
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

49

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0996092512/2012©BEIESP

Abstract -Cloud computing is broadly categorized as

Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS). Multi-tenancy becomes an

important feature of SaaS, designing and building of

multi-tenancy aware applications introduces several new

challenges, central one is tenant. A service provider can support

multiple tenants at the same time, while from a customer point of

view; the tenants are isolated and customized for their specific

needs. In this paper we present multi-tenant isolation testing

challenges and issues.

Keywords – Multi-tenancy, IaaS, PaaS, SaaS, Isolation.

I. INTRODUCTION

Software as a Service (SaaS) is defined as “the capability

provided to the consumer to use the provider’s applications

running on a cloud infrastructure. The applications are

accessible from various client devices through either a thin

client interface, such as a web browser (e.g., web-based

email), or a program interface. The consumer does not

manage or control the underlying cloud infrastructure

including network, servers, operating systems, storage, or

even individual application capabilities, with the possible

exception of limited user-specific application configuration

settings” [8] .

In [2] Four SaaS maturity levels are being introduced,

relating to how the SaaS application is delivered to many

customers (tenants). At the first level, each customer has its

own customized version of the SaaS application, and run its

own instance of the application on the host’s servers. This

level corresponds to the traditional ASP [3] model. While in

the second level, the vendor hosts a separate instance of the

application for each customer (tenant). Despite being

identical to one another at the code level, each instance

remains wholly isolated from all others. At the third level of

maturity, the vendor runs a single instance that serves each

customer, with configurable metadata providing a unique user

experience and feature for each one. At the fourth and final

level of maturity, the vendor hosts multiple customer on a

load-balanced farm of identical instances, with each tenant’s

data kept separate, and with configurable metadata providing

a unique user experience and feature set for each customer.

II. RELATED WORK

Ralph Mietzner et al. [6] describe how the chosen patterns

influence the customizability, multi-tenant awareness and

scalability of the application. Using these patterns researchers

describe how individual services in a multi-tenant aware

application cannot be multi-tenant aware while maintaining

Manuscript Received on November, 2012.

Avneesh Vashistha, Ph.D-CSE, Research Scholar, Sharda University,

Greater Noida, India.

Dr. Pervez Ahmed, Professor , Department of CSE ,Sharda University,

Greater Noida , India.

the overall multi-tenant awareness of the application. Chang

Jie Guo et al. [5] explore the requirements and challenges of

the native multi-tenancy pattern which have the potential of

serving a large volume of clients simultaneously. They

provide a framework with a set of multi-tenancy common

services to help people design and implement a high quality

native multi-tenant application more efficiently. Harris and

Ahmed [7] highlighted that how SaaS with its multi-tenancy

approach along with efficient utilization of SOA leveraging

the enterprises. In this paper they proposed an open

multi-tenant architectural blueprint based on a real world

scenario.

III. SAAS MULTI-TENANCY CHALLENGES AND

ISSUES

Multi-tenancy is one of the key characteristic of the SaaS

application. By leveraging Multi-tenancy, SaaS providers can

significantly ease operations and reduce delivery cost for a

big number of tenants. Multi-tenant applications provided

with a single application, shared by multiple customers. In it a

configuration file is being created and deployed every time a

customer places request for services on multi-tenant

application [4].

Both, Functional and non-functional testing can be applied

on a SaaS application. Functional testing includes exploratory

testing, end to end business workflow testing, automated

regression testing, data integration and data migration testing,

and checklist testing. On the other hand non-functional testing

supports security testing (e.g., application, network, user

access and role testing, data/security integrity testing etc.) and

performance testing (e.g., scalability, volume, availability,

reliability testing etc.). But moving beyond functional and

non-functional requirements, emphasis also needs to be laid

on testing the operational aspects like compatibility testing,

live testing and SaaS attribute testing of the SaaS application.

In this aspect what is the need of SaaS Attribute like

Multi-tenancy isolation concept?

Isolation should be carefully considered in almost all parts

of architecture design, from both non-functional and

functional level, such as security, performance, availability,

administration etc. Secondly, we should support tenants

customize their own service in runtime without impacting

others. Traditionally, customization would involve code

modifications and application re-deployment. However, such

a customization pattern is impractical in a multi-tenancy-

enabled service environment. As all the tenants share the same

application instance, once the customization is done for a

particular tenant, the services for all tenants will be affected,

and possibly interrupted during the update. As the number of

tenants increases, the interruptions become more frequent and

lead to very serious service availability issues.

SaaS Multi-Tenancy Isolation Testing-

Challenges and Issues
 Avneesh Vashistha, Pervez Ahmed

SaaS Multi-Tenancy Isolation Testing- Challenges and Issues

50

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E0996092512/2012©BEIESP

Therefore, the customization for one tenant without

impacting other clients during the runtime should be a key

requirement of a native multi-tenant application [5].

 3.1 Technical Isolation Challenges Faced by Solution

Developers Include [1]-

a) Access Control- how can application resources, e.g.,

virtual portals; database tables; workflows; web services-

be shared between tenants so that only users belonging to

a tenant can access the instances belonging to that tenant?

b) Customizability –

 Database- how do we customize a shared database

schema for one tenant without affecting others?

 User Interface- how can we enable customization of

the software look through configuration only?

 Business Logic- how do we allow the business logic

to be customized for each tenant without code

changes?

 Workflows – how do we let tenants customize the

assignment of human tasks and other conditional

tasks in shared workflows?

 Tenant Provisioning- how do we automate the

provisioning of a new tenant?

 Usage based metering- how do we record usage of a

service so that each tenant can be changed only for the

usage of a service.

3.2 Technical Isolation Challenges Faced by Service

Providers Include-

a) Database sharing, customization, backup, and restore of

tenant-specific data- how can service providers choose

between different database partitioning schemes based

on performance, management, and scalability criteria?

b) Rapid enablement of multi-tenancy for existing web

services- how can single- tenant web services

implementations be enabled for multi-tenancy with little

or no code changes?

c) Managing connectivity between a large number of

third-party service providers and departmental service

consumers in a large enterprise- different department

(such as credit and mortgage loan departments) in the

banking-service provider enterprise may use different

credit-check service providers. How can the central IT

department monitor, authorize, and meter the usage of

the multiple credit-check services by different

departments in the enterprise.

d) Scalability, improved hardware usage, and

tenant-specific quality of service (QoS)- how can service

providers improve the usage of hardware that’s shared

between different tenants and provide scalability?

IV. MAJOR CONCERNING MULTI-TENANCY

ISOLATION TESTING ISSUES

There are three different methods for achieving

multi-tenancy: using a database, using virtualization or

through physical separation. Using either of the said category

multi-tenancy isolation testing can be achieved on the

following issues such as security, resource, performance,

availability/scalability, administration, customization, data,

execution and versioning.

V. CONCLUSION AND FUTURE WORK

This study intends to provide recommendations for both

providers and customers- in terms of what to consider and

how to manage multi-tenancy isolation testing activities for

SaaS in the cloud environment. In our future work we are

going to develop a model, for each isolation issue as discussed

in section 4.

REFERENCES

1. http;//www.ibm.com/developerworks/library/ws-middleware/

2. F. Chong and G. Carraro, “Architecture Strategies for catching the

Long Tail”, Microsoft Corporation,

http://blogs.msdn.com/gianpaolo,April 2006.

3. L. Tao. Shifting paradigms with the application service provider

model. Computer, 34(10):32–39, 2001.

4. S.Merkel, “Parallels Software as a Service(SaaS),” p.2.

5. Guo C.J. Sun W., Huang Y., Wang Z.H., and Gao B., “ A Framework

for Native Multi-Tenancy Application Development and

Management” proceeding of 9th IEEE International Conference on

E-Commerce Technology and the 4th IEEE Conference on Enterprise

Computing, E-Commerce and E-Services, 2007, pp. 1-8.

6. Mietzner R., Unger T., Titze R., Leymann F., “ Combining Different

Multi-Tenancy Patterns in Service-Oriented Applications”,

proceedings of IEEE International Enterprises Distributed Object

Computing Conference,2009, pp. 131-140. SP800-145.pdf.

7. Harris I.S., Ahmed Z., “An Open Multi-Tenant Architecture to

Leverage SMEs”, published in European Journal of Scientific

Research, 2001, pp. 601-610.

8. http://csrc.nist.gov/publications/nistpubs/800-145/

