Based Approach 

It is an alternative approach [11] for the sorted 

neighborhood. Rather than inserting BKVs into a sorted 

array, this approach utilizes an inverted index similar to 

traditional blocking. The index keys contain the 

alphabetically sorted BKVs, the window is moved over these 

sorted BKVs, and candidate record pairs are formed from all 

records in the corresponding index lists. Similar to the sorted 

array based approach, most candidate record pairs are 

generated in several windows, but each unique candidate pair 

will again only be compared once in the comparison step. The 

number of generated candidate record pairs with this 

approach depends upon the number of record identifiers that 

are stored in the inverted index lists. 

3)   Adaptive Sorted Neighbourhood Approach 

Recent research has looked at how the sorted 

neighbourhood indexing technique based on a sorted array 

can be improved. The issue of having a fixed block size w 

which can result in missed true matches (because not all same 

BKVs fit into one window) has been addressed through an 

adaptive approach to dynamically set the window size. Due 

to the adaptive nature of the approach, where block sizes are 

determined by the similarities between BKVs. 

C.   Q-gram Based Indexing 

This technique aims to allow for ‘fuzzy’ blocking, by 

converting the blocking key values into lists of q-grams 

(sub-strings of length q), and, based on sub-lists of these 

q-gram lists, each record is  inserted into several blocks 

according to a Jaccard - based similarity threshold. While this 

technique improves entity resolution for data that contains a 

large proportion of errors and modifications, its 

computational complexity makes it unsuitable for large 

databases. 

D.   Suffix Array Based Indexing 

The basic idea of this suffix array based indexing technique 

[12] is to insert the blocking key values and their suffixes into 

a suffix array based inverted index. A suffix array contains 

strings or sequences and their suffixes in an alphabetically 

sorted order. Similar to canopy clustering, each record might 

be inserted into several blocks, depending upon the length of 

their blocking key values. Record pairs will then be formed 

from all pairs that are in the same inverted index list. 

1)  Robust Suffix Array Based Indexing 

An improvement upon the original suffix array based 

indexing technique has recently been proposed. Similar to 

adaptive blocking, the inverted index lists of suffix values 

that are similar to each other in the sorted suffix array are 

merged. An approximate string similarity measure is 

calculated for all pairs of neighboring suffix values, and if the 

similarity of a pair is above a selected threshold t, then their 

lists are merged to form a new larger block. 

E.  Canopy Clustering 

This technique is based on the idea of using a 

computationally cheap clustering approach to create 

high-dimensional overlapping clusters, from which blocks of 

candidate record pairs can then be generated[13],[14]. 

Clusters are created by calculating the similarities between 

BKVs using measures such as Jaccard or TF-IDF/cosine. 

Both of these measures are based on tokens, which can be 

characters, qgrams or words. They can be implemented 

efficiently using an inverted index which has tokens, rather 

than the actual BKVs, as index keys. 

 

 

 

1)   Threshold Based Approach 

In this originally proposed 

approach [13],[14], two 
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similarity thresholds are used to create the overlapping 

clusters. All records rx that are within a loose similarity, tl, to 

rc are inserted into the current cluster (e.g. all records with tl 

≤ sJ ). Of these, all records that are within a tight similarity 

threshold tt (with tt ≥ tl), will be removed from the pool of 

candidate records. This process of randomly selecting a 

centroid record rc, calculating the similarities between this 

and all other records in the pool, and inserting records into 

clusters, is repeated until no candidate records are left in the 

pool. If tl = tt, the clusters will not be overlapping, which 

means each record will be inserted into one cluster only. If 

both tl = 1 and tt = 1 (i.e. exact similarity only), canopy 

clustering will generate the same candidate record pairs as 

traditional blocking. 

2)   Nearest Neighbour Based Approach 

An alternative to using two thresholds is to employ a 

nearest neighbor based approach to create the overlapping 

clusters. The idea is to replace the two threshold parameters, 

tl and tt, with two nearest neighbour parameters, nl and nt 

(with nl ≥ nt). The first parameter, nl, corresponds to the 

number of record identifiers that are inserted into each 

cluster, while nt is the number of record identifiers that are 

removed from the pool of candidate records in each step of 

the algorithm. Similar to the threshold based approach, the 

process of creating overlapping clusters starts by randomly 

selecting a record rc from the pool of initially all records. 

Similarities are then calculated between the rc and the records 

rx that have tokens in common in the inverted index. The nl 

records closest to rc are inserted into the current cluster, and 

of these the nt records closest to rc are removed from the 

pool. 

This approach will result in all clusters containing nl record 

identifiers, independently of the frequency distribution of the 

BKVs. Therefore, blocks of uniform size will be created, 

allowing the calculation of the number of generated record 

pairs. The number of clusters only depends upon the number 

of records in the database(s) to be matched or deduplicated, 

and the values of nl and nt. The number of clusters generated 

corresponds to nA/nt and nB/nt, respectively, and each 

cluster will contain nl records.  

F. String-Map Based Indexing 

This indexing technique [15] is based on mapping BKVs to 

objects in a multi-dimensional euclidean space, such that the 

distances between pairs of strings are preserved. Any string 

similarity measure that is a distance function can be used in 

the mapping process. Groups of similar strings are then 

generated by extracting objects in this space that are similar 

to each other. The approach is based on a modification of the 

FastMap algorithm, called StringMap that has a linear 

complexity in the number of strings to be mapped. Similar to 

canopy clustering based indexing; overlapping clusters can 

be extracted from the multidimensional grid index. An object 

(referring to a BKV) is randomly picked from the pool of 

(initially all) objects in the grid based index, and the objects 

in the same, as well as in neighbouring grid cells, are 

retrieved from the index. Similar to canopy clustering, either 

two thresholds, tl and tt, or the number of nearest neighbours, 

nl and nt, can be used to insert similar objects into clusters, 

and remove objects from the pool with a similarity larger than 

tt, or that are the nt nearest objects to the centroid object.  

IV. EXPERIMENTAL EVALUATIONS 

The aim of the experiments conducted was to evaluate the 

presented indexing techniques within a common framework, 

to answer questions such as: How do parameter values and 

the choice of the blocking key influence the number and 

quality of the candidate record pairs generated? How do 

indexing techniques perform with different types of data? 

Which indexing techniques show better scalability to larger 

databases? 

A. Test Data Sets 

Two series of experiments were conducted, the first using 

four ‘real’ data sets that have previously been used by the 

record linkage research community, and the second using 

artificial data sets. Table 3 summarizes these data sets. The 

aim of the first series of experiments was to investigate how 

different indexing techniques are able to handle various types 

of data, while the second series was aimed at investigating the 

scalability of the different indexing techniques to larger data 

sets. The first three ‘real’ data sets were taken from the 

Second String toolkit1. ‘Census’ contains records that were 

generated by the US Census Bureau based on real census 

data; ‘Cora’ contains bibliographic records of machine 

learning publications; and ‘Restaurant’ contains records 

extracted from the Fodor and Zagat restaurant guides. The 

‘CDDB’ data set contains records of audio CDs, such as their 

title, artist, genre and year. The true match status of all record 

pairs is available in all four data sets. 

Artificial data sets were generated using the Febrl data 

generator. This generator first creates original records based 

on frequency tables that contain real name and address 

values, as well as other personal attributes; followed by the 

generation of duplicates of these records based on random 

modifications. 

In Table 1, the data sets used in experiment are artificial 

data sets containing 1000, 5000, 10000, 50000 and 100000 

records, respectively, were generated. 

Table 1 

Data sets used in experiments.  
Data set 

name 

Task Number of 

records 

Total number 

of true 

matches 

Census Linkage 544+479 390 

Restaurant Deduplication 820 108 

Cora Deduplication 1560 19145 

CDDB Deduplication 9763 607 

Clean Linkage 1000-100000 200-20000 

Dirty Linkage 1000-100000 400-40000 
 

As shown in Table, two series of artificial data sets were 

created. The ‘Clean’ data contain 80% original and 20% 

duplicate records, with up to three duplicates for one original 

record, a maximum of one modification per attribute, and a 

maximum of three modifications per record. The ‘Dirty’ data 

contain 60% original and 40% duplicate records, with up to 

nine duplicates per original record, a maximum of three 

modifications per attribute, and a maximum of ten 

modifications per record. 

B.   Quality and Complexity Measures 

Four measures are used to assess the complexity of the 

indexing step and the quality of 

the resulting candidate record 

pairs [9], [10]. The total number 

of matched and non-matched 
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record pairs are denoted with nM and nN, respectively, with 

nM + nM = nA × nB for the linkage of two databases, and nM 

+ nN = nA(nA − 1)/2 for the deduplication of one database. 

The number of true matched and true non-matched candidate 

record pairs generated by an indexing technique is denoted 

with sM and sN, respectively, with sM + sN ≤ nM + nN. 

The reduction ratio, RR = 1.0− (sM+sN) / (nM+nN), 

measures the reduction of the comparison space, i.e. the 

fraction of record pairs that are removed by an indexing 

technique. The higher the RR value, the less candidate record 

pairs are being generated. 

Table 2 

The label used in the result figures, the number of different 

parameter setting evaluated, and the run-times in 

milli-seconds per candidate pair required to build each of the 

evaluated indexing techniques. 
 

Indexing 
techniques 

Label used 
in figures 

No. of 
settings 

Time in milli-seconds per candidate record pair 

Minimum Median Average 
Maximu

m 

Traditional 

blocking 
TB1o 1 0.002 0.585 0.521 0.986 

Sorted neighborhood 

Array based SorAr 5 0.011 0.059 0.081 0.352 

Inverted Index SorII 5 0.002 0.031 0.275 3.032 

Adaptive AdSor 8 0.002 0.952 1.228 6.721 

Q-Gram 

Q-gram based 
indexing 

QGr 4 0.005 2.118 1270.716 
193454.6

11 

Canopy clustering 

Threshold CaTh 8 0.003 4.252 38.194 440.265 

Nearest 

Neighborhood 
CaNN 8 0.005 1.045 1.912 19.127 

String map  

Threshold STMTh 32 0.004 0.488 21.715 466.890 

Nearest 

Neighborhood 
StMNN 32 0.018 2.033 25.254 392.322 

Suffix Array 

Suffix Array SuAr 6 0.024 1.115 12.493 264.967 

Suffix Array 

With Sub 

Strings 

SuArSu 6 0.015 2.542 18.188 338.102 

Robust RoSuA 48 0.009 0.334 0.456 12.588 

 

However, reduction ratio does not take the quality of the 

generated candidate record pairs into account (how many are 

true matches or not). Pairs completeness, PC = sM+nM , is 

the number of true matched candidate record pairs generated 

by an indexing technique divided by the total number of true 

matched pairs. Finally, pairs quality, PQ = sM/sM+sN , is the 

number of true matched candidate record pairs generated by 

an indexing technique divided by the total number of 

candidate pairs generated. A high PQ value means an 

indexing technique is efficient and generates mostly true 

matched candidate pairs. 

V. CONCLUSION 

The number of candidate record pairs generated by these 

techniques has been estimated and their efficiency and 

scalability has been evaluated using various data sets. These 

experiments highlight that one of the most important factors 

for efficient and accurate indexing for record linkage and 

deduplication is the proper definition of blocking keys. 

Because training data in the form of known true matches and 

non-matches is often not available in real world applications. 

The indexing techniques in this investigation are heuristic 

approaches that aim to split the records in a database into 

blocks such that matches are inserted in to the same block and 

non-matches in to different blocks. 
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