
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

9

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0977092512/2012©BEIESP



Abstract— Software defects have a major impact of software

development life cycle. Software defects are expensive. Moreover,

the cost of finding and correcting defects represents one of the

most expensive software development activities. For the

foreseeable future, it will not be possible to eliminate defects.

While defects may be inevitable, we can minimize their number

and impact on our projects. To do this development teams need to

implement a defect management process that focuses on

preventing defects, catching defects as early in the process as

possible, and minimizing the impact of defects. The purpose of

this paper is to develop guidance for software managers in the

area of defect management and to introduce the defect

management model. This defect management model is not

intended to be a standard, but rather a starting point for the

development of a customized defect management process within

an organization. Companies using the model can reduce defects

and their impacts during their software development projects.

 Index Terms: Defects, software, defect management model.

I. INTRODUCTION

Software development organizations are under more

pressure than ever before. Development costs continue to rise

[1]. There’s a growing need to get products to the marketplace

quickly, which creates accelerated development schedules.

Pressure to cut costs is leading to reduced development

resources and more outsourcing. And software applications

are more complex[2].

All of these factors can make it difficult to maintain code

quality while managing costs. Minimizing defects is one of

the most effective ways to keep development costs down,

which is a priority for just about any organization. And

because the cost of fixing defects increases exponentially as

software progresses through the development lifecycle, it’s

critical to catch defects as early as possible[2]. The costs of

discovering defects after release are significant: up to 30

times more than if you catch them in the design and

architectural phase, as you can see in figure 1 [13].

 A defect refers to any flaw or imperfection in a software

work product or software process. The term defect refers to an

error, fault or failure. The IEEE/Standard [5] defines the

following terms as

Error: human actions that leads to incorrect result.

Fault: incorrect decision taken while understanding the

given information, to solve problems or in implementation of

process. A single error may lead to a single or several faults.

Various errors may lead to one fault.

Manuscript Received on November, 2012.

Khaleel Ahmad, A.P. and Head CSE/IT Deptt, S.V. Shubarti University,

Meerut, India.

Nitasha Varshney, S.V. Shubarti University, Meerut, India.

Failure: is inability of a function to meet the expected

requirements. With above definitions, a causal relationship

among the three can be established. Thus a defect can be

referred to as error or fault or failure.

A defect can also be defined as an issue or situation calling

software change request i.e. if something is broken or not

properly built or generated[6] with a reason for not usable in

certain cases, it can be defect. Defect prevention is a process

of identifying these defects, their causes and correcting them

and to prevent them from recurring. Test strategies can be

classified into two different categories namely defect

prevention technologies and defect detection technologies.

DP provides the greatest cost and schedule savings over the

duration of the application development efforts. There are two

approaches for tackling these problems and they are curative

approach and preventive approach. In case of curative

approach [7], the focus is on identifying the defects by

developers and users of the software. In preventive approach,

the focus is on preventing defects at the root level[4], [8]. DP

can be applied to one or more phases of the software life

cycle.

II. NEEDS FOR DEFECT PREVENTION

 Analysis of the defects at early stages reduces the time [6],

[9], cost and the resources required. The knowledge of defect

injecting methods and processes enable the defect prevention.

Once this knowledge is practiced the quality is improved. It

also enhances the total productivity.

Image 1:

1. Defect Identification

There are several approaches to identify the defects like

inspections, prototypes [7], testing and correctness proofs.

Formal inspection is the most effective and expensive quality

assurance [8], [9] technique for identifying defects at the early

stages of the development. Through prototyping several

requirements are clearly understood which helps in

overcoming the defects. Testing is one of the least effective

techniques. Those of the defects [10], which could have

escaped by identification at the early stages, can be detected at

the time of testing.

On Minimizing Software Defects during new

Product Development using Enhanced

Preventive Approach
 Khaleel Ahmad, Nitasha Varshney

On Minimizing Software Defects during new Product Development using Enhanced Preventive Approach

10

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0977092512/2012©BEIESP

Correctness proofs are also a good means of detecting

especially at the coding stage. Correctness in construction is

the most effective and economical method of building the

software.

2. Classification of Defects

 Once the defects are identified, they are classified at two

different points in time namely the time at which the defect is

first detected and the time when the defect has been fixed

[11]. Several models and tools are available for defect

classification like ODC, which is used throughout IBM. ODC

essentially means that we categorize a defect into classes that

collectively point to the part of the process which needs

attention, much like characterizing a point in a Cartesian

system of orthogonal axes by its (x,y,z) coordinates [12]. HP

(Hewlett Packard) company uses HP model which links

together the defect types and origin so that it is clear which

type appears to which origin. Infosys classify defects based on

certain factors like logical functions, user interface, standards,

and maintainability and so on. Likewise, each company has

their own methodology of classifying the defects [13].

Identified defects may then fall among one of the following

categories like the blocker, which prevents the engineers from

testing or developing the software, the critical, which results

in software crash or system hang or loss of data, the major

which results in breaking down a major feature, the minor

which causes a minor loss of function but can create an easy

work around, the trivial, which is a cosmetic problem. Based

on these categories, severity levels are assigned as

urgent/show stopper, medium/work around and low/cosmetic

[14].

3. Defect Preventive Techniques And Practices

By understanding the previous definitions of defect, error,

fault and failure, defects can be dealt in following categories

namely:

3.1. Defects prevention through error removal.

3.2. Defect reduction through fault detection and removal.

3.3. Defect containment through failure prevention.

3.4 Use of formal methods like formal specification and

formal verification.

3.1. Defect prevention through error removal

Defect through error sources can be removed in one or

combination of following ways Train [15] and educate the

developers. About 40 to 50% of user programs contain non

trivial defects [16]. Train the people and educate them in

product and domain specific knowledge. Developers should

improve the development process knowledge [17] and

expertise in software development methodology as well.

Introduction of disciplined personal practices like clean room

approach, personal software process and team software

process reduces defect rate by up to 75%.

3.2. Defect reduction through fault detection and removal

Large companies go for extensive mechanisms to remove as

many faults as possible under project constraints [19].

Inspection is direct fault detection and removal technique

while testing is observation of failure and fault removal [17].

Inspections can range from informal reviews to formal

inspections. Testing phase can be subdivided as code phase of

the product before the shipment and post release phase of the

product. It includes all kinds of testing from unit testing to

beta testing.

3.3. Defect containment through failure prevention

In this defect preventive approach, causal relationship

between faults and resulting failures are broken and thereby

preventing defects, but allowing faults to reside. Techniques

like recovery blocks, n-version programming, safety

assurance and failure containment are used. With the use of

recovery blocks, failures are detected but the underlying

faults are not removed, even though the off-line activities can

be carried out to identify and remove the faults in case of

repeated failures. N- version programming is most applicable

when timely decisions or performance [20] is critical such as

in many real time control systems. Faults in different versions

are independent, which implies that it is rare to have the same

fault triggered by the same input and cause the same failure

among different versions. For some safety critical system, the

aim is to prevent accidents where an accident is a failure with

severe consequence. In addition to above said quality

assurance activities, specific techniques are used based on

hazards or logical preconditions for accidents like hazard

elimination, hazard reduction, hazard control, damage

control.

3.4. Use of formal methods like formal specification and

formal verification

Formal specification is concerned with producing

consistent requirements specification, constrains and designs

so that it reduces the chances of accidental fault injections.

With formal verifications, correctness of software system is

proved. Axiomatic correctness is one such method.

 Defect prevention based on tools, technologies, process

and standards [11], [17]. Most of the company uses object

oriented methodology which supports information hiding

principle and reduces interface interactions, thus reducing

interface or interaction problems. Likewise by following a

managed process, ensuring of appropriate process selection

and conformance, enforcement of selected product and

development standard also prevents defect recurrence to a

large extent.

Prevention of defects is possible by analyzing the root

causes for the defects. Root cause analysis can take up two

forms namely logical analysis and statistical analysis. Logical

analysis is a human intensive analysis which requires expert

knowledge of product, process, development and

environment. It examines logical relation between faults

(effects) and errors (causes). Statistical analysis is based on

empirical studies of similar projects or locally written projects

[18].

Both the organization and the projects must take specific

actions to prevent recurrence of defects. Some of the actions

that are handled as described in Process Change Management

Key Process Area are: - Goals, Commitment to perform,

Ability to perform, Activities performed, Measurements and

analysis and verifying implementations. The organization sets

three goals like defect prevention activities which are

planned, common causes of defects to seek out and to be

identified, common causes of defects to be prioritized and

systematically eliminated. The management owes certain

commitment in order to get these goals into life. This

commitment is seen as a written policy which is framed and

implemented. The stipulated

policy exists for the organization

and for the project.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

11

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0977092512/2012©BEIESP

It includes long term plans for funding, staffing and for the

resources required for defect prevention. To improve the

software processes and the products through DP activities,

these results need to be reviewed and the actions are identified

and addressed. For the DP to be able to perform, as per the

Key Process Area, an organizational level team as well as the

project level should exist. This may include teams from the

Software Engineering Process Group. The software project

core develops and maintains a plan for DP activities which

contain the plan for task kickoffs, causal analysis meetings to

be held, schedule of activities, assigned responsibilities and

resources. Reviews to these are carried as per the Peer Review

Key Process Area. In the kick off meetings, as per the

Software Quality Management Key Process Area, the

members of the team get themselves familiarized with the

standards, process, procedures, methods and tools available,

inputs of errors commonly introduced and recommended

preventive actions for them, team assignments and software

quality goals. A causal analysis meeting is a periodic review.

The defects identified are analyzed to determine their root

causes with the help of methods like cause/effect diagrams.

The actions are proposed using techniques like Pareto

analysis. The action proposal gets implemented as an action

item, which is documented. The description of these data

items include the person responsible for implementing it,

areas affected by it, individuals who needs to be informed

about its status, date when its next status is reviewed, rationale

for the decisions, implementation actions, time, cost for

identifying defect and correcting it and the estimated cost for

not fixing it. As per Software Configuration Management Key

Process Area, these data needs to be managed and controlled.

The organization may have to revise its standards in process

or in project’s defined process according to the DP actions.

On a periodic basis the team reviews, the status and the results

of the organization and the project’s DP activities need to be

reviewed.

Defects can be reduced and henceforth prevented by

following certain key aspects like: - Use of prototyping

approach where needs of the customer and developer

becomes clearer. Preferences of emergent process against

reduction list process where requirements emerge from

prototyping and multiple stake holder’s shared learning

activities rather than requirements collected in advance.

Defects can be prevented by not encouraging hasty elicitation

of requirements and nominal design. Not overlooking the

factors like internal cohesion, coupling and data structures,

amount of change to reused code and context dependent

factors, which tend to prone errors. High-risk scenarios have

to be tested rigorously. Number of peer reviews, type, size

and complexity of system, frequency of occurrence of defects

caught has an effect on defect removal. Scenarios based

reading technique consisting of union of several perspectives

of inspection give a broad coverage of defects.

Some company adopts quality control activities to uncover

defects and have them corrected so that defect free products

will be produced. Quality control in real meaning is to inspect

the finished goods prior to shipment. In software applications,

quality control tends to find the defects in a product by a

monitoring, auditing and assessment of process. Quality

control monitors and asses procedures while quality testing

finds and isolate the procedure.

 Defect prevention can be achieved with automation of the

development process. There are several tools available right

from the requirements phase to testing phase. Tools available

at requirements phase are quite expensive. They can be

automated for consistency check but not completeness check.

Tools used at this phase include requirement management

tools, requirements recorders tools, requirement verifier’s

tools etc. the design tools include database design tools,

applications design tools, visual modeling tools like Rational

Rose and so on. Testing phase can be automated by the use of

tools like code generation tools, code testing tools, code

coverage analyzer tools. Several tools like defect tracking

tools, configuration management tools and the test procedures

generation tools can be used in all phases of development.

III. DEFECT MEASUREMENT AND ANALYSIS

Causal analysis and statistical defect models are the two

extremes ways of measuring the status of defect preventive

activities [20]. Causal analysis is a qualitative analysis. Fish

Bone diagram is used for complex cause analysis. Statistical

defect modeling refereed as Reliability growth is a

quantitative analysis method. It is measured in terms of

number of defects remaining in the areas, failure rate of the

product, short term defect detection rate etc. ODC is a

technique that bridges the gap between the qualitative and

quantitative techniques.

IV. PROPOSED APPROACH

In our proposed approached, we categorized causes,

defects, defect type, defect severity and defect priority in

following category:

Cause category:

-Coding/Logic

-Inconsistent with requirements

-Inadequate Error Handling

-Test Coverage

-DB Issue

-Network Issue

-Software Issue

-Hardware issue

Type:

-Cosmetic/UI

-Functional Error

Severity

1 – Critical

2 – High

3 – Medium

4 – Low

Priority

1 – Critical

2 – High

3 – Medium

4 – Low

Using this categorization, weights can be assigned and each

organization can use this weight to prioritize the defects.

Once they know the propriety of defects, measures like

training, education, mentoring, per reviews can be taken to

prevent the defects.

On Minimizing Software Defects during new Product Development using Enhanced Preventive Approach

12

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0977092512/2012©BEIESP

V. BENEFITS OF DEFECT PREVENTION OF OUR

APPROACH

The existences of defect prevention strategies not only

reflect a high level of test discipline maturity but also

represent the most cost beneficial expenditure associated

with the entire test effort. Detection of errors in the

development life cycle helps to prevent the migration of

errors from requirement specifications to design and from

design into code. Thus test strategies can be classified into

two different categories i.e. defect prevention technologies

and defect detection technologies. Defect prevention

provides the greatest cost and schedule savings over the

duration of the application development efforts [21]. Thus it

significantly reduces the number of defects, brings down the

cost for rework, makes it easier to maintain port and reuse. It

also makes the system reliable, offers reduced time and

resources required for the organization to develop high

quality systems. The defects can be traced back to the life

cycle stage in which they were injected based on which the

preventive measures are identified which in turn increases

productivity. A defect preventive measure is a mechanism for

propagating the knowledge of lessons learned between

projects.

VI. LIMITATIONS

There is a need to develop and apply software in new and

diverse domains where specific domain knowledge is lacking.

In several occasions appropriate quality requirements might

not be specified at first place. The conduction of inspections

is labor intensive and requires high skills. Sometimes

full-blown quality measurements may not have been

identified at design time.

VII. CONCLUSION AND FUTURE WORK

Defect prevention methodologies cannot always prevent

all defects from entering into the applications under test

because application is very complex and it is impossible to

catch all the errors. Defect detection techniques compliment

defect prevention efforts and the two methodologies work

hand in hand to increase the probability that the test team will

meet its defined test goals and objectives. The existences of

defect prevention strategies not only reflect a high level of

test discipline maturity, but also represent the most cost

beneficial expenditure associated with the entire test effort.

Detection of errors in the development life cycle helps to

prevent the migration of errors from requirement

specification to design and from design into code. Defect

prevention is very much vital for an organization’s quality

growth. The main objective of quality cost is not to reduce the

cost but to invest the cost on right investment. It should not be

treated as wastage of time, demanding deep involvement.

Instead of, it should be considered as a saving of time, cost

and the resources required. It saves a lot of rework required

when the defects gets manifested at the final stages or at the

post delivery period. Defect prevention should be introduced

at every stage of the software life cycle to block the defects at

the earliest, take corrective actions for its elimination and to

avoid its reoccurrence. There are several methods, tools,

techniques and practices for defect prevention but all seems

to be not sufficient enough. A lot of work is still required for

the defect prevention in terms of techniques to be adopted,

tools to be used and policies to be written.

REFERENCES

1. Brad Clark, Dave Zubrow, “How Good Is the Software: A review of Defect

Prediction Techniques” version 1.0, pg 5, sponsored by the U.S. department of

Defense 2001 by Carnegie Mellon University.

2. The Software Defect Prevention /Isolation/Detection Model drawn from

www.cs.umd.edu/~mvz/mswe609/book/chapter2.p df

3. Jeff Tian “Quality Assurance Alternatives and Techniques: A Defect-Based Survey

and Analysis” SQP Vol 3, No 3/2001, ASQ by Department of Computer Science and

Engineering, Southern Methodist University.

4. Terence M Colligan “Nine Steps to delivering Defect Free Software” copyright

1997, 1998.

5. Elfriede Dustin, Jeff Rashka, John Paul “Automate Software Sting” Chapter 4

Automate Testing Introduction Process pg 144, ISBN 7- 89494-044-5.

6. R Geoff Dromey, “Software Control Quality – Prevention Verses Cure?” Vol 11, pg

197 – 21, Issue 3 July 2003, year of publication 2003 ISSN: 0963-9314.

7. S.Vasudevan, “Defect Prevention Techniques and Practices” proceedings from 5th

annual International Software Testing Conference in India, 2005.

8. Orthogonal Defect Classification – A concept for In-Process Measurements, IEEE

Transactions on Software Engineering, SE-18.p.943-956.

9. Jon.T “A Comparison of IBM’s Orthogonal Defect Classification to Hewlett

Packard’s Defect Origins, Types, and Modes”, pg 13-16, Hewlett Packard company

Metrics, 1999.

10. Bary Boehm, Victor R. Basili, “Software Defect Reduction Top 10 List”, article at

CeBASE, Jan 2001. Also see

http://www.cebase.org/defectreduction/top10.

11. Defect Prevention by SEI’s CMM Model Version 1.1.

http://ww.dfs.mil/technology/pal/cmm/lvl/

12. Asad Ur Rehman, “cost of quality analysis”.

www.feditec.com/downloads/Cost%20of%20Quality.pdf

13. ftp://ftp.software.ibm.com/software/rational/info/do-more/ RAW14109USEN.pdf

14. V, Suma, Nair, T.R.Gopalakrishnan, “Defect Prevention Approaches In Medium

Scale It Enterprise“, National Conference on Recent Research Trends in Information

Technology, 2008

15. David N. Card, “Myths and Stratergies of Defect Causal Analysis”, Proceedings

from Pacific Northwest Software Quality Conference, October.

16. K.S. Jasmine, R. Vasantha ,”DRE – A Quality Metric for Component based

Software Products”, proceedings of World Academy Of Science

17. Purushotham Narayan, “Software Defect Prevention in a Nut shell”, Copyright ©

2000-2008 iSixSigma LLC. See also

software.isixsigma.com/library/content/c030611a.asp - 73k –

18. S.Vasudevan, “Defect Prevention Techniques and Practices” proceedings from 5th

annual International Software Testing Conference in India, 2005.

19. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, M.-Y.

Wong, "Orthogonal Defect Classification-A Concept for In- Process

Measurements," IEEE Transactions on Software Engineering, vol. 18, no. 11, pp.

943-956, Nov., 1992 .

20. Craig Borysowich , “Inspection/Review Meeting Metrics”, 2006. See also

blogs.ittoolbox.com/eai/implementation/archives/sampleinspectionreview-

metrics-13640 - 184k

21. Halling M., Biffl S. (2002) "Investigating the Influence of Software Inspection

process Parameters on Inspection Meeting Performance", Int. Conf. on Empirical

Assessment of Software Engineering (EASE), Keele, April 2002.

22. Stefen Biffl, Michael Halling, “ Investingating the Defect Detection Effectiveness

and Cost Benefit of Nominal Inspection Teams “, IEEE Transactions On Software

Engineering, Vol 29, No.5, May 2003

23. Defect Prevention by SEI’s CMM Model Version 1.1.,

http://ww.dfs.mil/techlogy/pal/cmm/lvl/dp.

24. Watts S. Humphrey, "Managing the Software Process", Chapter 17 – Defect

Prevention, ISBN-0-201-18095-2.

ftp://ftp.software.ibm.com/software/rational/info/do-more/

