
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume- Issue-6, January 2013

453

Retrieval Number: F1190112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract- A Bayesian classifier is one of the most widely used

classifiers which possess several properties that make it

surprisingly useful and accurate. It is illustrated that performance

of Bayesian learning in some cases is comparable with neural

networks and decision trees. Bayesian theorem suggests a straight

forward process which is not based on search methods. This is the

major point which satisfies the marvelous time complexity of

Bayesian classifier. At the other hand, constructing phase of fuzzy

intrusion detection systems suffer from time consuming processes

which are based on search methods. In this paper we propose a

novel method to accelerate such processes using Bayesian

inference. Experimental results show meaningful time reduction.

Keywords: Fuzzy intrusion detection systems, Naïve Bayes

classifier, Rule`s consequent class, Time complexity.

I. INTRODUCTION

Nowadays, intrusion detection systems (IDS) have become

an indispensable component of security infrastructure of

computer networks. Since Denning first proposed an intrusion

detection model in 1987 [33], many research efforts have

been focused on how to effectively and accurately construct

detection models. An intrusion detection system dynamically

monitors the events taking place in a system, and decides

whether these events are symptomatic of an attack or

constitute a legitimate use of the system [34]. In general, IDSs

fall into two categories according to the detection methods

they employ, namely misuse detection and anomaly detection.

Misuse detection identifies intrusions by matching observed

data with pre-defined descriptions of intrusive behavior.

Anomaly detection builds models for normal behavior and

detects anomaly in observed data by noticing deviations from

these models. When the fuzzy systems applied to intrusion

detection systems for the first time, experts of security have

the burden of generating necessary rules for such systems

[35]. From the mid-1990s to the late 1990s, acquiring

knowledge of normal or abnormal behavior had turned from

manual to automatic. Artificial intelligence and machine

learning techniques were used to discover the underlying

models from a set of training data. To generate fuzzy rules,

commonly employed methods are based on a partition of

overlapping areas [36], or based on fuzzy implication tables

[37], or by fuzzy decision trees [31] or association rules [1].

Recent methods of computational intelligence such as neural

networks, Evolutionary computation and artificial immune

systems can be used too.

Manuscript received on January 2013.

 Mehran Amiri, Computer engineering department of Science and

Research branch of Islamic Azad University, Kerman, Iran.

Mahdi Eftekhari, Computer engineering department of Science and

Research branch of Islamic Azad University, Kerman, Iran.

Farshid Keynia, Computer engineering department of Science and

Research branch of Islamic Azad University, Kerman, Iran.

Nowadays, Fuzzy systems have been applied to many

aspects of human life and you can see a vast variety of

methods, applications, and also commodities which are based

on fuzzy logic, all around [2], [3]. One of the most important

parts of this logic is Fuzzy rule-based systems. They have

been applied successfully on classification problems [4], [5].

These systems also have been applied to computer security

problems and results have shown their successfulness in that

area [6], [7]. One of the most important features of Fuzzy

rule-based systems which arises their popularity is their

comprehensibility because they easily can be interpreted by a

human users [6], [8]. Current approach for designing such

systems is to generate the antecedent part of the fuzzy rules

from data automatically and then determining the consequent

class for each rule which each rule can best cover the relevant

data points. Generating the antecedent part of the fuzzy

classification rules, can be accomplished in many ways. The

simplest way is to generate them randomly, but random search

cannot generate good rules, especially in large pattern spaces.

The heuristic and meta heuristic search approaches can be

used in this case such as evolutionary algorithms, ant colony,

bee colony particle swarm optimization and so on. The state

of the art approach is to extract rules from data using rough set

theory [13] and it`s extensions [14], such as variable precision

rough set [15], rough fuzzy hybrids [16], fuzzy-rough hybrids

[17] and recently flourished vaguely quantified rough sets

[18]. They use different approaches to generate rules. After

generating antecedent part of fuzzy rules, a typical process

should determine the consequent class of them. This process

examines all classes of dataset to find the best consequent

class for each rule. One pass over all dataset instances is

necessary in this case. Since the classification accuracy fully

depends on how good the rules are, so lots of attempts have

been accomplished to generate rules which best fit data. For

example in evolutionary algorithms domain, many different

fitness functions have been introduced to tackle this problem.

For example Abadeh. et al. [6] counts the number of patterns

which fall into covering area of the rules and uses this

measure as a fitness function. Cordon et al. [9] utilizes

confidence from the field of data mining for this purpose.

Rule weighting is another option for improving the accuracy

of fuzzy rule-based systems [5], [11], [12]. It is stated that rule

weighting approach has a significant effect on the

classification performance of fuzzy rule-based systems [10].

Ishibuchi et al. [5] compares 4 rule weighting measures on

both artificial and real world datasets. In [11], Mansoori et al.

propose a rule weighting method to improve the performance

of fuzzy classification systems. This approach assigns weights

to rules which exceeds

unique interval [0,1].

Using Naïve Bayes Classifier to Accelerate

Constructing Fuzzy Intrusion Detection Systems

Mehran Amiri, Mahdi Eftekhari, Farshid Keynia

Using Naïve Bayesian classifier to reduce time complexity of constructing fuzzy Intrusion detection systems

454 Retrieval Number: F1190112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

In [12] Zolghadri et al. try to utilize ROC curves for rule

weight tuning. Some researchers have focused on the

generalization ability of such systems. For example Mansoori

et al. [8] utilizes a measure in fitness function which tends to

discard rules with longer antecedent parts. Such rules are

more specific than shorter rules and tend to overfit the

classifier. This is accomplished by finding lonely instances

which fall into covering area of generated rules. Another way

to improve the performance of fuzzy rule based systems is

through the use of approaches which try to tune the

parameters of the membership functions used to partition the

pattern space. This approach is usually utilized when rule

weighting approaches are not used [19]. Other approach is

adapting measures from other fields such as data mining [4],

[9]. For example Eftekhari et al. [4] have adapted precision

and recall from data mining field to measure the effectiveness

of rules. Other methods to improve the effectiveness of fuzzy

rule-based systems are utilizing rules with multiple

consequent classes [20] and some methods to inference with a

fuzzy rule base like single winner rule and weighted vote [21].

All mentioned approaches which most of them are iterative,

try to find the promising generated rules in each step, which

offer better classification accuracy and also avoid time

wasting by discarding not promising generated rules.

Improvement in time complexity of such approaches is a side

effect which is not studied explicitly. As we mentioned

before, the classification accuracy depends on rules ability to

classify unseen data points correctly. Thus authors tend to use

methods which can determine the consequent class of rules

with high degree of certainty. The reason why researchers

were not used another methods to determine the consequent

class of rules is justified in this way. In this paper we are going

to introduce a fast and accurate method using Naïve Bayesian

classifier to determine the consequent class of generated

rules. This paper is organized as follows:

First we discus general design of fuzzy rule-based intrusion

detection systems. In the next section the Bayesian inference

is proposed. The following section describes our proposed

method. In the next section the time complexity analysis is

proposed. The experimental results form the next section and

finally the last section concludes the paper.

II. DESIGNING FUZZY RULE-BASED

CLASSIFICATION SYSTEMS

Assume Rj is a fuzzy if-then rule, in the form:

Rule Rj: if x1 is Aj1 and … and xn is Ajn, then Class Cj

 j=1,2,…,N (1)

Where x=[x1,…,xn] is an n dimensional pattern vector, Aji

(i=1,…,n), is an antecedent linguistic value, Cj is the

consequent class of Rj and N is the number of fuzzy rules.

Generally for an M-class problem with m labeled patterns

xp=[xp1,…,xpn], p=1,…,m, we should generate a set of N fuzzy

if-then rules, in the form (1) to classify patterns. Normalizing

attributes is a conventional process before designing the

classifier.

After normalizing attributes, the pattern space is

partitioned into fuzzy subspaces, and for each subspace, one

fuzzy rule will be in charge of classifying patterns existing in

that subspace [22]. To perform the partitioning, usually k

suitable membership functions- indicating k linguistic values-

are assigned to each input attribute. The use of triangular

membership functions, because of their simplicity and

interpretability is popular. There are two types of partitioning.

Grid-type -or homogeneous- and accurate. Grid type

partitioning is used when interpretability of fuzzy rules is

important, while accurate partitioning preserves overall

accuracy. We use first type of partitioning in this paper

because interpretability of rules is more important for us. Fig.

1. illustrates these membership functions for four different

values of k.

The relevant number of membership functions used to

partition the feature space, has undeniable impact on accuracy

of fuzzy rule-based classification systems. There is a delicate

tradeoff between time complexity and accuracy with the

number of feature space partitions. A partitioned feature

space with a few membership functions could not achieve a

convincing accuracy. On the other hand, using more

membership functions to perform partitioning imposes lots of

computation overheads on system and therefore increases

time complexity. We use membership functions illustrated in

Fig. 1. in this paper.

Given an input partitioning of pattern space, one approach

is to consider all possible combinations of antecedent

linguistic values and generate a fuzzy rule for each

combination. For example, for a dataset containing n input

attributes, and considering 14 mentioned membership

functions of Fig. 1. For each attribute, the process should

generate 14
n
 rules. This is clear that it is impractical to handle

such a huge number of rules, especially for high dimensional

problems. One approach to deal with this problem is to

employ some criteria to select a small subset of best rules

amongst all [23]. In [24] a solution is presented which adds

one fuzzy set to the predefined set of fuzzy sets called ‘don`t

care’ (with linguistic label L0), which is defined as µL0(x) = 1

for all values of x. Every feature in the antecedent part of rule

Rj which contains L0, is not considered as a valid feature in the

rule. Therefore shorter fuzzy rules, with limited number of

antecedents can be generated.

In the field of data mining [25], confidence is frequently

used to evaluate association rules. But before introducing

that, we should be able to measure compatibility grade of each

data instance with the antecedent part of rules. The fuzzy rule

in (1) can be viewed as a fuzzy association rule Aj => Cj where

Aj = (Aj1,…,Ajn). The compatibility grade of pattern

xp=[xp1,…,xpn] with the antecedent part of rule Rj : (Aj =>Cj) is

computed using the product operator as:

 


n

i pip xx
1 jij)(µ)(µ (2)

Where µji(.) is the membership function of the antecedent

fuzzy set Aji and Aji ∊{L0 ,L1,…L14}.

Fig. 1. Different partitioning of each input attribute

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume- Issue-6, January 2013

455

Retrieval Number: F1190112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The fuzzy version of confidence is presented in [26], [27]

as rule evaluation measure. The confidence of the fuzzy rule

Aj => Cj is written as follows:

.
)(

)(

)(

1








m

p pj

ClassCx

pj

jj

x

x

CAconfidence
jp





 (3)

The confidence can be viewed as a measure of (Aj => Cj)

validity [5]. This means rules with higher values of

confidence provide better classification accuracies.

Traditional process to find the consequence class Cj of

fuzzy rule Rj is as follows:

Cj = arg max {confidence (Aj => Ch) | h= 1,…, M} (4)

This means that class h with maximum degree of

confidence is selected as consequent class of the rule (Aj =>

Ch).

Although tuning of membership functions can improve

classification accuracy of fuzzy rule-based systems, but this

can be lead to degradation in interpretability of fuzzy rules.

We use fuzzy rules with no weights and also no membership

function tuning procedures in this paper.

III. BAYESIAN INFERENCE

In statistics, Bayesian inference is a method of inference in

which Bayes' rule is used to update the probability estimate

for a hypothesis as additional evidence is learned. Bayesian

inference has found application in a range of fields including

science, engineering, medicine, and law and has become

famous for representing the best performance in some fields

such as text mining [28]. It is illustrated that performance of

Bayesian learning in some cases is comparable with neural

networks and decision trees [29]. Bayesian inference

computes the probabilities according to Bayes' rule:

)(

)()|(
)|(

BP

APABP
BAP


 . (5)

Bayesian theorem suggests a straight forward process to

find the hypothesis with maximum probability which is not

based on search methods. This is the major point which

satisfies the marvelous time complexity of Naïve Bayesian

classifier.

 A Naïve Bayesian classifier is one of the most widely used

classifiers and possesses several properties [30] that make it

surprisingly useful and accurate. A naive Bayesian classifier

is a simple probabilistic classifier based on applying Bayes'

theorem with strong (naive) independence assumptions. In

simple terms, a naive Bayes classifier assumes that the

presence (or absence) of a particular feature of a class is

unrelated to the presence (or absence) of any other feature,

given the class variable. Depending on the precise nature of

the probability model, naive Bayes classifiers can be trained

very efficiently in a supervised learning setting.

Assume f : xp → C, is a function which maps xp to C. xp is a

training pattern and C is a set of classes of training patterns.

We want to find the class of pattern xtest using Naïve Bayes:

}.|)()(max{arg)(
1 


n

i jijNBtestNB CvaPCPCxf (6)

 It is obvious from formula (6) that all features assumed

independent.

The value of P(Cj) can be calculated by simply counting the

number of instances that belong to class Cj and divide that to

the cardinality of training set. The value of P (ai = v| Cj) can be

calculated by the same way too. Just count the number of

instances belong to class Cj which the value of their i`th

attribute is equal to v and then divide that to the cardinality of

instances of class Cj. These can be written as follows:

.
}{

}|{
)(

T

CxTx
CP

jpp

j


 (7)

}|{

})(|{
)|(

jpp

ipjpp

ji
CxTx

vaxCxTx
CvaP







 (8)

Which T represents training set. We use this notation to show

training set through this paper.

{.} Shows a set and |.| represents the cardinality of a set.

xp ∊ T represents instances which belong to T.

And at last xp(ai) = v informs us that the i`th feature of instance

xp is equal to v.

IV. PROPOSED METHOD

In this section we are going to propose a novel method,

which offers a faster method to determine the consequent

classes of the generated rules. The main idea is to predict the

consequent classes by the aid of Naïve Bayesian classifier.

We use the Naïve Bayesian classifier that presented in

previous section.

Naïve Bayesian classifier can predict the consequent class

of test data instances in classification problems, but here we

are going to utilize this kind of classifier to determine the

consequent class of rules. This offers a fast, accurate and

nearly optimal method which accelerates rule generation

methods. In this paper, the terms ‘feature’ and ‘column’ are

assumed equal and used interchangeably.

One of the key steps in constructing fuzzy rules is the action

which replaces the values of data features of each data

instance with some relevant fuzzy membership functions. If

we look at this action from the viewpoint of discretization, we

can look at each membership function as a potential

discretized feature value. Our proposed method is based on

this idea.

The first step of our proposed method consists of

computing probabilities needed for Naïve Bayesian classifier.

These probabilities for a dataset with discrete features could

be calculated by simply counting some relevant values of

features for each class. But for a dataset with continuous

features, we should perform discretization first. We don`t

have any explicit discretization phase here, but we use

membership functions as discretized features, implicitly. This

process consists of simply replacing each feature value with

some relevant membership functions. The replacement

strategy is as follows:

Assume xp is a training example. Each membership

function Lq, which can cover xp(ai)- the value of i`th feature of

xp, could be assumed as a potential candidate to replace xp(ai).

This means 0))((ipL ax
q

 .Since the membership

functions partitioning the feature space, have overlaps with

each other, there are more than one membership function that

could cover xp(ai). The process of computing probabilities of

Naïve Bayesian is as follows:

Using Naïve Bayesian classifier to reduce time complexity of constructing fuzzy Intrusion detection systems

456 Retrieval Number: F1190112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Assume the training set T, consists of m training examples

with n+1 attributes which n+1`th attribute represents the

consequent class of the instances. Assume T is a matrix with

m rows and n+1 columns. We construct the matrix Um × (n+1)

which every cell of U can consist of a set of objects. This

matrix is used to save membership functions which can cover

the values of features of data instances. In this paper we use xp

to represent an instance of T and x'p to represent an instance of

U. U(p,i) which represents x'p(ai) , (1 ≤ i ≤ n, 1 ≤ p ≤ m),

consists of a set of membership functions which can cover

xp(ai). U(p,n+1) represents the consequent class of xp(ai). It is

obvious that the last column of matrixes T and U are

completely equal.

We can use formula (6) to determine the consequent class

of the rule Rtest. This can be rewritten as:

}.|)()(max{arg)(
1 


n

i jqijNBtestNB CLaPCPCRf (9)

Which P(Cj) is calculated by formula (7). P(ai = Lq | Cj)

represents the probability of a set of instances of U, which

have Lq in their i`th column and their consequent class is Cj.

This can be written as:

}|{

)}(|{
)|(

jpp

ipqjpp

jqi
CxUx

axLCxUx
CLaP







(10)

The statement Lq∊ x'p represents that U (p,i) = x'p(ai), consists

a set of objects, not just one object.

Although the formula (10) seems convincing at the first

glance, but it has a major drawback. The impact of values of

attributes is neglected here. To solve this, we compute the

sum of values of instances in i`th column of matrix T which

can be covered by Lq and belong to class Cj, for each Lq in the

i`th column of U and divide the computed value to the number

of instances of class Cj. By this, an average value can be

determined. Then we can compute the membership grade of

this average with respect to Lq and multiply that by the value

obtained from (10). Thus the formula (10) can be rewritten as

follows:

)
}0))((|{

)(

(

}|{

)}(|{
)|(

}0))((|{









 

ipLp

axTx ip

L

jpp

ipqjpp

jqi

axTx

ax

CxUx

axLCxUx
CLaP

q

ipqLp

q








 (11)

Instance name a1 a2 C

O1 0.2 0.5 1

O2 0.9 0.4 1

O3 0.1 0.2 2

O4 0.3 0.1 1

Fig. 2. The dataset used in example

Instance

name

a1 a2 C

O1 {L1,L2,L3,L4} {L1,L2,L4} 1

O2 {L1,L2,L4,L5} {L1,L2,L3,L4} 1

O3 {L1,L2,L3,L4} {L1,L2,L3,L4} 2

O4 {L1,L2,L3,L4} {L1,L2,L3,L4} 1

Fig. 3. The matrix U, constructed by membership

functions L1 to L5 from Fig. 1. and dataset Fig. 2.

Let`s see an example:

We construct the matrix U4×3, with respect to membership

functions {L1,L2,L3,L4,L5} obtained from Fig. 1. and dataset

represented in Fig. 2. To find the value of U(1,1), we should

find all membership functions which can cover the T(1,1) =

0.2. This is equal to find membership functions which their

membership grade for T(1,1) = 0.2 is bigger than 0. It is

obvious that all membership functions can cover 0.2 except

L5. Thus U(1,1) = {L1,L2,L3,L4}. The column C of matrix U,

is the equal copy of column C of matrix T. The values of cells

of matrix U are illustrated in Fig. 3.

In this section C1 is used to represent the class 1 and C2 is

used to represent the class 2. Using formula (7) we can write:

4

3
)(1 CP

4

1
)(2 CP

Since the dataset has two classes and the column a1 of matrix

U, consists of vales {L1,L2,L3,L4,L5}, then we should compute

10 probabilities. For example we compute P(a1 = L3 | C1).

Based on formula (11), we should find data instances which

belong to class C1 and have L3 value in their a1 feature. The

answer is the set {O1, O4} which it`s cardinality is equal 2.

The values of a1 column of these instances in the matrix T, is

0.2 and 0.3. The average of these two values is equal to 0.25.

Now based on formula (11), we can write:

 3333.0)25.0()|(
33

2
131  LCLap 

The rest of calculated probabilities are as follows:

5333.0)()|(
3

3.09.02.0
3
3

111 1
 

LCLap 

4667.0)()|(
3

3.09.02.0
3
3

121 2
 

LCLap 

9333.0)()|(
3

3.09.02.0
3
3

141 4
 

LCLap 

2667.0)()|(
1
9.0

3
1

151 5
 LCLap 

9.0)()|(
1
1.0

1
1

211 1
 LCLap 

1.0)()|(
1
1.0

1
1

221 2
 LCLap 

8.0)()|(
1
1.0

1
1

231 3
 LCLap 

2.0)()|(
1
1.0

1
1

241 4
 LCLap 

0)()|(
1
0

1
0

251 5
 LCLap 

The values of a2 in matrix U, has 4 values {L1,L2,L3,L4}.

Considering 2 classes of dataset, we need to calculate 8

probabilities:

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume- Issue-6, January 2013

457

Retrieval Number: F1190112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

6667.0)()|(
3

1.04.05.0
3
3

112 1
 

LCLap 

3333.0)()|(
3

1.04.05.0
3
3

122 2
 

LCLap 

3333.0)()|(
2

1.04.0
3
2

132 3
 

LCLap 

6667.0)()|(
3

1.04.05.0
3
3

142 4
 

LCLap 

8.0)()|(
1
2.0

1
1

212 1
 LCLap 

2.0)()|(
1
2.0

1
1

222 2
 LCLap 

6.0)()|(
1
2.0

1
1

232 3
 LCLap 

4.0)()|(
1
2.0

1
1

242 4
 LCLap 

Now we want to determine the class of rule Rtest which can

be produced by any rule generation process.

Rtest : if a1 is L5 and a2 is L1

We simply need to compute two probabilities:

1334.06667.02667.0
4

3

)|()|()(1121511



 CLaPCLaPCP

08.0025.0

)|()|()(2122512



 CLaPCLaPCP

The probability of class C1 is bigger than the probability of

class C2. Thus the class of Rtest is determined C1.

V. TIME COMPLEXITY ANALYSIS

There are some bottlenecks which could be assumed as a

measure for analyzing algorithms. We consider the number of

product/division operations for complexity analysis in this

section because the product/division operation is one of the

operations which impose a heavy overhead on system. We

assume here that the overhead of division operator is equal to

the multiplication operator. As mentioned before, the

traditional approach used to determine the consequent class of

generated rules, in a fuzzy rule-based intrusion detection

system is a brute force-like approach with one pass over all

data instances. Although it doesn`t seem bad at first glance,

but in the systems with lots of rules, it could be very time

consuming. For example assume the number of N rules, are

generated in an intermediate step of generation phase of a

fuzzy rule-based intrusion detection system. The mentioned

process to determine the consequent class of the rules, should

be repeated N times. The process should compute the

confidence of each rule to all classes of the dataset. This step

could be completed in O(m), which m is the number of dataset

instances. Calculating confidence measure needs to compute

compatibility grade of each data instance with the rule Rj. The

time complexity of calculating compatibility grade for each

rule with average number of n/2 active antecedents is O(n/2) =

O(n). Active antecedents in rules are those features that are

not equal to L0. The total number of product operations is m ×

(n/2). Thus computing the consequent class of N rules having

the average n/2 active antecedents out of n, using the

traditional approach requires N × m × (n/2) product

operations which can be written as O(Nmn).

In proposed method, we don’t have such a huge number of

product operations. Computing probabilities using (11) needs

only 2 division operations means O(1). By this way the impact

of calculating compatibility grade is eliminated. This

calculation should be accomplished for all M classes of

dataset for membership functions covering xp(ai) value.

Notice that the number of membership functions which can

cover xpi is always less than the number of all membership

functions used to partition the pattern space. We assume the

average number of membership functions that can cover xp(ai)

is s/2 which s is number of all membership functions used to

partition pattern space. Thus this operation can be done in 2 ×

M × (s/2) = O(Ms). Calculating all probabilities needs doing

this process for n-1 columns. This means we need O(Msn) = 2

× M × (s/2) × (n-1) critical operations. Determining the

consequent class of N rules with average active antecedents

equal to n/2 for a dataset with M class needs (n/2) × M × N

product operations which is O(MNn). Therefore the time

complexity of NBAFRBS is O(Msn) + O(MNn) =

max{O(Msn) + O(MNn)}. It is obvious that in lots of datasets

the number of data instances (m) is much more than the

number of classes (M). The number of membership functions

used to partition the feature space rarely exceeds 14 [8], [11],

but at the other hand using big values for N to obtain good

accuracies is popular. There is no need to mention that

calculating the probabilities needed for Naïve Bayes offline,

can reduce time complexity to O(MNn) which is definitely

better than O(Nmn).

VI. EXPERIMENTAL RESULTS

In this section we are going to lunch some experiments to

compare new method with the traditional method. For this

purpose we need a rule generation method to generate fuzzy

rule antecedents. We use SGERD method (a Steady state

Genetic algorithm for Extracting fuzzy classification Rules

from Data) to generate rule antecedents [8]. The experiments

are accomplished on a 3.00 GHz Intel Pentium 4 CPU (one

processing core) with 512 MB of RAM on the Windows

platform using MATLAB. The KDD99-10% [32] train set is

used to accomplish experiments. The test set of KDD99 is

used for test the classifiers. To eliminate the unrealistic

results, we have run the experiments 8 times. In this paper we

use confidence which has been proposed in section 2 as the

TABLE. 1. RESULTS OF COMPARING METHODS OF

DETERMINING CLASSES OF GENERATED RULES ON

KDD99-10%

Exp

Time of

New

method

Time of

traditional

method

Accuracy

of

New

method

Accuracy of

traditional

method

1 292.77 423.12 0.72 0.72

2 327.46 433.54 0.78 0.80

3 340.85 452.38 0.80 0.80

4 313.44 395.69 0.80 0.80

5 273.58 188.59 0.72 0.58

6 302.39 418.19 0.75 0.77

7 284.27 425.62 0.72 0.72

8 297.62 386.71 0.78 0.80

Av

e#1

304.05 390.48 0.7687 0.7587

Av

e#2 308.40 419.32 0.764286

0.7729

Using Naïve Bayesian classifier to reduce time complexity of constructing fuzzy Intrusion detection systems

458 Retrieval Number: F1190112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

-100 -50 0 50 100 150 200

1

3

5

7

Fig. 4. Time improvement of proposed method for

constructed intrusion detection systems based on

Kdd99-10%. The horizontal axis shows improvement in

time achieved by proposed method (Minutes), and the

vertical axis represents experiment number (Exp#).

0 0.2 0.4 0.6 0.8

1

3

5

7

Proposed method

Traditional method

Fig. 5. Accuracies achieved by proposed and traditional

methods for each constructed intrusion detection system

based on Kdd99-10%. The horizontal axis shows

accuracy, and the vertical axis represents experiment

number (Exp#).

rule evaluation criteria. The relevant number of rules for each

class can be determined through the heuristic method

proposed in [8]. That is equal to 20. The obtained results can

be seen in Table. 1, Fig. 4 and Fig. 5. All computed times are

in minutes. In all experiments, the time for calculating the

probabilities needed for Naïve Bayes, is approximately 2

seconds.

The results show that the time needed to construct the

Fuzzy intrusion detection systems with the proposed method

is much less than time needed for constructing such systems

with the traditional method. The maximum of time

improvement is 141.35 minutes and is related to experiment

number 7. The minimum time improvement is related to

experiment number 4 and it’s about 82.25 minutes. Though

the time improvement is very significant in most cases, but the

time achieved by proposed method is worse than the time

achieved by traditional method in experiment number 5.

When we consider the accuracy of classifiers in experiment

number 5, we notice that the training phase of classifier is not

accomplished correctly. This might occur by evolutionary

nature of SGERD [8]. The stopping criterion is satisfied,

when the individuals are not good enough, probably. This

results of this experiment for traditional method does not

seem to be accurate. Since the experiment number 5 can

worsen the overall results, we have calculated the averages of

time and accuracy twice. First, with considering results of

experiment number 5 (Ave#1) and second without

considering the results of experiment number 5 (Ave#2). It is

obviously clear that the intrusion detection systems which are

constructed with proposed method need less time to be

constructed. See Fig. 4. This figure shows time improvement

of proposed method for constructed intrusion detection

systems based on Kdd99-10%. The horizontal axis shows

improvement in time achieved by proposed method

(Minutes), and the vertical axis represents experiment number

(Exp#). At the other hand, the accuracy of proposed method is

very similar to accuracy of traditional method. See Fig. 5. In

this figure, we have compared accuracies achieved by

traditional and proposed methods. It is clear that achieved

accuracies by proposed method are very similar to accuracies

achieved by traditional method. The obtained accuracies are

equal for proposed and traditional methods in 50 percent of

experiments. The reason of obtaining different accuracy

values by experiment number 5 have been negotiated before.

Thus we can conclude that the average accuracy of proposed

method is very similar to average accuracy of traditional

method. The time improvement of proposed method is very

significant. It should be stated that the proposed method can

be integrated with any rule generation process and can

accelerate it.

VII. CONCLUSION

In this paper we proposed a novel method which can

accelerate the construction phase of Fuzzy intrusion detection

systems. Experimental results on KDD99 datasets showed

that our method can reduce time complexity of building fuzzy

intrusion detection systems while preserving overall

accuracy. Utilizing other successful methods in the field of

text mining in constructing fuzzy rule-based classification

systems is our aim in further works. Studying methods and

processes which are used in other fields of data mining can be

very promising.

REFERENCES

1. El-Semary, A., Edmonds, J., Gonzalez, J., Papa, M., “A framework for

hybrid fuzzy logic intrusion detection systems”, in: The 14th IEEE

International Conference on Fuzzy Systems (FUZZ’05), Reno, NV,

USA, 25–25 May 2005, IEEE Press, 2005, pp. 325–330.

2. Cordón, O., Herrera, F., Peregrín, A. “Applicability of the fuzzy

operators in the design of fuzzy logic controllers”, fuzzy Sets and

Systems, 1997, pp. 15–41.

3. Glorennec, P. Y., “Application of fuzzy control for building energy

management. In: Building Simulation”, International Building

Performance Simulation Association 1. Antipolis, A. France, 1991, pp.

197–201.

4. Eftekhari, M., Zolghadri, M. J., Katebi, S. D. “new criteria for rule

selection in fuzzy learning classifier systems”, Iranian Journal of Fuzzy

Systems, 2006, Vol. 3, No. 1, pp. 77-89.

5. Ishibuchi, H., Yamamoto, T., “Rule Weight Specification in Fuzzy

Rule-Based Classification Systems”, IEEE transactions on fuzzy

systems, August 2005, Vol. 13, No. 4. pp. 428-435.

6. Abadeh, M. S., Habibi, J., Lucas, C., “Intrusion detection using a fuzzy

genetics-based learning algorithm”, Journal of Network and Computer

Applications, 2007, Vol. 30, pp. 414–428.

7. Abadeh, M. S., Mohamadi, H., Habibi, J., “Design and analysis of

genetic fuzzy systems for intrusion detection in computer networks”,

Expert Systems with Applications, 2011, Vol. 38, pp. 7067–7075.

8. Mansoori, E. G., Zolghadri, M. J., S. D. Katebi, “SGERD: A steady state

genetic algorithm for extracting fuzzy classification rules from data”,

IEEE transactions on fuzzy systems, August 2008, Vol. 16, No. 4, pp.

1061-1071.

9. Cordón, O., Del Jesus, M. J., Herrera, F., “A proposal on reasoning

methods in fuzzy rule-based classification systems,” International

Journal of Approximate Reasoning., January 1999,Vol. 20, No. 1, pp.

21–45.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume- Issue-6, January 2013

459

Retrieval Number: F1190112612/2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

10. Ishibuchi, H., Nakashima, T., “Effect of rule weights in fuzzy rule-based

classification systems,” IEEE transactions on fuzzy systems, August

2001, Vol. 9, No. 4, pp. 506–515.

11. Mansoori, E. G., Zolghadri, M. J., S. D. Katebi, “A weighting function

for improving fuzzy classification systems performance”, Fuzzy sets

and systems, 2007, Vol. 158, pp. 583-591.

12. Zolghadri, M. J., Mansoori, E. G., “Weighting function classification

rules using receiver operating characteristics (ROC) analysis”,

Information science, 2007, Vol. 177, pp. 2296-2307.

13. Beynon, M., Curry, B., Morgan, P., “Classification and rule induction

using rough set theory”, Expert systems, July 2000, Vol. 17, No. 3. pp.

136-148.

14. Pawlak, Z. Skowron, A., “Rough sets: Some extensions”, Information

Science, 2007, Vol. 177, pp. 28-40.

15. Ziarko, W., “Variable precision rough set model”, journal of computer

and system science, 1993, Vol. 43, pp. 39-59.

16. Shen, Q., Chouchoulas, A., “A rough-fuzzy approach for generating

classification rules”, Pattern Recognition, 2002, Vol. 35, pp. 2425–

2438.

17. Jensen, R., Cornelis, C., Shen, Q., “Hybrid Fuzzy-Rough Rule Induction

and Feature Selection”, Fuzzy IEEE conference, Korea, August 20-24,

2009, pp. 1151-1156.

18. Cornelis, C., De Cock, M., Radzikowska, A. M., “Vaguely Quantified

Rough Sets”, in Proceedings of 11`th international conference on Rough

sets, Fuzzy sets, Data mining and granular computing (RSFDGrC2007),

2007, pp. 87-94.

19. Nauck, D., Kruse, R. “How the learning of rule weights affects the

interpretability of fuzzy systems,” in Proceedings of 7th IEEE

International Conference on Fuzzy Systems, Anchorage, AK, May 1998,

pp. 1235–1240.

20. Berg, J. V. D., Kaymak, U., Bergh, W. D., “Fuzzy classification using

probability based rule weighting,” in Proceedings of 11th IEEE

International Conference on Fuzzy Systems, Honolulu, HI, May 2002,

pp. 991–996.

21. Ishibuchi, H., Nakashima, T., Morisawa, T., “Voting in fuzzy rule-based

systems for pattern classification problems,” Fuzzy Sets and Systems.,

April 1999, Vol. 103, No. 2, pp. 223–238.

22. Ishibuchi, H., Nozaki, K., Tanaka, H., “Distributed representation of

fuzzy rules and its application to pattern classification,” Fuzzy Sets and

Systems., 1992, Vol. 52, No. 1, pp. 21–32.

23. Ishibuchi, H., Yamamoto, T., “Comparison of heuristic criteria for fuzzy

rule selection in classification problems,” Fuzzy Optimal Decision

Making, 2004, Vol. 3, No. 2, pp. 119–139.

24. Ishibuchi, H., Yamamoto, T., “Fuzzy rule selection by multi-objective

genetic local search algorithms and rule evaluation measures in data

mining”, Fuzzy Sets and Systems, 2004, Vol. 141, No. 1, pp. 59–88.

25. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L., “Ten

years of genetic fuzzy systems: Current framework and newtrends”,

Fuzzy Sets and Systems, 2004, Vol. 41, pp. 5–31.

26. Hong, T. P., Kuo, C. S., Chi, S. C., “Trade-off between computation

time and number of rules for fuzzy mining from quantitative data”,

International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, October 2001, Vol. 9, No. 5, pp. 587–604.

27. Ishibuchi, H., Yamamoto, T., Nakashima, T., “Fuzzy data mining:

Effect of fuzzy discretization,” in Proceedings of 1st IEEE International

Conference on Data Mining, San Jose, CA, November 2001, pp.

241–248.

28. Sebastiani, F., “Machine learning in automated text categorization”,

ACM Computing Surveys, 2002, pp. 1–47.

29. Mitchell, T., “Machine Learning”, McGraw-Hill, 1997, pp. 156-199.

30. Zhang, H., “The optimality of naive bayes”, Proceedings of the 17th

International FLAIRS Conference 2004.

31. Liu, F., Lin, L., “Unsupervised anomaly detection based on an

evolutionary artificial immune network”, in: F. R., et al. (Eds.),

Applications on Evolutionary Computing-EvoWorkshops 2005:

EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and

EvoSTOC, Lausanne, Switzerland, 30 March 30–1 April 2005, volume

3449 of Lecture Notes in Computer Science, Springer, Berlin/

Heidelberg, 2005 , pp. 166–174.

32. KDD data set,

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, [accessed

on July 2011].

33. Denning, D. E., “An intrusion detection model”, IEEE Transactions on

Software Engineering, 1987, Vol. 13, No. 2, pp. 222–232.

34. Debar, H., Dacier, M., Wespi, A., “Towards a taxonomy of

intrusion-detection systems”, Computer Networks, 1999, Vol. 31, No.

8, pp. 805–822.

35. Dickerson, J.E., Dickerson, J.A., “Fuzzy network profiling for intrusion

detection”, in: Proceedings of the 19th International Conference of the

North American Fuzzy Information Society (NAFIPS’00), Atlanta, GA,

USA, 13–15 July 2000, IEEE Press, 2000, pp. 301–306.

36. Abraham, A., Jain, R., Thomas, J., Han, S. Y., “D-SCIDS: distributed

soft computing intrusion detection system”, Journal of Network and

Computer Applications, 2007, Vol. 30, No. 1, pp. 81–98.

37. Zheng, C., Chen, L., “FCBI-an efficient user-friendly classifier using

fuzzy implication table”, in: L. Kalinichenko, R. Manthey, B. Thalheim,

U. Wloka (Eds.), Advances in Databases and Information Systems,

volume 2798 of Lecture Notes in Computer Science, Springer,

Berlin/Heidelberg, 2003, pp. 266–277.

