
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

62

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1003102512/2012©BEIESP

Abstract: Software Companies make huge effort in developing

a software product and licenses it, illegal use of these software

products is commonly termed as Software Piracy. It is a difficult

problem in Information Technology Industry since inception.

Our software distribution channel must be flexible for both the

new users and the existing users. The denial of service is the

bad effect of the complex methods involved in the security

structures. So, we have taken care of the above factor seriously

and came up with a unique solution. Secondly, depending on the

number of legalized installation, the system of security must be

flexible, this we have addressed in the paper. A smart card and

physical token address combination produces the unique

identification carries to a back end process which builds an

extremely flexible and robust solution in software piracy

eradication. This paper presents a robust software protection

scheme based on the use of smart cards, physical serializer and

cryptographic techniques.

Key words: Software protection, smart cards, cryptography,

information commerce.

I. INTRODUCTION

Software protection is a complex problem; consequently

there are several fields of research concerning different

aspects of the problem. Some of the most important goals

related to Software Protection are:

1. Intellectual property protection:

The objective is to link the software with information

about its author. Among the techniques used for this purpose

the most popular is watermarking [CoTh99].

2. Protection against function analysis in mobile

environments:

The objective in this case is to prevent a malicious host

from discovering the purpose of a software agent and modify

its behavior. Techniques like code obfuscation or

function hiding [LoMo99] are used, sometimes complem-

ented by the use of hardware tokens [Fünf99].

3. Protection against illegal copy and use of software:

The objective is to guarantee that only authorized users can

run the software. Our work is mainly aimed to solve this

problem.

Every year software industry has to face cost of several

Manuscript Received on November, 2012.

J. Swapna Priya, Assistant Professor in Department of Information

Technology, Vignan’s Lara Institute of Technology and Science,

Vadlamudi, Guntur..

Sk. Abdul Kareem, Assistant Professor in Department of Information

Technology, Vignan’s Lara Institute of Technology and Science,

Vadlamudi, Guntur.

M. Gargi, Asst.Professor under Computer Science and Engineering

Department in Vignan’s Lara Institute of Technology and Science,

Vadlamudi.

billion dollars due to software piracy. In 1999, the global

piracy rate for PC business software applications was 36

percent with an estimate cost of $12 billion. As soon as

computers started to become popular unauthorized copying

of software started to be considered an important problem

[Kent80].

Development of computer communications brought the

growth of BBS services distributing pirated software. Today,

other circumstances like the advances in code analysis tools

and the popularity of Internet creates new opportunities to

steal software. Some of the money lost because of the

software piracy is included in the cost of legal software and

therefore pirate copies are partially paid by the legal users.

Most of the software that is produced today has either weak

protection mechanisms

(Serial numbers, user/password, etc.) or no protection

mechanisms at all. This lack of protection is essentially

derived from the user resistance to accept protection

mechanisms that are inconvenient and inefficient. In Bruce

Schneier words: "The problem with bad security is that it

looks just like good security". Many commercial software

protection tools claim to achieve total security with software

techniques. Most of these tools are snake oil1. Theoretic

approaches to the formalization of the problem have

demonstrated that a solution that is exclusively based in

software is unfeasible [Gold97].

On the other side, legal protection tools like trade secrets,

copyright, patents and trademarks, are not adapted for the

protection of software. Some authors have proposed the

creation of new specific legal protection means for software

products [Samu95].

An important related aspect is license management that

has to be capable of covering a wide range of situations and

conditions while being easy and convenient for the final user.

Based on some advances of the general information

security technology, we have developed a low cost software

protection and license management scheme that is secure,

flexible and convenient for the users. This scheme, avoids two

of the most common attacks to software protection

mechanisms: multiple installation from a single legal license

and production of unprotected (pirated) copies of the

software.

The rest of the paper is organized as follows. Section 2

reviews the most relevant related work. Section 3 introduces

the new scheme. In section 4 we analyze implementation

details. Other applications of this scheme are presented in

section 5 and finally, section 6 summarizes the conclusions

and resents ongoing research and future work.

A New Scheme for Minimizing Software Piracy

using Combination of Smart Card and Physical

Attribute with applied Crypto System

 J. Swapna Priya, Sk. Abdul Kareem, M. Gargi

A New Scheme for Minimizing Software Piracy using Combination of Smart Card and Physical Attribute with

applied Crypto System

63

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1003102512/2012©BEIESP

II. RELATED WORK

In this section we will briefly review some proposals for

software protection and license management, considering

aspects like Security, convenience and practical applicability.

One of the simplest and most popular protection

mechanisms consists in a password or key check that enables

installation of the software. If the check fails the software is

not installed or it works in demo mode with restricted

functionality. This mechanism is very popular in

shareware. The password (or key) validation function is,

evidently, included in the software.

 Therefore, it is possible to find it using reverse

engineering. As a consequence it is frequent that key

generation programs are produced by dishonest users and also

that authentic passwords are published in certain Internet

sites.

Sometimes the software is personalized to be used in one

computer, for example, extracting information from some of

the hardware devices (hard disk, network adapter, etc.) or

from the operating system configuration. During its

execution, the protected software checks that the computer is

the one it was personalized for. This check, as the previous

ones, can be bypassed. Also, this mechanism is inconvenient

for the users because changes in the hardware or in the

operating system may result in the need to get a new license

and reinstall the software.

Self modifying code and code obfuscation [CoTh00] are

used in some software protection schemes. These techniques

provide short term protection and can be used in situations

where software life is short (for example for agents and

applets). Some of these techniques have been developed

for a very special kind of software: virus [FHS97].

Among the proposed solutions that rely on some hardware

component, one of the most popular consists in the use of

hardware tokens that are difficult to duplicate, which are

connected through some communications port to the

computer running the software. The protected software

checks the presence of the token and refuses to run if the

check fails. Examples of this kind of systems are hardware

keys or dongles. These systems usually have the problem of

the incompatibility between tokens of different applications.

When the tokens are smart cards, as it is expected that the

computer will include just one card reader, the user must

continuously change the card, a problem known as card

juggling that represents a serious inconvenience.

The check of the presence can be done in different ways;

the simplest is to read a value from the communications port,

but, commonly, to avoid that the interception of the

communication in that port allows the attacker to replicate the

token, the software will send a value (called challenge) that

the token has to process, the software can predict the result

that the token must send back. In any case, whatever the check

is, it is not hard to bypass this protection, as the access to

the communications port or the reader are easily found in the

executable code. This process can even be automated by

specially designed programs called "patches".

One of the first proposals to use smart cards for software

protection is presented in [ScPi84]. Protective technologies

commercialize a tool that is based in those ideas and that share

certain similarities with the initial scheme presented in the

introduction of the section 3.

More recently, Aura and Gollman presented in [AuGo99]

an interesting scheme based on smart cards and digital

certificates that solves the card juggling problem and provides

mechanisms for license management and transfer. In addition,

a compilation of countermeasures against attacks are

reviewed. Unfortunately, as their proposal is focused on the

check of the presence of the smart card, it is vulnerable to the

code modification attacks described above.

From the study of the problem it is concluded that to obtain

a provable secure protection scheme we must have a

tamperproof processor that contains and executes the

protected software [HePi87]. A variation of this scheme is the

distribution of encrypted code that the tamperproof processor

decrypts and executes [Be94].

III. DESCRIPTION OF THE NEW SOFTWARE

PROTECTION SCHEME

As it is usual in other fields of information security, in

software protection there are no completely secure solutions.

The objective of a software protection scheme is to make the

attack to the scheme difficult enough to discourage dishonest

users.

The new scheme is based, as others, in a tamperproof

processor. The popularization of smart cards and their

evolution in storage and processing capacity have lead us to

consider them the most appropriate choice for our

scheme. However, our design does not depend on this

technology and, consequently, our solution can be

implemented using any similar hardware token (for example,

some hardware keys and some tokens that Integrate

smart card and reader functionalities).

A secure software protection scheme can be designed

using just smart card technology. In this scheme some

sections of the software to be protected can be substituted by

functionally equivalent sections to be processed in the smart

card. In this way, the protected software is divided and will

not work unless it cooperates with the right card. Code

modification attacks will not succeed in this case. In fact, the

only possible attack is to analyze the data transmitted to and

from the card trying to guess the functions that the card

performs. If we include enough functions, with enough

importance in the main code, and enough complexity, the

attack described could become impractical.

This scheme needs one card per application and the

quantity and complexity of the protected functions are limited

by the capacity of the card. Moreover, this scheme does not

allow the distribution of the protected software using

Internet because the cards must be distributed with the

software. With the purpose of avoiding the aforementioned

problems we will introduce the cryptography as the second

building block of our software protection scheme.

3.1 License management:

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

64

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1003102512/2012©BEIESP

How our system controls the software piracy:

Software piracy can be digged into number of types which

are listed below

 Illegal usage of the software.

 Irregular licenses obtained.

Multiplying/duplicating the software.

Complex distribution.

When the customer buys the product and smart card is

issued, which carries a unique identification smid, threw

smid we can be able to say the number of licenses it can

produce. This logic is taken care and here smid is already

notified in the back end processing by means of storage in the

data base server

For ex:

Smid no’ of licenses

000xxx1 3

000xxx2 5

This can be explained in below in steps

Step1:

 Reading the card

 sending the smid for the verification

When the customer starts installation process, our

system checks for the internet connection and firstly

our system ask for the smart card to be dipped into the

provided physical smart reader, Here we have

Reader reads the identification number and process to the

server and there the back end process checks for the designed

number of installations allowed. Here is the tricky logic, it

allows or denies the installations will be dependent on the

smid allowed which we discussed in para1).

Step 2:

Our process goes with the installation when the

acknowledgement is positive, and reads the physical

motherboard serial number and sends back to the back end

server.

Step 3:

In the back end server and cryptosystem is designed in

order to crypt this both motherboard serial number and

smid-smart card and stored in the data base server for

further usage. Depending upon number of times in is

registered the number of installation it has allowed and we can

process for more mining using the number of installation

allowed as per the knowledge of smid and number of

installation allowed.

Step4:

The returned acknowledge is stored into the smart card

for the further transactions

3.2 Fundamentals of the new scheme

Figure 2 shows the first scheme that we elaborated. We will

use it to illustrate the final scheme. The figure shows that

several sections of the original code are substituted by their

equivalent for the card during the production phase. These

new sections are encrypted with the public key of the card

using an asymmetric cryptosystem [RSA78] during the

personalization phase and are kept encrypted so only the card

that has the matching private key will be able to decrypt and

execute those protected sections. The cards now have to

store a key pair, but the protected software sections do not

reside on the cards. The key pair must be generated in the card

and the private key must never be Transmitted outside the

card. The original code sections are substituted by calls to a

function that transmits their equivalent protected sections

(e.g. “B”), including code and data, to the card, where they

are decrypted and executed. When finished, the card sends

back the results.

Assuming that the encryption algorithm is secure, the

attack to the system must be based in the analysis of the input

and output data (and possibly the running time) of the card

functions. However, we must emphasize that now the card

only stores one function at a time and therefore we can use

more complex functions because all the capacity of the card is

now available for each single function. Moreover, this

scheme allows the card to execute any number of protected

functions. The dishonest user will need to discover all of

the protected functions to be able to break this protection

scheme.

Fig. 2. Code transform in our first software protection

scheme.

An alternative attack could consist in the substitution of

some of the authentic protected sections by other fake

sections produced by the dishonest user (for example such a

false section could try to send back the contents of the card).

This attack can be considered a kind of “Trojan horse”. To

avoid these attacks we must authenticate the code before its

execution [DDB89].

To summarize, this first scheme allows a single card to

be used to protect many applications, increases the

complexity of the protected functions, allows the card to

execute any number of those functions and enables the

distribution of the software through Internet.

But, in spite of the advantages mentioned, some aspects

like efficiency and robustness of the scheme need to be

improved.

A New Scheme for Minimizing Software Piracy using Combination of Smart Card and Physical Attribute with

applied Crypto System

65

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1003102512/2012©BEIESP

The use of an asymmetric cryptosystem introduces a high

computational cost. Also the lack of a code

Authentication mechanism opens a dangerous attack line.

On the other hand, this first scheme does not take into

account some desirable features like license transfer or

expressive authorization. Also, the need to include a

personalization phase is not adequate for some distribution

models. We want the software to be freely distributed,

although to run it the user will need to get a license.

The final scheme is shown in figure

3. In this case the production phase includes the encryption

of the protected sections (which include code and data)

with a symmetric cryptosystem.

Fig. 3. Code transforms and license production.

In the authorization phase (equivalent to the

personalization phase of the previous scheme), a new

license is produced containing the random symmetric key

used to encrypt the protected sections, information about

conditions of use (i.e. time limits, number of executions,

etc.), the identification of the software (ID, version

number, etc.) and finally the identification of the license.

All this information is encrypted with the card public key.

When the license is received by the client it is stored in the

card.

The functionality of the previous scheme is maintained

in this new one, but the efficiency is improved because

decryption of the protected sections is now much faster.

The definition of the license structure permits a high

degree of flexibility. Furthermore, as each application has

its own key, we can manage them individually.

We previously mentioned the necessity to authenticate

the code to be executed by the card to avoid certain

attacks. In this scheme, because the protected sections are

encrypted using a symmetric key that is kept inside the

card, it is impossible for a dishonest user to produce false

sections. However, if the license was to be transmitted

using an insecure channel, a man-in-the middle attack

could be carried out, but as we will show in the next

section, the software producer will require a certificate of

the card public key that the dishonest user will not be able

to forge.

IV. IMPLEMENTATION DETAILS

Today, smart card technology offers features that not so

many years ago corresponded to personal computers

[CDHP00]. However, compared to the processing power

of the host computers, each access to the smart card

introduces important delays. As our scheme requires the

transmission of a considerable amount of code and data to

and from the card, it is important to take into consideration

the efficiency of the protection scheme.

Consequently, it is necessary to find a balance between

security and speed. Fortunately, in this case, this balance

is possible and it is not difficult to obtain security and

speed measures that satisfy both the software producer and

the client. A detailed description and study of the

efficiency of the protection scheme is included in

[LMP00].

The scheme has been designed and the tests carried out

using smart cards with symmetric and asymmetric

cryptographic capabilities. An implementation that uses

smart cards that have only symmetric cryptographic

capabilities is possible, but the changes that need to be

introduced in the scheme, together with the low prices of the

cards with both types of cryptosystems, do not justify the use

of cheaper cards.

These are the steps to be followed for the implementation of

this paper.

4.1 Functions executed by the smart cards:

This is an essential characteristic because the security of

the system is based on the difficulty to guess the functions that

the card executes from the analysis of the input and output

data and the execution time

[Hohl98].

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

66

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1003102512/2012©BEIESP

If we know that the function performed by the card

represents a straight line then we just need to run the

function two times with different input data to discover it.

In contrast, functions like one-way hashes [Pren00] or digital

signatures [RSA78] are not vulnerable to these attacks. In

most software applications this type of functions is not

used frequently, but the functions that appear in most

software applications have an advantage: they have more

input and output data.

To make it difficult for the pirate to analyze the functions

we include false (dummy) input and output data that are not

used for the computation of the function, although it is

transformed to confuse the attacker. Another technique

that is very effective to obstruct the analysis is to mix the

processing of several functions with the intention that the

result of each call to the card depends on the input data of

the previous calls and even on results of previous calls

that have not been send back as results but stored in the card

memory.

4.2 Card readers

One of the most common kinds of software piracy takes

place inside the organization of a legal client of the software

by the use of multiple copies of a legally acquired software

application. In our scheme this attack could be carried out

making several computers share a card reader.

This problem has been considered in previous schemes,

but the most common Solution is to make the software have

direct access to the card reader. This solution introduces

countless problems and computational costs in the protected

software because it must manage different situations and

hardware features that are usually managed by the operating

system.

In our scheme, to prevent this attack we have designed a

solution based on the last technique described in section 4.1.

The system “chains” the calls to the card so any incorrect

sequence of calls (produced if several computers share a card

reader) will result in the software producing erroneous results.

V. OTHER APPLICATIONS

The scheme introduced can be useful in other

environments; in fact it was devised from a previous work

on information commerce over Internet [Mana00]. As an

example of the different possibilities of this scheme we will

explain briefly how it can be used for information commerce

in applications like online newspapers [Const97] or digital

libraries [KLK97].

For this application each user must possess a special smart

card (with a key pair and our base software), a card reader and

a web browser that can access the card (i.e. with a special

plug-in).

To gain access to some information the client sends a

request to the information provider, including the public key

certificate of the client’s card. This step might implicate

some negotiation of the conditions of the trade. The

information provider, using the applet generator described

in [Mana00] generates a specific applet to fulfill the request

and a license for the client’s card. This applet includes

protected sections that have to be executed by the card using

the license. Because the card software is trustworthy we

are able to control aspects like number of executions and,

what is more, we can include an electronic purse to pay for

the information accessed.

VI. CONCLUSIONS AND FURTHER WORK

We have described a robust software protection scheme

based in the use of smart cards and cryptographic techniques.

We have shown the different protocols for the management

of licenses and analyzed the security of the scheme and the

importance of the implementation details. Finally, we have

also introduced possible alternative applications of the

scheme. Hence, we can conclude that the advantages of the

presented scheme are robustness against different attacks

(bypassing the check, code substitution and attacks to the

license management protocols), confidence for the user,

efficient use of the computational resources of the smart

cards, free distribution and copy of the software, selective

license transfer, control of the expiration of the licenses and

applicability in distributed computing environments.

Tools to produce protected software automatically from

unprotected executable programs, applet protection and

payment integration are under development. We are studying

the possibilities that the combination of function hiding

techniques with our scheme could open.

Finally we are studying the security achieved by the

different families of functions that can be executed in the cards

to obtain a measure of the protection achieved in some

particular software application.

REFERENCES

1. [AuGo99] Aura, T.; Gollman, D. Software License Management with

Smart Cards. Proceedings of the Usenix Workshop on Smartcard

Technology (Smartcard’99), pp. 75-86. 1999.

2. [Be94] Bennet S. Yee. Using Secure Coprocessors.PhD thesis

CMU-CS-94-149, Carnegie Mellon University, 1994.

3. [CDHP00] Castellá-Roca, J.; Domingo-Ferrer, J.;

Herrera-Joancomartí, J.; Planes, J. A Performance Comparison of Java

Cards for Micropayment Implementation. Proccedings of

CARDIS’2000, pp 19-38. Kluwer Academic Publishers. 2000.

4. [Cons97] Constantas, D. et al. Architecture for Electronic Document

Commerce. 4th CaberNet Radicals Workshop, 1997. Available online

at

 http://www.newcastle.research.ec.org/cabernet/research/radicals/199

7/ppers/edc-constanta.html

5. [CoTh00] Collberg, C.; Thom Orson, C. Watermarking,

Tamper-Proofing, and Obfuscation - Tools for Software Protection.

University of Auckland Technical Report #170. Available online at

http://www.cs.auckland.ac.nz/~collberg/Res

earch/Publications/CollbergThomborson2000a/index.html. 2000.

6. [CoTh99] Collberg, C.; Thomborson, C. Software watermarking:

Models and dynamic embeddings. Proceedings of POPL'99 -26th

ACM Symposium on Principles of Programming Languages. 1999.

Available online at http://www.cs.arizona.edu/~collberg/Resear

ch/Publications/CollbergThomborson99a/in dex.html. 1999.

7. DDB89] Davida, G. I.; Desmedt, Y.; Blaze, M. J. Defending Systems

Against Viruses Through Cryptographic Authentication.

Proceedings of IEEE 1989 Symposium on Security and Privacy, pp

312-318. 1989.

8. [FHS97] Forrest, S.; Hofmeyr, S.; Somayaji, A. Computer

immunology. Communications of the ACM, Vol. 40, No. 10, pp.

88-96. 1997.

9. [Fünf99] Fünfrocken, S. Protecting Mobile Web-Commerce Agents

with Smartcards Proceedings of ASA/MA'99. 1999.

10. [Gold97] O. Goldreich, towards a theory of software protection, Proc.

19th Ann. ACM Symp. On Theory of Computing, pp. 182-194. 1987.

11. [HePi87] Herzberg, A.; Pinter, S. S. Public Protection of Software.

ACM Transactions on Computer Systems, 5(4)-87, pp. 371-393. 1987.

http://www.newcastle.research.ec.org/cabern
http://www.newcastle.research.ec.org/cabern
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/Collbe
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/Collbe
http://www.cs.arizona.edu/~collberg/Resear%20ch/Publications/CollbergThomborson99a/in%20dex.html
http://www.cs.arizona.edu/~collberg/Resear%20ch/Publications/CollbergThomborson99a/in%20dex.html

A New Scheme for Minimizing Software Piracy using Combination of Smart Card and Physical Attribute with

applied Crypto System

67

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1003102512/2012©BEIESP

12. [Hohl98] Hohl F. Time Limited Blackbox Security: Protecting

Mobile Agents from Malicious Hosts. In Giovanni Vigna (Ed.), Mobile

Agent Security, LNCS 1420 Springer Verlag, pp 91-113. 1998.

13. [Kent80] Kent, S. Protecting Externally Supplied Software in Small

Computers. PhD thesis, Massachusetts Institute of Technology,

MIT/LCS/TR-255, MIT. 1980.

14. [KLK97] Kohl, U.; Lotspiech, J.; Kaplan M. A. Safeguarding Digital

library Contents and Users: Protecting Documents rather Than

Channels. DLib Magazine, Sept-97 ISSN 082-9873.1997.

15. [LoMo99] Loureiro, S.; Molva, R. Function hiding based on error

correcting codes. Proceedings of Cyptec’99 - International Workshop

on Cryptographic techniques and Electronic Commerce. 1999.

16. [Mana00] Maña, A. Una Solución Segura Basada en Java para la

Comercialización de Contenidos Digitales. (In Spanish). Proceedings

of the Sixth Spanish Conference on Cryptography and Information

Security. Ra-Ma, isbn 84-7897-

431-8, pp-243-252. 2000.

17. [LMP00] López, J.; Maña, A; Pimentel, P. Un Esquema Eficiente de

Protección de Software Basado en Tarjetas Inteligentes. Technical

Report 14/2000, Department of Computer Science, University of

Malaga. 2000

18. [Pren00] Preneel, B. El Estado de las Funciones Hash. (In panish).

Proceedings of the Sixth Spanish Conference on Cryptography

and Information Security. Ra-Ma, ISBN 84-7897-43 1-8,pp-

3-38.2000.

19. [RSA78] Rivest, R. L.; Shamir, A.; Adleman, L. M. A method for

obtaining digital signatures and public-key cryptosystems.

Journal of the ACM, 21(2):120-126, February 1978.

20. [Samu95] Samuelson, P. A Manifesto Concerning the Legal

Protection of Computer Programs: Why Existing Laws Fail To

Provide Adequate Protection. Proceedings of KnowRight '95, pp

105-115. 1995.

21. [SaTs98] Sander, T.; Tschudin C.F. On Software Protection via

Function Hiding. Proceedings of information Hiding ’98.

Springer-Verlag. LNCS 1525. pp 111-123. 1998. [ScPi84]

Schaumüller-Bichl1, I.; Piller, E. A Method of Software Protection

Based on the Use of Smart Cards and Cryptographic Techniques.

Proceedings of Eurocrypt’84. Springer-Verlag. LNCS 0209, pp. 446-

454. 1984.

AUTHORS PROFILE

J. Swapna Priya is currently working as an Assistant

Professor in Department of Information Technology,

Vignan's Lara Institute of Technology and Science,

Vadlamudi, Guntur. She received Masters of

Technology degree from JNTUA, Anantapur in

Computer Science and Engineering. Her research

areas include Mobile Ad-hoc networks, cryptography

and network security, data warehousing, and data-

mining.

Sk. Abdul Kareem is working as an Assistant

Professor in Department of Information Technology,

Vignan's Lara Institute of Technology and Science,

Vadlamudi, Guntur. He pursued Masters of

Technology degree from Acharya Nagarjuna

University, Nambur in Computer Science and

Engineering. His research interests include Embedded

Systems, Data Mining, Artificial Neural Networks, Network Security and

Image Processing.

M. Gargi is currently working as Asst.Professor

under Computer Science and Engineering

Department in Vignan's Lara Institute of Technology

and Science, Vadlamudi. She pursued her Masters of

Technology degree from JNTUK University,

Kakinada, in CSE. Her research interests include

Artificial Intelligence, Network Security; Data ware

housing and Data mining, Image Processing, Human

perception and visualization Techniques.

