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Abstract: Introducing an r-gcd-sum function over r-regular

integers modulo n“, (studied by the authors [10] earlier), we
obtain an asymptotic formula for its summatory function. The

case I =1 of our result gives the formula established by Laszl6
Toth [8].
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I. INTRODUCTION
Let r be a fixed positive integer. A positive integer K is

said to be r-regular modulo n"if there is an integer X
such that k"*x =k"(modn") holds. For example, the

set of  2-regular integers  modulo 4? is

{1,2,3,5,6,7,9,10,11,13,14,15}.

The case I =1 gives the regular integer modulo
n, a detailed study of which was made by Laszl6 Téth [7],
who gave the history of such integers in the same paper. To
find several equivalent conditions for an integer to be -

regular modulo N", the authors have used in [10] the notion
of I -gcd of two positive integers given below:

For positive integers aand b, their greatest rt power
common divisor is denoted by (a,b), and is called the T -

gcd of aand b. For example,
(100,18), =1,(100,16), = 4while ~ (1000,16), =8.

Note that (a,b), =(a,b), the greatest common divisor of

aand b . Though the concept of r-gcd is due to Fogel (see
[3], p.134), a study of it was initiated by V.L.Klee [6].

In [10] the authors showed, among other things, that .

(1.1)
n"if and only if

A positive integer k is r- regular integers modulo
(k.n")

Recall that a divisor d of a positive integer M s said to

. is a unitary divisor of n".

be unitary if (d mj_l; and in this case we write d||m.
!d -
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Clearly a=0 is r-regular modulo n'for every n>1
and r>1. Also it is easy to see that if a =b(modn")
then a and bare r-regular modulo nrsimultaneously.
Further if a and bare r-regular modulo Nn"then so is

ab.

The notions given in ([9], p. 42) are also needed:

A complete set of residues modulo n" s called a (n, n-
residue system, while the set of all k in a (n, r)-residue

system such that (k, nr)r =1 is called a reduced (n, r)-
residue system. Note that C, = = {k 1<k < nr} is the
minimal (n, r) - residue system and that
R.: = {k eC,, :(k,n')r :l} is the minimal reduced
(n, r)-residue system.

Denoting the number of elements in R . by gpr(n'),
V.L.Klee [6] proved that

(2 o.l01)=Zu @)

d‘n'

where £ is the r-analogue of the Mobius function u
defined by

1 if n=1
1. _ r
3 41, () = (-D"if n=(p,p,....p,) where
r p, < P, <..< p, are primes
0  otherwise
and that
(1.4) @, is multiplicative.

Let Regr(n) denote the set of all I -regular integers

modulo n in C That is,

n,r-

Reg,(n)={k eC,, : k is r —regular modulo n'}
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It is easy to verify that

(15) R,, cReg,(n) n>1 and

r >1.Indeed,

for every integer

if aeR,, then (a,nr)rzl so that

(a, nr):l and therefore there is an integer X, such that

r+1

ax, =1(modn") for which a
holds.

X, =a"(modn") also

Now if we write p, (nr ) :=#Reg, (n), then we have

(1.6) ¢r(nr)< pr(n')é n" forevery n>1and r >1.

Defining the r-gcd-sum function by

P ()= X lkon),,

keCp ¢

(1.7)

the authors [11] have established an asymptotic formula for
its summatory function Z Pr (nr), which gives a result

n"<x
due to Olivier Bordelles[1] as a particular case.

In the present paper we introduce the function

(1.8) Isr(nr):: Z(k’nr)r'

keReg, (n)
where the summation is over all the elements
k eReg,(n). Clearly Pr(n’)s Pr(n') for every
n>landr3 1

The aim of this paper is to obtain some arithmetic properties
of this function and then find an asymptotic formula for its
summatory function. Recently Laszl6 Téth [8] considered

the case r =1 of the function given in (1.8) and results
proved therein can be deduced from our results.

Il. ARITHMETIC PROPERTIES
First we prove
2.1. Lemma.

(i) Forevery n>land r>1

(i) ﬁ (nr) is multiplicative in n
and
(lll) |Sr(p”‘r )= 2par _ p(a—l)r’

for every prime p and integer o >1.

Proof: (i) In view of (1.1), for each K e Regr(n) there
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N" suchthat d’ :(k,nr)r.

is a unique d r‘

r

the number of suchk ’s is equal to

. . n'
number of J’swith 1< j <—and
dl’

. nt —1. This number is equal to n" Hence
J! dr r . §0r dr .
( ) Z d (o{ ] proving part (i)

dan
(i) If g, (m)=l or 0 accordingas M is the r"
power of an integer or not; and if E(m)= m for every
integer M >1 then the identity can be written as

€2 B} 31 OEOw T |

nr
where f(m)= y,(m)E(m) for everym>1. Thatis,
P (nr): (foq, )(nr), where o is the unitary

convolution of arithmetic functions studied by Eckford
Cohen [2], (In fact, for arithmetic functions ¢ and h their

goh defined by
( n It has been proved in [2] that

convolution is

=> g(d

dfn

whenever g andh are multiplicative so is g o h. Hence

unitary

(goh)n)

P, = f o ¢, isalso multiplicative.

(iii) Furtherif p isaprimeand ¢ isan integer >1 then

P(p7)= 3 d ’(pr( E )= 0. (p™ )+ p7e, 1)
dr pl)(l’
_ (par _ p(oz—l)r )+ par
— 2p0n’ . p(a—l)r.

2.3. Remark. If n>1lhas canonical representation
n=p"p,7...p" then Lemma 2.1 shows that
ﬁ (par ): (2 plalr _ pl(al_l)r )(2 pzazl’ _ pz(az—l)r )
(2 ptalr _ pt(at—l)r)
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e

)

Using Lemma 2.1, we find another representation of
P, (nr ) given below:

2.4. Lemma. Foranyn>landinteger r >1,

P(n")= 3 4 (d)sr (5:d),

dé=n"

where T*(m; k) denotes the number of unitary divisors of

m which are relatively prime to k
(Insymbols, o (mk)= Y1 ):

d|m

(d,ﬂH

Proof: - By part (i) of Lemma 2.1 and (1.2),

R(n)= Dteur)

t'u"=n"

(tr,ur):l
o &, o
= a rea m(dp:
tu"=n" ed":”r £
(t’,u'):l
° &, o
= a Dca m(dy+
Du"=n" Cav=u 2
(D,u’):l
= > Dy, (dy
Ddv=n"
(D,dv)=1

= 2 u(d)g| X1

dé=n" D|s
(D,d)=1
= > u.(d)sz"(5:d).
do=n"

3. Asymptotic formula for § (x):: é_ Ig(n)
n"Ex
In this section we deduce an asymptotic formula for the
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summatory function
~ o~ i i . .
S (x) =apr (n ) in two cases- one without assuming
n"Ex

the Riemann Hypothesis and the other with its assumption.

We use the following notation and also some preliminary
lemmas given in [12] and [8]:

The Dedikind function t is defined (see [9], p.41) by

1 w(n)= nl;[(“%j,

where the product is over the primes dividing n.

Set

(3.2) a(k)=4 logp  for any integer k > 1 and & (1)
Ak P 1

:O7

_2o logp :

(3.3) b(k) =a - for any integer k > 1 and H(1)
p‘k p - 1

:O7

34)  S(x)=exp {— A(log x)’ (log log x)%}

and

@5 n(x)= exp{ B(log x)(log log x)’l},
where A and B are positive constants.

Note that (Z(k)ﬁ Z|og p =logk while b(k) £é |092p<¥
p|k Ak P

@6) a(k)=0(logk) and b(k)=0(1).

(3.7) It is well-known that the Dirichlet divisor problem
seeks the least positive real number @ for which

Zr(n) = x(log x + 2y —1)+ 0, (Xmg) holds for each

n<x

X=>1andany ¢ >0.

Hardy [4] proved that g 1, while the best upper
4

bound for & given Huxley [5] is , . 131 .
416

3.8 Lemma ([12], Theorem 4.3).
and every £ >0,

For any integer K >1
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ZT mk

m<x

(2 ())*”( 2y 09X +alk)-2a(k)+
20 , | 2
¢(2) J " O[“lﬂ (K)o (k)x 25 (X)j
k

)

/4

where 1//(k), a( ) ﬂ(k) and §(x) are given in (3.1) to
(3.4); and O'é (k is the sum of the s-th power of square
free divisor of K.

3.9 Lemma ([12], Theorem 5.2). If the Riemann

Hypothesis is true then the error term in the asymptotic
formula in Lemma 3.8 is

O(aim (k)o',(k) X(z_%“m)n(x)j , where 7(x) is

givenin (3.5).

Using Lemma 3.8 and Lemma 3.9; and the Abel’s
identity L&szIl6 Tath [8] derived the following:

3.10 Lemma ([12], Lemma2, p.6). Forevery & >0,

Zmr (m;k)=

m<x

v2r-3-25 8 ofon e, (060

nd if the Riemann Hypothesis is true then the error term in
this formula can be replaced by

o ot )a, x|

24(2)'//( )(Iog x+a(k)-28(k)

Our main theorem is

3.11. Theorem.

(i) For X >1,
S, (x)= 2;(22) (Mlogx +N) +O(x%d(x)),
where
n 1

312 M= nZ:;‘ o) 1:[{ m}
and

_ 1,42
(3.13) N—M(Zy—E—ZQV(Z)j

& u(nYiogn—a(n)+ 26(n)

le ny(n) '

(if) If the Riemann Hypothesis is true the error term in the
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above formula is replaced by

O(X(H%‘”’ )n(x)j.

Proof: - By Lemma 2.4 and Lemma 3.10,
314 S,(x)= > . (d)sr"(5;d
do<x
=>u, d){z&'* (5;d) }
d<x s<X

{s) a0 ate)-20(e)s

- d<x Iu 2)1//

o mof2) 43

_ (logx —logd +a(d)-2p(d)+

. c{g (Yo, (d)o", (d )( 3 J% 5&)
¢

_ X2 00X+ ’(2) /ur(d)
- 24“(2)(' gx+2r=g2 :(2)J'd<x dy/(d)
x? Z(a(d) 2/8(d)—logd ), (d

dy(d

)
+ O[Z 1. (d)o’,(d )(gj

d<x

¢'@2)

2222)('09“” 52 4“(2)J

& w(n) < ow(n)
Sy T

X’ ( (a() () logn)u, (n)
24,(2 n=1 ‘/’()

(¢(n)-2/3(n)~logn) r(n)j

ny(n)

%
x X
oz ovnl;] ;)

AT

tV18
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#(n)le(n)-2/3(n) - log n]}

n-1 n‘//(n)
+ O( logx.>_ :y’/(( })J

. |, (n)|er(n)—23(n)— log n|
O( Z ny(n) J

g ooz 42

In view of (3.1),

R

Sny(n) S
Also by 3.1 and (3.6) we get
|14, (n)|e(n) - 28(n) —log n| = O(logn) o that
(3.16)
|, (n) |er(n)—28(n) - log n| logn (Iong
< =0
g; ny/( ) g; n? X
Finally, since X55(X) is increasing, we have
E E—g & g*é‘
SREEGRDEDEEERS
n n n n n n
= Xa 5()()

andsince o', (n)<z(n), (fore<1),

a',(n)<z(n) we get that

%
317) o zagl+£(n)ago(n)(;<j 25[3
i zrz(n).x%5(x)
n<x n51
- O[X;S(x).z%(h)J

= O[xzé(x)J

Now using (3.15), (3.16), (3.17), (3.12) and (3.13) in (3.14)
we get

(318) S (n')=

2

PR

+O( Iong O[x%é(x))

2

:2§( ){

proving part (i) of the theorem.

M log x + N} + O[x2 log x.lJ
X

M log x + N}+o( x25(x ))
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If the Riemann Hypothesis is true, then (by the Lemma3.10)
the only change in the above is in the error term given in
3.17 and it is replaced by

n

nsx

[ZGM (nj e (X]] Here since 77(x) is

increasing, we get
7-56

5o, 0) )[j R
ST

n=x
7-50
= (& 56/ = O(Xswﬂ(x)}

since 5:42 >1 implies the partial sum on the right is
bounded.
Now the dominant among error terms on the right

7-50
of (3.18)is O X5‘4977(X) and hence the theorem follows

in this case also.

3.19 Remark. The case I =1of Theorem 3.11 gives an

asymptotic formula for é ﬁ(n) , where
nEx
P(n)= > (k,n), obtained by Lészl6 Toth [8], since

keReg,(n)

1,(n)= p(n) foreachn >1.
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