
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

255

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1024102512/2012©BEIESP

Abstract— In the modern era many object-oriented quality

suites exists for assessing software quality against features of

object-oriented design and as well as against the factors of

evaluating quality. This paper presents a review of quality metrics

suites namely, MOOD, CK and Lorenz & Kidd, and then selects

some metrics and discards other metrics based on the definition

and capability of the metrics.

Index Terms— CK Suite, Lorenz and Kidd Suite, Metrics,

MOOD Suite, Software Quality.

I. INTRODUCTION

The contribution of metrics to the overall objective of

software quality is understood and fully recognized by the

software engineering community in general [1] and

particularly emphasized by the software quality community

[2]. Process and product metrics can help both managing

activities, such as scheduling, costing, staffing and controlling.

Also, the engineering activities such as analyzing, designing,

coding, documentation and testing are helped by the software

metrics. Since the early days of computer science many

approaches quantifying the internal structure of procedural

software system have emerged [3]. Some of those traditional

metrics can still be used with the object-oriented paradigm,

especially at the method level such as Lines Of Code and

Number of Methods [4]. However, the need to quantify the

distinctive features of object-oriented paradigm gave birth, in

recent years, to new metric suites. Most of these sets have yet

to be experimentally validated. This validation step usually

consists of correlation studies between internal (design) and

external (attributes) [5]. Software metrics is the measuring

property or attribute to measure quality of a software object

related to software project of any size. Object-oriented

approach is capable of classifying the problem in terms of

objects and provides paybacks like efficiency, maintainability,

reliability, portability and usability. Object-oriented metrics

are useless if they are not mapped to software quality

parameters. There are numerous metric sources available to

predict quality of the software namely CK, MOOD and

Lorenz and Kidd. The main goal of this paper is to evaluate

the metrics suites by presenting theoretical study of three

object-oriented metric suites namely MOOD, CK and Lorenz

and Kidd.

II. REVIEW OF METRICS

The software metrics considered in this study are: MOOD,

Manuscript Received on November, 2012.

Aman Kumar Sharma, Computer Science Department, Himachal

Pradesh University, Shimla, India.

Dr. Arvind Kalia, Computer Science Department, Himachal Pradesh

University, Shimla, India.

Dr. Hardeep Singh, Computer Science & Engineering Department,

Guru Nanak Dev University Amritsar India.

CK and Lorenz and Kidd metrics suite.

A. MOOD Metric Suite

The Metrics for Object Oriented Design (MOOD) suite was

proposed by Fernando Brito and Rogerio Carpuca in 1994

with an objective to enable identify quality in Object Oriented

Design (OOD) by means of quantitative measurement of the

object-oriented paradigm abstractions comprising of factors

responsible for internal quality and to be able to express

external quality attributes as functions of these metrics.

MOOD suite includes six metrics, which have values as a

measure of the presence of degree of OOD attributes. Hence

their values range from 0 to 1. The MOOD Metrics are as

follows:

(i). Method Hiding Factor (MHF)

(ii). Attribute Hiding Factor (AHF)

(iii). Metric Inheritance Factor (MIF)

(iv). Attribute Inheritance Factor (AIF)

(v). Polymorphism Factor (PF)

(vi). Coupling Factor (CF)

Each of these metrics are associated to a basic

characteristics of OOD paradigm as encapsulation is related

to MHF and AHF, inheritance pertains to MIF and AIF,

polymorphism to PF and message passing to CF [6]. The

software quality factors are numerous of which the most

important and common as proposed by researchers are

maintainability, portability, usability, efficiency and

reliability [7]. MOOD metric suite has no binding to any

Object-Oriented Programming language, the values are

computable using C++, JAVA or any other object-oriented

programming language used for software development.

(i). Method Hiding Factor

Method Hidden is the sum of the invisibilities of all

methods defined in all classes. The percentage of the total

classes from which the method is not visible is the invisibility

method. MHF is the ratio of method hidden with total number

of classes.

(ii). Attribute Hiding Factor

Similar to MHF, AHF is the ratio of attributes hidden to the

total data members defined. The attributes hidden are the sum

of the invisibilities of all attributed are defined in all classes.

The invisibility of an attribute is the percentage of the total

classes from which the attributes are not visible [8].

Regarding MHF and AHF validation criteria it is directly

measured that increasing values of hiding would imply less

complexity, more understanding and higher degree of

maintainability, thereby resulting in good quality of software.

Understanding software is usable and less complex software

has high efficiency.

Metrics Identification for Measuring Object

Oriented Software Quality

Aman Kumar Sharma, Arvind Kalia, Hardeep Singh

Metrics Identification for Measuring Object Oriented Software Quality

256

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1024102512/2012©BEIESP

(iii). Metric Inheritance Factor

MIF is a direct measure of inheritance. Inheritance for a

method is the sum of inherited methods in all classes of the

software. The MIF is the ratio of method inheritance with the

total number of available methods, i.e. locally defined plus

inherited for all classes [5].

(iv). Attribute Inheritance Factor

AIF is the ratio of the sum of inherited attributes in all

classes of the system to the total number of available

attributes for all classes.

MIF and AIF directly measures inheritance levels for

methods and attributes respectively. Higher values of MIF

and AIF directly imply more inheritance. MIF measures

complexity in association to message passing dependencies

among various methods of different classes. AIF evaluates the

attributes being accessed from different classes [9]. More

inheritance implies higher levels of complexity and reduces

understandability.

(v). Polymorphism Factor

PF is the number of methods that redefine inherited

methods, divided by maximum number of possible distinct

polymorphic situations [10]. The contribution of all

overriding methods to the relative amount of polymorphism

can be considered to be equivalent. With the metric using

units appropriately and the metric suite dimensionally

consistent, the PF metric is a valid metric to measure the

potential of polymorphism [11]. PF decreases understanding.

(vi). Coupling Factor

The CF metric is a measure of coupling between classes

excluding coupling arising due to inheritance. CF is computed

by considering all possible pair wise sets of classes and

validating whether the classes in the pair are related by

message passing. CF is the direct measure of the size of a

relationship between two classes. CF is evaluated as the ratio

of the possible number of couplings in the software to the

actual number of couplings not imputable to inheritance [11].

As high degree of interclass relationship will have a high CF

value. On the contrary, CF does not provide valid results in

evaluation of quality. It is due to the fact that high value of CF

does not indicate high or low complexity. As it is feasible to

construct a simple system which is highly coupled and also it

is possible to have a complex system with negligible value of

CF. Even for encapsulation measure CF value does not

provide help. Similarly for understanding and maintainability

quality factors, a class with high value of CF may exist, but

having no degree of impact on understandability and

maintainability. CF plays no impact on reusability too; a low

degree of coupling may have high degree of reuse thru

inheritance. Consequently, it is concluded that CF is not a

valid measure of quality.

MOOD metrics suite is a very well defined validated

through mathematical formulas, supported by a tool, provides

thresholds to judge the metrics collected from a given design.

The metrics of MOOD suite are at project level. Empirical

study have concluded that the inheritance metrics have

negative impact on encapsulation i.e. AIF and MHF are

negatively related to each other, whereas PF and MHF are

strongly positively related [8]. Regarding the metrics of

MOOD it is validated that MIF, AIF, MHF, AHF and PF are

valid measures of quality [12].

B. CK Suite

Shyam R. Chidamber and Chris F. Kemerer (CK)

developed a metrics suite for OOD. CK metrics suite plays a

significant role to know the design aspects of the software and

to enhance the quality of software [13]. Most of the metrics

suites are built upon the original CK metrics suite [14]. The

CK metrics suite is designed to provide a summary of the

overall quality of object oriented software and is available at

the class level [15]. The metrics suite is associated to each

small segment of the software providing the in depth

information of the software and its quality. The CK metrics

suite proposed class based six metrics, which assess different

characteristics of OOD, having the following metrics:

(i). Weighted Methods per Class (WMC)

(ii). Response For a Class (RFC)

(iii). Lack of Cohesion of Methods (LCOM)

(iv). Depth of Inheritance Tree (DIT)

(v). Number Of Children (NOC)

(vi). Coupling Between Object classes (CBO).

The six metrics of CK Suite are described as follows:

(i). Weighted Methods per Class

WMC is used to measure the understandability, reusability,

complexity and maintainability. WMC is the count of

methods implemented within a class or the sum of the

complexities of the methods. Children inherit all of the

methods defined in a class thereby higher values of WMC

imply more complexity and less understandability. Classes

with large number of methods are likely to be more

application specific, limiting the possibility of reuse [16].

WMC decreases understandability and reliability.

(ii). Response For a Class

RFC is the total number of all methods within a set that can

be invoked in response to message sent to an object to

perform an operation [16]. All methods accessible within the

class hierarchy are included in the count. RFC measures

complexity, if the number of invoked methods is high, for a

message then complexity increases and maintainability

decreases, thus the quality of the software decreases.

(iii). Lack of Cohesion of Methods

LCOM is the difference between the number of methods

whose similarity is zero and the number of methods whose

similarity is not zero. The similarity of two methods is the

number of attributes used in common. However, Basili et al.

[17], Briand et al. [18] and [19] noted problems in the LCOM

metrics, a value of zero of LCOM is not an evidence of

cohesiveness and also very high value of LCOM does not

depict any inference. LCOM metric makes it difficult, if not

impossible, to define a unit and to measure quality [20].

LCOM does not quantify quality accurately and is not a good

measure.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2 Issue-5, November 2012

257

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1024102512/2012©BEIESP

(iv). Depth of Inheritance Tree

DIT assess how deep, in a class hierarchy, a class is. DIT

measures maintainability, reusability. A class with small

value of DIT, has much potential for reuse as deeper classes

are difficult to maintain, due to increased efforts required to

monitor its functionality.

(v). Number Of Children

NOC is a measure of the number of classes associated with

a given class using an inheritance relationship. A class having

many children is a bad class with a bad design [21]. Lower

value of NOC helps in maintainability and complexity.

Software with controlled values of NOC has good quality of

the software.

(vi). Coupling Between Object classes

CBO of a class is defined as the number of other classes to

which it is coupled. CBO determines whether a class is using

an attribute in another class or not. CBO is beneficial in

judging the complexity of testing and reusability [22].

Among the proposed CK metrics, the effective metrics are

WMC, RFC, DIT, NOC and CBO.

C. Lorenz and Kidd Suite

Mark Lorenz and Jeff Kidd in 1994 introduced eleven

metrics to quantify software quality evaluation which were

applicable to class diagrams. The metrics were categorized

into three groups namely

(i). Class Size Metrics

(ii). Class Inheritance Metrics

(iii). Class Internals Metrics.

Each of these groups further contained metrics, which are

listed as below:

(i). Class Size Metrics

The Class size metrics dealt with quantifying a class by

counting the Number of Public Methods (NPM), Number of

Methods (NM), Number of Public Variables (NPV), Number

of Variables per class (NV), Number of Class Variables

(NCV) and Number of Class Methods (NCM).

(ii). Class Inheritance Metrics

Inheritance based quality measurement metrics become

part of class inheritance metrics namely, Number of Methods

Inherited (NMI), Number of Methods Overridden (NMO)

and Number of New Methods (NNA).

(iii). Class Internals Metrics

General features of classes are evaluated using class

internals metrics. Average Parameters per Method (APM)

and Specialization IndeX (SIX) are computed in this

category.

The Lorenz and Kidd Suite are criticized [23] for being

mere counts of class properties. Counting the number of

public methods and variables in different ways does not

evaluate quality factors [12].

III. DESIRABLE PROPERTIES OF OOD QUALITY

METRICS

Based on the review of the existing software metrics suite, a

list of parameters is defined to accept or discard software

metric. Lacking any of these properties will result in an

inapplicable quality metrics.

A. Precisely defined metrics

Ambiguity in metrics definition allows many

interpretations for the same metric. A mathematical formula

or a clear explanation of the method of calculation of the

metric should exist.

B. Empirically validated software quality metrics

Metrics suites without validation are always in doubt

concerning their correctness. The MOOD metrics suite and

CK metrics suite have been validated in several studies [5]

[24] [25] and [17] [22] [26] respectively. Empirical validation

for the Lorenz and Kidd metrics suite are lacking.

C. Interpretation of metrics

Lord Kevin quote “The degree to which you can express

something in numbers is the degree to which you really

understand it” is self explanatory to state that numbers do not

have a meaning of their own, till the values are interpreted to

make decisions.

D. Relationship between metrics and quality factors

The metrics value should address to the quality factors. An

explicit relationship of increase or decrease in metrics value

having implication on software quality factors be made.

E. Metrics computable at any stage

At any stage especially at the initial stage or before

completion of the software values for metrics may be

calculated. Mid way assessment of software metrics certainly

helps in improvement of software quality.

The results of assessing the software metrics against the

software quality desirable properties are summarized in

TableI:

Table I: Assessment of metrics against the desirable

properties

 Property

Metrics

Precise

Defined

Metric

Empi

rical

Valid

ation

Inter-

pretation

ofMetric

Relation

between

Metrics &

Factors

Compu

table

at any

stage

MHF Yes Yes Yes Yes Yes

AHF Yes Yes Yes Yes Yes

MIF Yes Yes Yes Yes Yes

AIF Yes Yes Yes Yes Yes

PF Yes Yes Yes Yes Yes

CF Yes Yes No No No

WMC Yes Yes Yes Yes Yes

RFC Yes Yes Yes Yes Yes

LCOM No No Yes No No

DIT Yes Yes Yes Yes Yes

NOC Yes Yes Yes Yes Yes

CBO Yes Yes Yes Yes Yes

Class Size

Metrics

Yes No No No Yes

Class

Inheritance

Metrics

Yes No No No Yes

Class

Internals

Metrics

Yes No No No Yes

Metrics Identification for Measuring Object Oriented Software Quality

258

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: E1024102512/2012©BEIESP

The first column has the set of all software metrics such as

MHF, AHF MIF and so on. The desirable properties are

mentioned in top row. The “Yes” in the Table I denotes that

the metric satisfies the desirable property, on the other hand a

“No” represents that the metric does not satisfy the desirable

property. The Table I clearly depicts on the basis of desirable

properties the Lorenz and Kidd metrics suite is unfit for

evaluation of software quality. Also LCOM and CF have

failed, in evaluation of the metric, for evaluation of quality as

presented in Table I.

IV. CONCLUSION AND FUTURE SCOPE

In this paper a survey of three object oriented software

metrics suite comprising of CK Suite, MOOD Suite and

Lorenz and Kidd Suite was made. Keeping in view the

significance of object-oriented the metrics suites evaluated in

the study were from the object-oriented domain. The work of

CK suite was seminal in defining metrics, binding scope of

metrics, class level based and validating quality. Similarly

MOOD suite is well defined, project level based,

mathematically computable and provides thresholds that

could be used to judge the metrics collected from a given

design. However, on the contrary the Lorenz and Kidd suite

is neither validated in the existing studies nor the metrics of

Lorenz and Kidd suite are capable to measure software

quality. The Lorenz and Kidd metrics are statistical measures

for software in terms of counting: the number of methods

under various categories, the number of variables, etc. The

Lorenz and Kidd metrics seems to be ineffective for

measuring software quality. From among the suites analyzed

the study has recommended metrics which are useful in

evaluation of software quality. The metrics namely, WMC,

RFC, DIT, NOC and CBO are suitable for evaluation of

software quality from the CK Suite and whereas from the

MOOD suite the appropriate metrics are MHF, AHF, MIF,

AIF and PF. These ten metrics calculate as per all

object-oriented characteristics i.e. encapsulation, inheritance

and polymorphism. Based on the comparison and analysis it is

concluded that the mentioned list of metrics is the most

complete, comprehensive and supportive. Further studies and

empirical validations may be made to strengthen the inference

made in this study.

REFERENCES

1. Roger S. Pressman, “Software Engineering: A Practitioner’s

Approach”, 6th ed., McGraw Hill International, 2005.

2. N. Fenton and S. Lawrence Pfleeger, “Software Metrics: A Rigorous

Approach”, 2nd ed., International Thomson Press, London, 1996.

3. H. Zuse, “Software Complexity: Measures and Methods”, Walter de

Gruyer, New York, 1991.

4. F. Brito e Abreu, and R. Carapuca, “Candidate Metrics for

Object-Oriented Software within a Taxonomy Framework”,

Proceedings of AQUIS’93 (Achieving Quality In Software), Italy,

1993.

5. Fernando Brito e Abreu, and Walcelio Melo, “Evaluating the Impact

of Object-Oriented Design on Software Quality”, Proceedings of the

third international Software Metrics Symposium (Metrics’96), IEEE,

Germany 1996.

6. F. B. Abreu, “The MOOD Metrics Set”, In Proceedings of

ECOOP’95, Workshop on Metrics, 1995.

7. Aman Kumar Sharma, Arvind Kalia, and Hardeep Singh, “An

Analysis of Optimum Software Quality Factors”, IOSR Journal of

Engineering, vol. 2 issue 4, 2012.

8. Aman Kumar Sharma, Arvind Kalia, and Hardeep Singh, “Empirical

Analysis of Object Oriented Quality Suites”, International Journal of

Engineering and Advanced Technology (IJEAT), vol. 1 issue 4, 2012.

9. B. A. Kitchenham, N. Fenton, and S. Lawrence Pfleeger, “Towards a

Framework for Software Measurement Validation”, IEEE

Transaction on Software Engineering, vol. 21, no. 12, 1995.

10. F. Brito e Abreu, M. Goulao, and R. Estevers, “Towards the Design

Quality Evaluation of OO Software Systems”, Proceedings in Fifth

International Conference on Software Quality, 1995.

11. Rachel Harrison, Steve J. Counsell, and Reuben V. Nithi, “An

Evaluation of the MOOD Set of Object-Oriented Software Metrics”,

IEEE Transactions on Software Engineering, vol. 24, no. 6, 1998.

12. Aline Lucia Baroni, and Fernando Brito e Abreu, “A Formal Library

for Aiding Metrics Extraction”, 4th International Wokshop on OO

Rengineering, 2003.

13. M. Subramanyam, and R. Krishnan, “Empirical Analysis of CK

Metrics for OOD Complexity: Implication for Software defect”, IEEE

transactions on software engineering, 2003.

14. Jagdish Bansiya, and Carl G. Davis, 2002, “A Hierarchical Model for

Object-Oriented Design Quality Assessment”, IEEE Transactions on

Software Engineering, vol. 28 no. 1, 2002.

15. Aman Kumar Sharma, Arvind Kalia, and Hardeep Singh, “Taxonomy

of Metrics for Assessing Software Quality”, International Journal of

Engineering Research and Technology (IJERT), vol. 1 Issue 06, 2012.

16. Gurdev Singh, Dilbag Singh, and Vikram Singh, “A Study of

Software Metrics”, International Journal of Computational

Engineering and Management (IJCEM), vol. 11, 2011.

17. V.L. Basili, L. Briand, and W.L. Melo, “A Validation of

Object-Oriented Metrics as Quality Indicators,” IEEE Transactions

Software Engineering, vol. 22 no. 10, 1996.

18. L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, “Exploring the

Relationship Between design Measures and Software Quality in

Object-Oriented Systems”, Journal Systems and Software, vol. 51 no.

3, 2000.

19. R. Shatnawi, “An Investigation of CK Metrics Thresholds”, ISSRE

Supplementary Conference Proceedings, 2006.

20. Wei Li, “Another Metric Suite For Object-Oriented Programming”,

Journal of Systems and Software, vol. 44, no. 2, 1998.

21. Alexander Chatzigeorgiou, “Mathematical Assessment of

Object-Oriented Design Quality”, IEEE Transactions on Software

Engineering, vol. 29 no. 11, 2003.

22. Shyam R. Chidamber, and Chris F. Kemerer, “A Metrics Suite for

Object Oriented Design”, IEEE Transactions on Software

Engineering, vol. 20, no. 6, 1994.

23. R. Harrison, S. Counsell, and R. Nithi, “An Overview of

Object-Oriented Design Metrics”, Proceedings of the 8th

International Workshop on Software Technology and Engineering

Practice (STEP’97), 1997.

24. Khaled EL Emam, Saida Beniarbi, Nishith Goel, and Shesh Rai, “A

Validation of Object-Oriented Metrics”, National Research Council

Canada Internal Report No. 43607.

25. Fernando Brito e Abreu, and Rogeria Carapuca, “Object-Oriented

Software Engineering: Measuring and Controlling the Development

Process”, 4th International Conference on Software Quality, USA,

1994.

26. L.H. Rosenberg, and L. Hyatt, “Applying ant Interpreting Object

Oriented Metrics”, Proceedings of Software Technology Conference,

Utah 1998.

