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 

Abstract- In data-centric sensor networks, sensor data is not 

necessarily forwarded to a central sink for storage; instead, the 

nodes themselves serve as a distributed in-network storage, 

collectively storing sensor data and waiting to answer user 

queries. A key problem in designing such a network is how to map 

data and queries to their corresponding rendezvous nodes so that 

a query can find its matching data quickly and efficiently. Existing 

techniques are mostly aimed to address a certain type of queries. 

Both resource allocation and reactive resource allocation 

problems in multi- server data-centric sensor(DCS)  to attack 

Poisson process. A queuing network, where multi servers at each 

service station are allocated, and also each activity of a project is 

operated at a devoted service station with only one server located 

at a node of the network. The problem is formulated as a 

multi-objective optimal control problem that involves four 

conflicting   objective   functions.   The   objective functions are the 

project direct cost (to be minimized), the mean of project 

completion time (min), the variance of project completion time 

(min), and the probability that the project completion time does 

not exceed a certain threshold (max). It is impossible to solve this 

problem, optimally. Therefore, we apply a genetic algorithm for 

numerical   optimizations   of   constrained   problems to solve this 

multi-objective problem. 

  

Keywords: key predistribution, mobile sink, security, 

unattended wireless sensor network. 

I. INTRODUCTION 

Some organizations are project-oriented based and operate 

their activities depending on projects. In such situations, the 

organizations may carry out the multi project concurrently, 

whereas, Payne  revealed that up to 90%  organizations 

execute the projects in a multi-project environment. In the 

literature, was mostly analyzed on static and deterministic 

environments and a few investigations have been focused on 

multi-project scheduling under uncertainty and dynamic 

conditions. A simulation model for multi-project resource 

allocation with stochastic activity, as a multi-channel queuing, 

was presented by Fatemi- Ghomi and Ashjari. Also, a 

nonlinear mixedinteger programming model for optimizing 

the multi project resource allocation was proposed by Nozick 

et al, whereas changing resource allocations affects the 

probability distribution of activity duration. An event-driven 

approach was represented by Kao et al,  and also, using 

Critical Chain Project Management (CCPM) approach, the 

uncertainty in multi project system was studied commonly 

analysed by either connecting them together into a large 

single project by the addition of dummy start and end 

activities or considering the projects as independent and 

linking them by using an objective function which contains 

each project individually (probably with appropriate weigh 
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factors) and the corresponding resource constraints. In many 

organizations, not only are the activity durations uncertain, 

but also, new projects dynamically arrive to the project based 

organizations over the time horizon. Clearly, in this condition, 

project scheduling procedure would be more difficult and 

more complex than before. This problem, considered in 

project-oriented applying simulation. In this investigation, the 

organization was presented as a “stochastic processing 

network” with a collection of service stations (work stations) 

or resources, where one or more identical “servers” for 

serving projects under a pre-specified discipline, has been 

settled at each station. In this research, for avoiding project 

network disruption, “reactive resource allocation” is 

suggested. Along with the project execution, a project may be 

disposed by considerable unforeseen disruptions, therefore, 

reactive scheduling (rescheduling), with revising or 

re-optimizing the initial baseline schedule, aims to adjust the 

baseline schedule and consequently, overcome the 

disruptions.  

 
Fig 1. Architecture Diagram in DCS Network. 

II. MULTI-OBJECTIVE RESOURCE ALLOCATION 

PROBLEM 

In this section, we develop a multi-objective model to 

optimally control the resources allocated     to by decreasing 

the amount of resource allocated to the activities.  However,  

clearly it causes the project completion  time  to  be  increased,  

because  these objectives  have  the  confliction  with each 

other. Consequently, an appropriate trade-off between the 

total direct costs, and the project completion time is required. 

This is a multi-objective   stochastic programming problem. 

Therefore, we transform it into a relevant  multi- objective   

problem   with four deterministic  conflicting   objective 

functions.  
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The objective functions are the project direct cost (to be 

minimized), the  mean of project  completion  time (min), the 

variance of project completion time (min), and the probability 

that the project completion time does not exceed a certain 

threshold, u, (max). 

III. BACKGROUND  

There have been several approaches to the data retrieval 

problem in sensor networks. The simplest solution, but very 

inefficient, is to pull the data from every sensor node to the 

sink where the query is centrally executed. Instead, as in 

TinyDB [6] and Cougar [7], the query can be pushed 

throughout the network so that each node can set up 

aggregation and filtering rules based on the query’s 

constraints to ignore the data that do not contribute to the 

answer set, thus lessening the traffic incurred by the data pull. 

For approximate queries, i.e., those that would be fulfilled 

with approximate results, better efficiency can be achieved by 

taking advantage of the spatial correlation property of the 

sensor data. For example, since a sensor node’s readings are 

similar to some extent, they can be approximated by a 

Gaussian distribution model and so, as proposed in [8], t he 

sensor data models can be summarized and propagated 

upstream towards the sink to serve as guidelines directing the 

query’s traversal in the network. The query will not be sent 

down a branch of the network if the model summarizing this 

branch suggests with a high 

probability that no data downstream will satisfy the query. 

Most existing techniques are aimed at certain query types and 

not easily extensible to support others. For example, some 

techniques are designed for top-k queries [9], [10] but not 

range queries, and vice versa [11]. Some techniques can 

address any query no matter its type, however at a cost that 

would be too expensive for large-scale networks. Many 

techniques require knowledge of geographic location 

information about the sensor nodes, which is not always 

possible for a typical sensor network. Therefore, it remains an 

unsolved challenge to design a search technique that is 

capable to address any type of queries and work with a wide 

range of data-centric sensor networks, including those not 

equipped with geographic location information. 

In this section, the multi-server Data-Centric Sensor is 

modeled to optimally control the resources allocated to the 

corresponding activities. Also, an analytical method to 

compute the approximate distribution function of project 

completion and a multi-objective model in a multiserver 

Data-Centric Sensor are presented. 

IV. GENETIC ALGORITHM 

A Genetic Algorithm (GA) is a randomized search method 

modeled on evolution GAs are being applied to a variety of 

problems and becoming an important tool in combinatorial 

optimization problems GAs are search procedures based on 

the mechanics of natural selection and natural genetics. 

Step 1.  Compute the density function of the sojourn time 

(waiting time plus activity duration) in each service 

station. 

Step 2.  If m=1 , then the queueing system would be an M /M 

/1 queue, and the density function of time spent at the 

service station a (w (t)). 

Step 3.  Convert the Data-Centric Sensor as an 

Activity-on-Node (AoN) structure into a substitute 

classical ERT network represented as an Activityon- 

Arc (AoA) graph.  

Step 4.  Determine a continuous-time s Genetic Algorithm 

with finite states.  

Step 5.  Determine the states space of system. For this 

purpose, let be the wireless network, obtained in 

with a single source and a single sink, in which 

represents the set of nodes and represents the set of 

arcs of the network in the network. 

V.  PROPOSED SYSTEM 

A multi-objective model to optimally control the servers 

allocated (as resources) to the service stations in a 

Data-Centric Sensor. we decrease the amount of resource 

allocated (servers) to the service stations, the project direct 

cost will therefore be decreased. The last objective that should 

also be  considered is the probability that the project 

completion time does not exceed a certain threshold for 

on-time delivery performance. The direct cost of each activity 

is a non-decreasing function and the mean service time in each 

service station is a nonincreasing function of the amount of 

resource allocated to it. 

A. Initialization 

A multi-objective model to optimally control the resources 

allocated to the service stations in a multi-server Data-Centric 

Sensor for both approaches, namely resources as servers and 

resources affecting servers, using Genetic algorithm and multi 

objective  programming.  

Algorithm: The GA for Petri nets 

Step1:  generate initial population. 

Step2:  evaluate Process N(0). 

Step3:  for each process from the set n do 

Step4:  Select process N(i) 

Step5:     identify the transition path to visit all processes. 

Step6:   divide path into disjoint paths Ni. 

Step7:   perform crossover on  Ni. 

Step8:  apply deletion mutation I to N(i). 

Step9:  apply deletion mutation II to N(i). 

Step10:  apply insertion mutation III to N(i). 

Step11.   Evaluate N(i). 

end 

End. 

B. Crossover Operation 

This Data-Centric Sensor was represented as a network of 

queues, where several servers are in each service station and 

the capacity of the system is infinite.  

C. Mutation 

The probability that the project completion time does not 

exceed a certain threshold was considered as the last 

objective. Finally, the goal attainment method was employed 

to solve a discrete-time approximation of the primary 

multi-objective problem. 
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VI. RESULTS AND DISCUSSION 

To demonstrate the feasibility of the proposed genetic 

algorithm method we solve the different cases, shown in 

Fig.1, respectively, for the following 5 sets of optimal 

solutions in each case. 

 

  Project Time duration using DCS   

Distance 431 499 510 537 587 

Normal 

time 4.906 5.219 5.609 5.625 6.031 

DCS 

Time 1.588 1.95 2.356 2.339 2.746 

 

 

 
Fig 2: Using DCS network. 

 

The analysis of variance according to the computational 

time as the proper responses are shown in Tables1. Therefore, 

comparing the xxxxxx results against the discrete-time 

approximation results shows the efficiency of the xxxxxx 

method for the time-cost trade-off in Wireless networks. 

VII. CONCLUSION 

The problem considered in this paper has continuous 

decision variables and involves nonlinearity. After the 

reformulation of the problem, we applied a genetic algorithm 

for of constrained problems. The limitation of this paper is 

that the state space can grow exponentially with the network 

size. The model can be extended to the general Wireless 

networks, where general activity durations are allowed. In 

general networks, the activity distribution can be 

approximated by an appropriate generalized. 
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