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 

Abstract— In this paper, wavelets have shown to be a powerful 

tool and a potential substitute for the Fourier transform in many 

problems. It is natural to use them for the solution of differential 

equations. In this chapter, we show how to use wavelets in the 

numerical solution of boundary value ordinary differential 

equations. Rather than using algebraic wavelets, we adapt the 

wavelets to the specific operator at hand. We want their 

construction to be easy to implement and computationally 

inexpensive in order to build a general solver 
 

 Index Terms: FFT, Wavelet, Boundary Value 

Existing methods 

Consider a linear ordinary differential equation of the form 

       
0

0, 1 , ,
m

j

j

j

Lu x f x for x where L a x D


  
with the boundary conditions 

     0 0 1 1
0 1B u and B u g g , 

where 

,

0

m

i i j j

j

B b D


 . 

Presently, two major numerical solution techniques exist. 

First, if the coeffi- cients  j
a x  are independent of x, the 

Fourier transform is best suited for solving the equation. The 

underlying reason is that the complex exponentials are 

eigenfunctions of a constant coefficient operator. In the 

Fourier basis, the operator becomes diagonal and can thus 

trivially be inverted. The algorithm consists of calculating the 

Fourier transform of the right-hand side, dividing the 

coefficient of each basis function by the corresponding 

eigenvalue and taking the inverse Fourier transform. This can 

be implemented using the FFT with a complexity of 

O(MlogM), where M is the number of discretization points. 

If the coefficients  j
a x  are not constant, one typically 

uses finite element or finite difference methods. We focus 

here on the former and define the operator inner product 

associated with a self-adjoint operator L as 

, ,u v Lu v  

In a Galerkin method, one considers two spaces 

S and S   and looks for an approximate solution u S  

so that. 

: , , .v S u v f v    

If  S and S 
are finite dimensional spaces with the same 

dimension, this leads to a linear system of equations. The 

matrix of this system is called the stiffness matrix. Its 
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elements are the operator inner products of the basis functions 

of S and S  . 

Traditionally, one uses local finite elements which lead to a 

banded stiffness matrix. Since the matrix is sparse, the linear 

system is traditionally solved with an iterative method. Local 

finite elements, however, have the disadvantage that the 

stiffness matrix becomes ill-conditioned as the problem size 

grows. Typically, its condition number grows as a power of 

the number of elements. This slows down the convergence 

rate of the iterative algorithm dramatically. 

This problem can be solved by using multiresolution 

techniques such as multigrid or hierarchical basis functions. 

Multiresolution finite element bases can provide 

preconditioners that result in a bounded condition number. 

The convergence rate of the iterative solver is then 

independent of the problem size.  

One possible way of using wavelets is to take 

(bi)orthogonal algebraic wavelets as basis functions in a 

Galerkin method. This was proposed by several researchers. 

It results in a linear system that is sparse because of the 

compact support of the wavelets, and that, after 

preconditioning, has a condition number independent of 

problem size because of the multiresolution structure. 

However, in this setting the wavelets do not provide 

significantly better results than the other multiresolution 

techniques. In fact, one of their major properties, namely their 

(bi)orthogonality, is not fully exploited.  

Three questions are addressed in this chapter: 

1.  How can one make use of the (bi)-orthogonality property 

of the wavelets? 

2.  Can wavelets diagonalize di_erential operators? 

3.  Can one construct fast algorithms? 

General idea 

We assume that L is self-adjoint and positive definite. Now 

write ,L   where  
 is the adjoint of  . We call 

  the square root operator of L. Note  that it is not unique. 

Suppose that the functions  ,j k
 and  ,j k

 , for an 

appropriate range of indices, are bases for S and S   

respectively. The entries of the stiffness matrix are then given 

by 

, ', ' , ', ' , ', '
, , , .

j k j k j k j k j k j k
L           

The idea is to let 
1 1

, , , ,j k j k j k j k
and           

Where 
,j k

  and 
,j k

  are biorthogonal wavelets. Because of 

the biorthogonality, the sti_ness matrix becomes a diagonal 

matrix and thus can trivially be inverted. This avoids the use 

of an iterative algorithm. We call the 
,j k

 and 
,j k

  

functions the operator wavelets and the 
,j k

  and 
,j k

  

functions the original wavelets. The operator wavelets are 

Wavelets for the Fast Solution of Ordinary 

Differential Equations 

Pankaj Varshney, Kapil Kumar Bansal, Jyotshana Gaur 



 

On Minimizing Software Defects during New Product Development Using Enhanced Preventive Approach 
 

288 

biorthogonal with respect to the operator inner product, a 

property we refer to as operator biorthogonality. When using 

the operator wavelets as basis functions in a Galerkin method, 

the stiffness matrix becomes diagonal. Note that one can 

obtain diagonalization even though the operator wavelets are 

not eigenfunctions. This is not always a "true" 

diagonalization, as the operator wavelets and dual operator 

wavelets can differ. However, computationally the difference 

is irrelevant. This idea has potential provided one can find a 

fast numerical algorithm to compute the operator wavelets. 

Therefore, the operator wavelets need to generate an operator 

multiresolution analysis with an associated fast wavelet 

transform. This implies compactly supported operator 

wavelets and operator scaling functions
,j k

 . We will see 

that the latter cannot be constructed by simply applying 
1 
 

to the original scaling functions. 

The analysis is relatively straightforward for simple 

constant coefficient operators such as the Laplace and 

polyharmonic operator. The reason is that these operators 

preserve the algebraic structure of wavelets. The construction 

of the operator wavelets can thus rely on the Fourier 

transform. The situation becomes different for more general 

constant coe_cient and for variable coe_cient operators. We 

show how one then can use weighted wavelets. 

The idea to adapt wavelets to a differential operator is also 

suggested elsewhere. Stefan Dahlke and Ilona Weinreich 

construct wavelets that are operator semiorthogonal. As a 

result, one does not obtain a full diagonalization, but rather a 

decoupling of equations corresponding to different levels. 

Antiderivates of wavelets are used in a Galerkin method. This 

parallels our construction in the case of the Laplace or 

polyharmonic operator. Our idea also is different from the 

technique Gregory Beylkin presents in [22]. He uses algebraic 

wavelets for the rapid calculation of the inverse of the matrix 

coming from a finite difference discretization. He also shows 

that the wavelets provide a diagonal preconditioner that yields 

uniformly bounded condition numbers. 

Harmonic operators 

The one-dimensional Laplace operator and a possible 

square root are 
2L D and D   . 

The associated operator inner product is therefore the 

homogeneous Sobolev innerproduct, 

, ', ' .u v u v  

Since the action of 
1 
 is simply taking the antiderivative, 

the operator motherwavelets are given by 

       *, .
x x

x t dt and x t dt 
 

     

Here    and   are compactly supported biorthogonal 

algebraic wavelets. The operator wavelets are also compactly 

supported because the integral of the original wavelets 

vanishes. Since translation and dilation is preserved, we 

define the operator wavelets as 

       , ,
2 2j j

j k j k
x x k and x x k            

It immediately follows that 

, ', ' ' '
, 2 .j

j k j k j j k k
 

 
    

Consequently, the stiffness matrix is diagonal with powers 

of 2 on its diagonal. 

We now define the spaces 

 ,
: .

j j k
W span k    

We want to find the associated multiresolution analysis. In 

other words, we needspaces 
j

V  so that 

1j j j
V V W


   

and operator scaling functions 
,j k

  so that 

 ,
: .

j j k
V span k    

These spaces are closed as they are finite dimensional. 

The antiderivative of the original scaling function is not 

compactly supportedand hence cannot be used as an operator 

scaling function. We instead construct the operator scaling 

function   by taking the convolution of the original 

scalingfunction with the indicator function on [0, 1], 

 0,1
    , 

and let 

   ,
2 .j

j k
x x k     

Note that 

     ' 1 .x x x      

We next show that the 
j

V spaces are nested and that 
j

W  

complements 
j

V  in 

1j
V

 . 

In the Fourier domain we have 

   
1 ˆˆ ,

ie

i



  



   

and 

   
1ˆ ˆ .
i

  


   

A simple calculation shows that the operator scaling 

function satisfies a refinement equation. 

     
1ˆ ˆ .

2 2 2

ie
H with H h

 
  

   
      

   

Consequently, the 
j

V  spaces are nested. The space 
j

W  is a 

subset of 
1j

V


 if a trigonometric polynomial G exists so that 

     ˆ ˆ 2 2 .G      

Substituting this in (4.1) yields, 

       
1 ˆˆ2 2 2 2G
i

    


  g  

It then follows that 

       

    

   

1 1ˆ ˆ
2

1 2

1 2
.

1

i

i

i

e
G

i i

G e

G
e







     
 

 

 










 




g

g

g

 

This function is a trigonometric polynomial, because g  is a 

trigonometric polynomialwith g  (0) = 0. 

The space 
j

W  complements 
j

V  in 
1j

V


 if 
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 
   

   
det

H H

G G

  


  

  
   

 

 

does not vanish, see Section 2.5. We readily see that 

    4,     

and     doesn't vanish since   and   generate a 

multiresolution analysis. The construction of the dual 

functions 
  and 

  from  and   is completely 

similar. The coefficients of the trigonometric polynomials 

, ,H H G and G 
 now define the fast wavelet transform 

associated with the operator inner product. 

 Algorithm 

We describe the algorithm in the case of periodic boundary 

conditions. This implies that the basis functions on the 

interval [0, 1] are the periodization of the basis functions on 

the real line,  

Let 
n

S V (respectively 
n

S V  ) and consider a 

basis  ,
: 0 2n

n k
k    (respectively

.n k

  ). Let 

2nM  . Define a vector 
Mb C  as 

.
, 0

k n k
b f with k M    , 

and a vector 
Mx C  so that we can write u S  as 

1

,

0

.
M

k n k

k

u x




   

The Galerkin method with these bases then yields a linear 

system 
, , ,

, .
k l n l n k

Ax b with A      

As we mentioned earlier, the matrix A cannot be diagonal. 

Also, its condition number grows as  2O M . Consider the 

decomposition 

0 0 1
........ ,

n n
V V W W


     

and the corresponding wavelet basis. The space 
0

V  has 

dimension one and contains constant functions. We switch to 

a one index notation so that the sets. 

   ,
1, : 0 , 0 2 : 0 2j n

j k k
j n k and k       

Coincide and similarly for the dual functions. Define the 

vectors 'b  and 'x  of 
MC  so that 

1

*

0

' , ' .
M

k k k k

k

b f and u x




     

We know that matrices T  and 
*T  exists so that 

' ' .b T b and x T x   

The action of the matrix T  (respectively
*T ) can be 

implemented using the fast wavelet transform decomposition 

with filters H and G (respectively H 
 and G ). The 

complexity of the matrix vector multiplication is O(M). In the 

wavelet basis the system becomes 

*' ' ' ' ,A x b with A T AT 
 

where     , , ,' , .k l n l n kA     

 

 
Figure : Basis for Dirichlet problem. 

 

Since A' is diagonal, it can be trivially inverted. The 

coefficients of the solution in the scaling function basis are 

given by 
1 *' .x TA T b  

The algorithm consists of calculating the wavelet 

decomposition of the right-hand side, dividing each 

coefficient by its corresponding diagonal element and 

reconstructing to find the solution. The complexity is O(M). 

The constant basis function of 
0V  has a zero as 

corresponding diagonal element and its coefficient is thus 

undetermined. Indeed, the solution is only defined up to a 

constant. This does not lead to a division by zero as the 

integral of f has to vanish, 

     
1

0

' 1 ' 0 0.f x dx u u    

In the next section we will discuss how to deal with other 

boundary conditions. 

 Example 

In this section we take a look at a simple example, namely 

the basis we get starting from the Haar wavelets. Remember 

that 

           0,1
2 2 1 .x x and x x x         

It immediately follows that both the operator wavelet and 

scaling functions are B-splines of order 2 (hat functions), 

       2 .x x and x x       

 
Figure : Basis for Neumann problem. 

 

The original wavelets are orthogonal and as a consequence 

the basis functions and dual functions coincide. 

The operator scaling functions satisfy the Strang-Fix 

condition with N = 2 and the convergence thus is of order 
2h . 

One can prove that higher order wavelets with more vanishing 

moments (N) will, in general, not yield faster convergence 

because the solution u is not smooth enough. The underlying 
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reason is that iff    2 0,1f L , the solution u belongs to 

the Sobolev space   0,0 0, 1H . One can get faster 

convergence only by imposing extra regularity conditions on 

the right-hand side. In a way this basis seems to be the most 

natural one to work with. Note that these piecewise linear 

basis functions are local solutions of the homogeneous 

equation. Hence the operator scaling functions and wavelets 

are  -splines. This basis also coincides with Yserentant's 

hierarchical basis. 

The idea to deal with boundary conditions is to let the 

operator wavelets satisfy the homogeneous boundary 

conditions and to let the component in the 
0

V  space satisfy the 

imposed boundary conditions. Figure 4.1 shows the basis 

functions in the case of Dirichlet boundary conditions and n = 

3. All operator wavelets vanish at the boundary. The 

coefficients of the two functions in the 
0

V  space are 

determined by the boundary conditions. The fast wavelet 

transform differs from the periodic algorithm in the sense that 

different filter coefficients are used for the wavelets at the 

boundary. Note the "half hat" functions at the boundary. 

The basis in case of the Neumann problem is shown in 

Figure. All operator wavelets have derivative zero at the 

boundary. The boundary conditions are handled by the two 

functions in the 
1

V  space. Again the coefficient of the 

constant is undetermined. The integral of f is now equal to 

   ' 1 ' 0u u . 

The polyharmonic operator 

The polyharmonic equation is defined as 
2mD u f  and we take the square root operator to be 

mD   

The operator scaling function   is now m times the 

convolution of the original scaling function   with the box 

function, and the operator wavelet   is m times the 

antiderivative of the original wavelet  . In order to get a 

compactly supported wavelet, the original wavelet needs to 

have at least m vanishing moments, a property that can be 

satisfied by all known wavelet families. The construction and 

algorithm are then completely similar to the case of the 

Laplace operator. 

 The Helmholtz operator 

The one-dimensional Helmholtz operator is given by 
2 2L D k    

so that we can take 

D k    

We assume that k = 1, which can always be obtained from a 

linear transformation. Observe that x xD I e D e   
 

and thus 
1 1x xe D e     

Applying 
1 

 to a wavelet does not necessarily yield a 

compactly supported function, since 
,

x

j k
e   does not have a 

vanishing integral. Therefore, we let 
1 1

, , ,

x x

j k j k j k
e e D        .  

If ,j k
  has a vanishing integral, then 

,j k
  is compactly 

supported. In order to diagonalize the stiffness matrix, the 

original wavelets now need to be orthogonal with respect to a 

weighted inner product with weight function 
2 xe

 because 

   

, ', ' , ', '

, ', '

2

, ', '

, ,

,

.

j k j k j k j k

x x

j k j k

x

j k j k

e e

e x x dx

 

 

 

 

 







    



 





 

We see that the original wavelets need to be weighted 

wavelets. In this section we only use the unbalanced Haar 

wavelets as weighted wavelets. Theorthogonality of the 

unbalanced Haar wavelets on each level immediately follows 

from their disjoint support, since 

 ,
2 , 2 1j j

j k
supp k k       . To get 

orthogonality between the different levels, 
j

V  has to be 

orthogonal to 
'j

W  for 'j j  or 

   2

, ', '
' .x

j k j k
e x x dx for j j 







   

We let the scaling function coincide with 
2 xe  on the 

support of the finer scale wavelets, 
2

, ,
,x

j k j k
e   

Where ,j k
  is the indicator function on the interval 

 2 , 2 1j jl l     , normalized so that the integral of the 

scaling functions is a constant. We choose the wavelets as  

, 1,2 1,2 1
,

j k j k j k
  

  
  So that they have 

a vanishing integral. The orthogonality between levels now 

follows from the fact that the scaling functions coincide with 
2 xe  on the supportof the finer scale wavelets, and from the 

vanishing integral of the wavelets 

     

 

2

, ', ' , ', '

', '
0

x

j k j k j k j k

j k

e x x dx x dx

C x dx

   



 



 







 

 



 



 

One can see that the operator wavelets are now piecewise 

hyperbolic functions (piecewise combinations of 
xe and 

xe
). The operator scaling functions are chosen as 

 1

, , , 1
,x

j k j k j k
e D   


    

So that 

, 1,2j k j k
   . 

With the right normalization, one gets 

 

 
 

 

  
 

   

,

sinh 2
2 , 1 2

sinh 2

sinh 1 2
1 2 , 2 2

sinh 2

0

j

j j

j

j k

j

j j

j

x k
for x k k

x

k x
for x k k

elsewhere



 





 






    


  


      


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The operator scaling functions on one level are translates of 

each other but the ones on different levels are no longer 

dilates of each other. They are supported on exactly the same 

sets as the ones in Figure  and they roughly look similar. The 

operator scaling functions satisfy a refinement relation 
2

, , 1,2

0

,
j k j l j k l

l

H
 



    

 
 

Figure: The refinement relation for the operator scaling 

functions. 

with 

   1

,0 ,2 ,1
sinh 2 sinh 2 1.j j

j j j
H H and H      

The three scaling functions on the finer scale are not the 

dilates of the one on the coarse scale, but they still add up to it. 

The Helmholtz operator in the basis of operator wavelets 

again is diagonal and the algorithm is completely similar to 

the Laplace case. The only difference in implementation is 

that the filters in the fast wavelet transform now depend on the 

level.  

Note that these functions again are  -splines and, in a 

way, are the most natural to work with. Also note that 

   ,0
lim 2 .j

jj
x x


    

Despite the fact that the Strang-Fix conditions are not 

satisfied, one can prove that the convergence is still of 

order
2h . 

We conclude that a wavelet transform can diagonalize 

constant coefficient operators similarly to the Fourier 

transform. The resulting algorithm is faster (O(M) instead of 

O(M logM)). This gain in speed is a consequence of the 

subsampling on the coarser levels in the wavelet transform 

(the ones that correspond to the low frequency components of 

the solution), which is not present in the Fourier transform. 

CONCLUSION 

In this paper we showed how wavelets can be adapted to be 

useful in the solution of differential equations. Like the 

Fourier transform, wavelets can diagonalize constant 

coefficient operators. The resulting algorithm is slightly 

faster. The main result, however, is that even non-constant 

coefficient operators can be diagonalized with the right 

choice of basis. This evidently yields a much faster algorithm 

than the classic iterative methods. 
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