
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

259

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0960082412/2012©BEIESP

Abstract- Changes in requirements do occur during the

software development life cycle. The changes may take place from

the initial design phase up to the implementation phase. These

change that creep during the development process pose risk to cost

and quality of the product, but at the same time provide an

opportunity to add value.

This paper discusses the requirement, volatility in requirements,

causes of requirement volatility and then the impact of

requirement volatility on Project Schedule, Project Cost, Project

Performance, Software Quality and Software Maintenance. We

also try to explore the positive implications (if any) of the

requirement changes. The purpose of this paper is to discuss

aspects related to requirement volatility.

Keywords- Requirements change; requirements management;

project management; card sorting; software evolution;

development; maintenance.

I. INTRODUCTION

Requirements are the foundation of the software

development process, as they provide the basis for estimating

costs and schedules as well as developing design and testing

specifications. So the success of any software project is

directly related to the quality of its requirements. Although an

initial set of requirements may be well documented,

requirements will change throughout the software

development lifecycle. This, constant change (addition,

deletion and modification) in requirements during the

development life cycle impacts the cost, schedule, and

quality of the resulting product [4].

Ideally, the requirements once approved by the client

should stabilize with no or very few major changes.

According to Capers Jones, requirements change (RC)

should come down to 3% in the design phase, 1% in the

coding phase and ideally 0% during testing. However

requirements change is always there but it can have very

negative affect during the later stages of software

development. For example: requirements change during the

coding and testing stage can maximize the defect density as

compared to other phase. Studies conducted by Jones have

shown that the defect rates associated with the new features

added during mid-development are about 50% greater than

those of the artifacts associated with original requirements.

[10].

There are many links in the requirements communication

chain, as illustrated in Figures 1 and 2. A breakdown in any of

these links leads to significant problems. For example, if an

analyst misunderstands stakeholder input about requirem-

ents, if important requirements information does not surface

or if an analyst and developer do not share the same

understanding about requirements, the resulting product will

not satisfy customers [2].

Manuscript received September 02, 2012.

Dr. M.P. Singh, Principal/Director, N.I.E.T, Alwar, Rajasthan, India

Rajnish Vyas, Research Scholar, Singhania University, Rajasthan, India.

Figure 1: Requirements communication links in an

information systems environment [2]

Figure 2: Requirements communication links in a

commercial software environment [2]

The inevitable outcome of requirements errors is time

consuming and costly rework, Analyst report that rework can

consume 30 to 40 percent of the total effort expended on a

software development project. Multiple studies have

indicated that roughly 50% of the defects identified on

software projects can be traced back to errors in the

requirements. One analysis of the potential return on

investment from better requirements suggests that

requirements errors can consume between 70 to 85 percent of

all project rework costs.

Figure 3 illustrates, it can cost up to 110 times more to

correct the requirements defect found in operation than it

would if the same defect had been discovered during the

requirements definition [2].

Figure 3: Requirements cost to correct a requirement

defect depending on when it is discovered [2]

Requirements Volatility in Software

Development Process
M. P. Singh, Rajnish Vyas

Requirements Volatility in Software Development Process

260

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0960082412/2012©BEIESP

This change in Requirements during the system

development is known as Requirements Volatility.

Requirements volatility often results in significant growth in

requirements size from the time of initial requirements

specification to final requirements of the system

development. Requirements volatility is an important risk in

software project success that can occur in multiple points

during the software development process. These changes

take place while the requirements are elicited, analyzed and

validated and after the system has gone into service, simply

through the software development lifecycle. These constant

changes in requirements, known as Requirements Volatility,

during the development lifecycle has great impact on the

cost, the schedule and the quality of final product. Every

phase of software development is effected by requirements

volatility. Many projects fail due to requirements volatility

and some are completed partially [1]. Though, Requirements

volatility can not be overcome fully but can be minimized.

The requirements volatility has great impact for the success

of software development. The chaos report says that the

requirements volatility has 11% in total percentage causes in

failures of software project [1]. Requirements volatility will

affect the project schedule and cost overrun, project

performance, and project quality. In fact every phase of

software development is effected by requirements volatility.

Software development is considered to be a dynamic

process where demands for changes seem to be inevitable [8].

Therefore the problem is not with requirements volatility, the

problem is with inadequate approaches for dealing with them

in a way that minimizes and communicates the impact to all

stakeholders.

Our research work investigates both the pre and

post-release requirements changes.

II. BACKGROUND

The Traditional Waterfall Approach

The activities that comprise the creation of software are

commonly modeled as a software development lifecycle. The

software development lifecycle begins with the identification

of a requirement for software and ends with the formal

verification of the developed software against that

requirement. The software development lifecycle does not

exist by itself, it is in fact part of an overall product lifecycle.

Within the product lifecycle, software will undergo

maintenance to correct errors and to comply with changes to

requirements. One of the more generally accepted lifecycle

models is the waterfall model (also known as the linear

sequential model) as depicted in Figure 4.

Figure 4 - The Waterfall Model

We see that the waterfall model is a sequential one, consisting

of the following process areas:

 The requirements phase, in which the requirements for

the software are gathered and analyzed, to produce a

complete and unambiguous specification of what the

software is required to do.

 The architectural design (analysis) phase, where

software architecture for the implementation of the

requirements is designed and specified, identifying the

components within the software and the relationships

between the components.

 The design phase, where the detailed implementation of

each component is specified.

 The code and unit test phase, in which each component

of the software is coded and tested to verify that it

faithfully implements the detailed design.

 The system integration and system test phase, in which

the software is integrated to the overall product and

tested.

 The acceptance testing phase, where tests are applied and

witnessed to validate that the software faithfully

implements the specified requirements.

The Historical Perspective

The Waterfall Model outlines a sequence of activities that

are still found in most of today’s software development

processes.

Leading the development process is the Requirements

Analysis activity, followed by Design, Coding, and

Integration & Testing. This conceptual “framework”

provided significant insights as to how software should be

developed. Furthermore, it paved the way for the definition

of many similar models and paradigms that are composed of

essentially the same basic set of activities (or phases. A

closer examination of existing software development models

reveals a common thread: they all contain a Requirements

Analysis phase, it is usually one of the first phases in the

model, and it is composed of a series of activities that relate

to the gathering and analysis of requirements from the

customer.

However lately, Software engineering community had

given Requirement gathering activity lower priority than the

development activity. Subsequently, only within the last few

years have we seen a meaningful refinement of

“Requirements Engineering” that recognizes the major

activities that underline requirements gathering.

According to Stark, total of 123 requirements changes were

made to the 44 software releases under study. The releases

that experienced requirements volatility, sixteen of the

deliveries (36%) had no requirements change; of these, seven

were made according to schedule, five more were within 15%

of the original scheduled date, and five were more than 15%

late. The remaining 28 releases (64%) were affected by

requirements changes, with nine of them having greater than

50% volatility. The average requirements volatility for these

44 releases is 48%.

Taken literally, the data from these studies of multiple

projects shows that at least one third and potentially as many

as half of the delivered requirements implemented during

system maintenance were not part of the original plan. The

largest observed volatility is an astonishing 600%.

Distribution of these changes by category may be done as,

additions to the release functionality are the most common

form of change (59%), followed by deletions (35%), with

scope changes (6%) occurring

least frequently.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

261

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0960082412/2012©BEIESP

III. DEFINITION OF REQUIREMENT

As seen above, every software development process starts

with the requirements collection. The customer has some

notion of what the system should do. We collect the customer

needs for a software system and prepare the requirements

documents according to the customer needs. Requirements

document is a blue print of the system.

Requirements depend upon the project; they differ from

project to project. Requirements can be of two types,

functional and nonfunctional.

Functional requirements describe an interaction between

the system and its environment. For example, calculating

total marks of student in all subjects, giving the grade and

rank.[1]

Nonfunctional requirements describe a restriction of the

system that limits our choices for constructing a solution to

the problem. For example hardware and man power resources

etc [1].

Changes to requirements and change requests

Once we collect the requirements from the customer, we

sign the agreement with the customer. In the agreement both

the parties agree what are all the requirements to be

developed in the system. These requirements are called

baseline requirements.

Any changes to the baseline will be done only through the

submission of change requests.

The following is a suggested process for requirements

change management:

• The need for a change must be identified

• A change request is submitted.

• The change request must be approved or rejected.

• Approved changes are documented and incorporated

into the baseline.

• Submission of a new baseline should involve a formal

review.

• Submitted materials should contain sufficient details so

that changes can be backed out if necessary.

All change requests will be reviewed on a regular basis by

the project change control board. The change manager will

drive the schedule based on the number and complexity of

change requests and a Cost/Schedule Impact Analysis

(CSIA) is demanded. The requirement change control team

reviews the requested change and either accepts, reject, or

defer and also ensure that the resources are neither scarce nor

wasted during change activities.

IV. DEFINITION OF REQUIREMENTS

VOLATILITY

There is no standard definition of requirements volatility.

Usually it expresses the changing nature of requirements over

the system development life cycle. There are many

definitions of Requirements Volatility.

D Zowghi[3], describes requirements volatility as the

tendency of requirements to change over time in response to

the evolving needs of customers, stake holders, organization,

and work environment.

We can take operational definition of Requirements

volatility as the number of Requirements changes (addition,

deletion, modification) to the total number of requirements

for a given period of time [3].

The change to requirements—after the basic set of

requirements has been agreed by both the clients and

developers of the requirements – are known as requirements

volatility [1].

Requirements changes will occur from the first phase

(System/Information Engineering and modeling) to the final

phase (Maintenance) of the software development life cycle,

depending upon the time (phase) it occurs.

The changes can be described as pre and post release

requirements changes.

It is important to understand that Requirement Change can be

distinguished as:

1. Pre-release requirements changes:

a. Pre –FS (Functional Specification): Requirements

changes that refer to changes to requirements during the

early phases, elicitation, elaboration, analysis, modeling

and negotiation of software development, before the

functional specification has been completed and signed

off.

b. Post –FS (Functional Specification): Requirements

changes that occur during the later phases of software

development lifecycle i.e. design, coding, development

and testing, after the FS has been formally signed off by

the client and product developers.

2. Post-release requirements changes:

The changes that occur once the system has been deployed

at the client side, after the system has been released. This

occurs in maintenance phase. In the above context, it is worth

mentioning that the first type (1.a) of changes is constructive

if correctly done, because these changes would help in

defining more complete requirements. However the 1.b and

second type of requirements can be destructive, as they affect

the productivity in terms of cost overruns, schedule overruns

and quality .Therefore, to keep track of Post-FS and post

release changes to requirements is more important [1].

In the above context, it is worth mentioning that the type of

change under 1(a) is constructive if correctly done, because

these would help in more complete requirements. However

the 1(b) and second types of requirements can be destructive

as they may affect the productivity in terms of cost overruns,

schedule overruns and quality (adding defects while

incorporating a change).

V. CAUSES OF REQUIREMENTS VOLATILITY

Requirements evolution is due to Internal and External

factors (social view point).

1. External Factors:

a. Government regulations

b. Market competitors

2. Internal factors

3. In technical view point

a. Product constraints

b. Lack of experience to the project development team

professionals

c. Feed back from other phases of SDLC

d. Project size/ requirements overload

e. Software (price changes) and hardware.

4. Potential for change (changes in business environment)

5. Requirements in stability (the extent of fluctuation in

user requirements)

6. Requirements diversity (the

extent to which stake

holders disagree among

Requirements Volatility in Software Development Process

262

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0960082412/2012©BEIESP

themselves deciding on requirements).

7. Requirements analyzability (the extent to which the

process of producing requirement -specification can be

reduced to objective procedure).

8. Poor communication between users and development

team.

9. Client irresponsibility

Among the causes of requirements volatility, some can not

be avoided; some other can be avoided by taking precautions.

For instance, government regulations and market competitors

can not be avoided. We can minimize the requirements

volatility effects of communication between the customer

and developer, client irresponsibility, feedback from other

phases of software development life cycle.

From the sample metric report of requirement change

release, we can say the dominant reason for requirement

addition are changes in external interfaces and the second

most frequent reason is oversight in an earlier version of

specification. Customer request for enhancement will also

play an important role in requirements volatility, while the

others have a small impact [1].

Figure 5: Requirements change by type [1]

The requirement changes, by type have been identified as

additions (59%, deletions (35%) and modifications (6%) [1].

VI. HOW REQUIREMENTS VOLATILITY IS A

RISK IN SOFTWARE DEVELOPMENT

PROCESS?

Requirements volatility has a great impact on software

development life cycle. The requirements volatility affects

software releases and has major impact on project schedule,

cost and project performance. The degree of requirements

volatility is negatively associated with software project

schedule and cost performance. Lamswede conducted a

survey, from the data collected from over 8000 projects from

350 companies in USA and revealed that one third of the

projects were never completed, and half succeed only

partially, i.e. with partial functionalities. Many projects have

cost overruns and significant delays [2].

We analyze the impact of requirement volatility in

different phases of software development process, making it

a major risk in different phases of development process.

6.1 Risk in Project Schedule

Software development life cycle includes many steps like,

design, development and testing. However, before

committing for software development, the customer usually

wants to know how much the project will cost, the time it will

take, and what are all the internal activities and milestones.

A project schedule describes the software development

cycle for a particular project by enumerating the phases or

stages of project and braking each into discrete tasks or

activities to be done. The schedule also portrays the

interactions among these activities and estimates the time

each task or activity will take. Thus the schedule is a time line

where the activities will have start and an end, and when the

products will be ready [1]. The project schedule is the first

task when we develop a software product. Software cost is

also depending upon the project schedule. Software project

schedule is consisting of intermediate deliverables, design

documents, application source code, meeting with

stakeholders to collect the requirements, and to approve the

intermediate work.

When there are requirement’s changes, these changes can

affect design, code, and testing. The final effect of this

requirements volatility can be missed deadlines. When you

miss one deadline you need to postpone all subsequent

deliverables deadlines. Sometimes you need to reschedule

the total project schedule. A large number of software

projects are stopped in the middle due to this reason.

Some times it is more important to develop a software

project in the time scheduled rather than with high quality.

For example, in banking sector when your competitor is

introduced a new system offering the online banking facility

you observed that your customers are moving to that bank

attracted by new online banking facility and the new

customers’ rate is decreasing gradually. Therefore you decide

to introduce online banking facility. You can not wait long

time for this project. You need to implement it as soon as

possible with minimum requirements facilities. Otherwise for

each day of delay, you will loose old and new customers, so

you need to complete the project with minimum high priority

requirements.

6.2 Risk in Project performance

Requirements volatility has impact on the performance of

the development lifecycle. As we discussed earlier it has

impact on every phase of software development life cycle.

The instability of requirements is characterized by the

significant fluctuation of user’s requirements in the later

stages of the development. It is also characterized by the

difference between requirements that were identified at the

beginning of the project and requirements that existed at the

end. The later aspect of requirements volatility is influenced

by the differences and conflicts among users/stakeholders of

requirements.

Figure 6: The level of requirements volatility from the

respondent’s perspective [3].

In a study performed by Zowghi and Nurmuliani, the

developers were asked to rate the level of requirements

change for each stage of software development activity. The

result in figure 6 shows that most of respondents indicate that

the level of changes during the requirements analysis is high.

In the requirements analysis

stage, software requirements are

being explored, elaborated and

fleshed out while the new

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-4, September 2012

263

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0960082412/2012©BEIESP

requirements are being discovered as the result of the

analysis. At the end of prototyping stage, not surprisingly the

requirements fluctuated as the users change their mind after

they were shown early prototypes.

The level of requirements volatility seems to decrease as

the project progress and near to the end of life cycle, but rise

slightly again during coding and maintenance-house testing.

6.3 Risk in Project cost

Software project cost estimation is an important factor for

software project managers. When we talk about cost effort it

depends mainly upon project duration, number of employees

you need(cost of employees), software and hardware efforts,

building rents, traveling expenses and so on including

requirements volatility. Based on the size of new

requirements, we need to check which requirements will

come under the baseline requirements and which are not.

For new requirements, developers need to make an

agreement with new revised cost and schedule of the project.

Re-planning according to new requirements

When new requirements are received from the customers

the project managers need to replan the schedule and the cost

of the project. The developers need to negotiate with

customers to make requirements tradeoffs, additions, and

rejections. Developers could limit the functionality and defer

the full functionality to the later releases. Re-planning of

these new requirements is important because of their

dependency on other requirements. Rework of software that

implements the existing requirements will cost more, based

on the new requirements.

Requirements volatility is important when calculating the

project cost. The managers will quote the low price for the

first stage of development and will fix higher price for the

additional requirements changes (additions, deletions,

modifications). Here you need to remember that the price of

the product is decided by parties, developers and stakeholders

with the initial requirements specification before the

developers start the project.

6.4 Risk in Software maintenance phase

Large and long term applications will have frequent

requirements changes. In maintenance environment, new

requirements are added to release or existing requirements

are deleted or modified. This will affect cost, schedule and

quality of the software project. As we update the previous

versions the quality of product increases. Stark said that in 44

releases the requirements volatility was 48% [4].

In maintenance phase the requirements volatility is caused

mainly by government regulations, market competitors, and

changes agreement between stakeholders, changes in

business environment and changes in the regulations in their

partner companies.

When in the release cycle do requirements changes occur?

An analysis of data shows that requirements volatility will

affect the time in months of one project that was approved

with 17 requirements and planned to be completed on a nine

month schedule. The study shows that 20 total changes were

made to the release content (volatility of 117%) in the 14

months since project plan approval. This change rate of 1.4

changes/ month (about 8% per month) is extremely high. [4]

6.5 Risk in Software Quality

There is no standard definition of quality. Software quality

is said to be the customer satisfaction. If a software product

meets all the requirements specification and it is bugs free

then we can say that the software has high quality. However

there is no bug free software till now. Software requirements

volatility and software quality are inversely related to each

other. As requirements volatility increases the reliability of

the final product decreases. If the requirements volatility is

low, the software quality is high.

The software is tested for bugs in the testing phase. Testing

is performed done even in the coding phase, but that testing is

only for that particular program, not directly related to all the

system.

VII. IS VOLATILITY IS THE ONLY FACTORS

THAT INFLUENCES THE SUCCESS OF A

PROJECT?

IT projects can be disrupted by a variety of changes

including technology, project requirements, personnel and

the external environment.

Based on the various studies, we can see that requirement

volatility is not the only reason contributing to the success of

any project. There are many other factors that contribute to

the success of a project.

According to Gulla 2011(Five Factor Model), various

reasons contributing to the success of a project can be listed

as below:

1. Project Management

a. Plan

b. Direct

c. Solve Problems

d. Communicate

2. People

a. Skills

b. Motivation

c. Quantity

d. Continuity

3. Business

a. Alignment

b. Funding

c. Risk

d. Return on Investment

e. Data

4. Technical

a. Hardware

b. Software

c. Testing

d. Relationships between elements

5. Method

a. Approach

b. Procedures

c. Tools

Requirements Volatility in Software Development Process

264

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0960082412/2012©BEIESP

Figure 7: Factors influencing IT project failures

In 1994/95, the Standish group surveyed over 8000

software projects, and identified that the project failures is

caused by poor requirements activities.

Figure 8: % of causes of Poor Requirement Activity

responsible for Project Failure [12]

This data also supports that Change in requirement is not

only the reason responsible for project failure, there are many

other reasons contributing to the project failure.

VIII. CHALLENGES

During the study, it was observed that there are several

challenges that lead to Requirement Volatility.

1. Change request form was not always complete.

It has been observed that the change request form, which is

the sole tool to raise a change to the project deliverables,

had little information about reason for the proposed

change.

2. No formal impact analysis and incomplete change effort

estimation.

The change request forms are generally incomplete, and the

information available was not adequate to analyze the

impact of the change. There was no formal impact analysis

performed and the developer was frequently unable to

predict the impact of potential change on some areas.

3. Traceability between requirements and other software

artifacts was not established.

Requirements and the system design are linked; also

requirements and the underlying reasons why these changes

were proposed are also linked. When the changes are

proposed, we have to trace the impact of these changes on

other requirements and the system design. If traceability is

not established, it is difficult to find the actual impact of the

proposed changes.

IX. CONCLUSIONS

In this paper we have discussed several aspects of

requirements volatility, in particular the causes and impact of

requirement volatility on software development process. The

causes of requirements volatility can not be overcome fully

but we can minimize some causes like technical aspects and

poor communication between stake holders and developers.

Requirements volatility has impact on the whole software

development life cycle. It mainly affects the coding and

maintenance phases of large and long term projects.

The impact of requirement volatility on the software

project has been seen as:

1. Projects Schedule: If the schedule of one activity delays,

obviously all subsequent activities schedule will be

disturbed. Sometimes we need to reschedule the whole

project.

2. Project Performance: Project performance decreases due

to change in requirements. Requirement Volatility has

high impact on coding and maintenance phases.

3. Project Cost: Project cost increases due to change in

requirements.

4. S/W Maintenance: In this phase, requirement change is

mainly due to Govt. regulations and market competitors.

We need to revamp according to new requirements.

5. S/W Quality: Quality of software decreases due to

continuous change in requirements. We need to RE

design the test cases according to new requirements.

Though, requirements volatility has impact on project

schedule, project performance, project cost, software

maintenance and S/W quality, but it may have some positive

effects as well as it may help us to have better understanding

of user requirements.

Due to the impact of requirements volatility many projects

have failed. Thus we can conclude that requirement volatility

is a major risk in software development process.

FUTURE DIRECTIONS

From the management perspective, we wish to look at the

impact of the requirements volatility in various phases of

software development process, and after having observed

that it is a major risk in software development process we will

try to identify its positive impact also.

REFERENCES

1. Mundlamuri Sudhakar, “Managing the Impact of Requirements Volatility”,

Master Thesis, 2005, Department of Computing Science, Umeå University,

SE-90187 Umeå, Sweden.

2. “Effective Requirements Definition and Management”, April 2006,

http://www.borland.com/resources/en/pdf/solutions/rdm_whitepaper. pdf

3. D. Zowghi, “A Longitudinal Study of Requirements Volatility in Software

Development”, in the ASMA/SQA Meeting, 2005.

4. Zowghi, N. Nurmuliani, “A study of the Impact of requirements volatility on

Software Project Performance”, Proceedings of the Ninth Asia-Pacific Software

Engineering Conference , APSEC 2002, Gold Cost, Queensland, Australia,04-06

Dec 2002, pp:3-11.

5. Donald Firesmith: “Prioritizing Requirements”, in Journal of Object

Technology, vol. 3, no. 8, September-October 2004, pp. 35-47.

6. http://www.jot.fm/issues/issue_2004_09/column4

7. Lamswede, A. Requirements Engineering in the Year 00: A research perspective.

In proceeding of the 22nd International conference on Software Engineering

(ICSE’2000), Limerick, Ireland, 5-19, ACM Press.

8. D.Zowghi, Susan. P. Williams, “Requirements Volatility and its Impact on

Change Effort: evidence-based Research in software Development Projects”, in

AWRE2006.

9. Ian Soumerville, Software Engineering, 7th Edition, Pearson Education

10. Pfleeger, S.L . Software Engineering Theory and Practice, Prentice Hall, 1998.

11. Jones, C. (ed) (1997): Software Quality: Analysis and guidelines for Success,

International Thomson Computer Press.

12. George Stark, et al. “An Examination of the Effects of requirements Changes on

Software Maintenance Releases”, Journal of Software Maintenance

13. Standish Group Report (CHAOS), 1995.

Lack of user
Involvement
13%

Requirement
completeness
13% Change

Requirements
9%

Unrealistic
Expectations
10%

Lack of planning,
8%

http://www.jot.fm/issues/issue_2004_09/column4

