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Abstract: Introducing an r-gcd-sum function over r-regular 

integers modulo ,rn   (studied by the authors [10] earlier), we 

obtain an asymptotic formula for its summatory function. The 

case 1r  of our result gives the formula established by László 

Tóth [8].                 
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I. INTRODUCTION 

Let r be a fixed positive integer.  A positive integer k  is 

said to be r -regular modulo 
rn if there is an integer x  

such that )(mod1 rrr nkxk 
 holds.  For example, the 

set of 2-regular integers modulo 
24  is 

{1,2,3,5,6,7,9,10,11,13,14,15}. 

 The case 1r   gives the regular integer modulo 

n, a detailed study of which was made by László Tóth [7], 

who gave the history of such integers in the same paper. To 

find several equivalent conditions for an integer to be r -

regular modulo ,rn  the authors have used in [10] the notion 

of r -gcd of two positive integers given below: 

For positive integers a and b , their greatest 
thr power 

common divisor is denoted by 
rba ),(  and is called the r -

gcd of a and b . For example, 

    416,100,118,100
22
 while 1000,16( )

3
= 8. 

Note that    baba ,, 1  , the greatest common divisor of 

a and b . Though the concept of r-gcd is due to Fogel (see 

[3], p.134), a study of it was initiated by V.L.Klee [6]. 

In [10] the authors showed, among other things, that . 

(1.1) A positive integer k is r- regular integers modulo 
rn if and only if     

r

rnk ,  is a unitary   divisor  of .rn  

Recall that a divisor d  of a positive integer m   is said to 

be unitary if   
1, 









d

m
d

; and in this case we write md . 
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Clearly 0a  is r -regular modulo 
rn for every 1n   

and  1r .  Also it is easy to see that if  )(mod rnba    

then a  and b are r -regular modulo 
rn simultaneously. 

Further if a  and b are r -regular modulo 
rn then so is 

ab . 

The notions given in ([9], p. 42) are also needed: 

A complete set of residues modulo 
rn   is called a (n, r)-

residue system, while the set of all k in a (n, r)-residue 

system such that   1, r

rnk  is called a reduced (n, r)-

residue system. Note that  r

rn nkkC  1:,  is the 

minimal (n, r) - residue system and that   

  1,:,, 
r

r

rnrn nkCkR  is the minimal reduced 

(n, r)-residue system.  

Denoting the number of elements in rnR ,  by  r

r n ,  

V.L.Klee [6] proved that 

(1.2)      ,
d

n
dn

r

nd

r

r

r
r

 
        

where r  is the r-analogue of the Mobius function   

defined  by 

(1.3)         
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 and that  

(1.4)        r    is multiplicative.      

Let  nrgRe  denote the set of all r -regular integers 

modulo 
rn

 

in rnC , . That is,          

   r

rnr nriskCkn moduloregular:gRe ,   
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It is easy to verify that 

(1.5) )(Reg r, nR rn   for every integer 1n  and 

.1r Indeed, if rnRa ,  then   1, r

rna  so that 

  1, rna  and therefore there is an integer 0x  such that 

)(mod10

rnax   for which )(mod0

1 rrr naxa 
 also 

holds.       

Now if we write    ,gRe#:n r nrr   then we have 

(1.6)     rr

r

r

r nnn    for every 1n  and .1r       

Defining the r-gcd-sum function by 

(1.7)       ,,:
,





rnCk

r

rr

r nknP      

the authors [11] have established an asymptotic formula for 

its summatory function  ,
xn

r

r
r

nP  which gives a result 

due to Olivier Bordellès[1] as a particular case. 

In the present paper we introduce the function  

(1.8)        
 

,,:
~

Re





ngk

r

rr

r

r

nknP                             

where the summation is over all the elements 

 .gRe nk r  Clearly    r

r

r

r nPnP 
~

  for every 

n >1 and r ³1.  

The aim of this paper is to obtain some arithmetic properties 

of this function and then find an asymptotic formula for its 

summatory function. Recently László Tóth [8] considered 

the case 1r  of the function given in (1.8) and results 

proved therein can be deduced from our results.     

II. ARITHMETIC PROPERTIES 

First we prove  

2.1. Lemma.  

 (i)      For every 1n  and 1r        

               









rr nd

r

r

r

rr

r
d

n
dnP 

~
         

(ii)        r

r nP
~

 is multiplicative in n     

and  

(iii)         ,2
~ 1 rrr

r pppP  
   

for every prime p and  integer .1  

Proof:  (i) In view of (1.1), for each   nk rgRe   there 

is a unique 
rr nd  such that   .,

r

rr nkd    

Also for each 
rr nd  the number of such k ’s is equal to 

number of j ’s with 
r

r

d

n
j 1 and    

.1, 








r

r

r

d

n
j  This number is equal to .








r

r

r
d

n
   Hence 

  

   









rr nd

r

r

r

rr

r
d

n
dnP 

~
, proving part (i) 

 (ii)  If   1mr  or 0 according as  m  is the 
thr  

power of an integer or not; and if    mmE    for every 

integer 1m   then the identity can be written as    

(2.2)         









rnD

r

rr

r

r
D

n
DEDnP 

~     

   









rnD

r

r
D

n
Df                               

where      mEmmf r    for . 1every m  That is,  

    ,~ r

r

r

r nfnP    where   is the unitary 

convolution of arithmetic functions studied by Eckford 

Cohen [2], (In fact, for arithmetic functions  hg  and  their 

unitary convolution hg    is defined by 

     . 
















nd d

n
hdgnhg  It has been proved in [2] that 

whenever  hg  and  are multiplicative so is  hg  . Hence 

rr fP 
~

 is also multiplicative. 

(iii)  Further if p  is a prime and  is an integer 1  then       

          1
~

r

rr

r

pd

r

r

r

rr

r pp
d

p
dpP

rr

 














                  

   rrr ppp   1
    

                
  .2 1 rr pp  

                                  

2.3. Remark.  If 1n has canonical representation  

t

tpppn


...21

21  then Lemma 2.1 shows that

 

       ...22
~ 1

22

1

11
2211 rrrrr

r pppppP
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t
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Using Lemma 2.1, we find another representation of 

 r

r nP
~

given below:     

2.4. Lemma. ,1integer and 1anyFor  rn        

     



rnd

r

r

r ddnP


 ,;
~

    

where  km;  denotes the number of unitary divisors of 

m  which are relatively prime to k  

(
 

 




 

1,

1;  symbols,In 

kd

md

km
 ). 

Proof: - By part (i) of Lemma 2.1 and (1.2), 
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3. Asymptotic formula for  Sr x( ):= Pr n
r( )

nr£x

å .                

In this section we deduce an asymptotic formula for the 

summatory function                      

     Sr x( ) := Pr n
r( )

nr£x

å   in two cases- one without assuming 

the Riemann Hypothesis and the other with  its assumption. 

We use the following notation and also some preliminary 

lemmas given in [12] and [8]: 

The Dedikind function   is defined (see [9], p.41) by  

(3.1)        ,
1

1 









np p
nn       

where the product is over the primes dividing n . 

      Set                                                  

(3.2)      a k( ) =
log p

p-1
p k

å      for any integer k > 1 and a (1) 

=0, 

(3.3)     b k( ) =
log p

p2 -1
p k

å  for any integer k > 1 and b (1) 

=0, 

(3.4)            5
1

5
3

loglog.logexp


 xxAx  

and  

 (3.5)           ,loglog.logexp
1

 xxBx  

where A and B are positive constants. 

Note that    
kp

kpk loglog while  
b k( ) £

log p

p2

p k

å < ¥
 

so that  

(3.6) a k( ) =O logk( )  and  b k( ) =O 1( ).  

(3.7) It is well-known that the Dirichlet divisor problem 

seeks the least positive real number   for which        

             

     
 



 xOxxn
xn

12log   holds for each 

1x  and any .0       

 Hardy [4] proved that 
4

1
 , while the best upper 

bound for   given Huxley [5] is 
416

131
 . 

3.8 Lemma   ([12], Theorem 4.3).   For any integer 1k  

and every ,0            
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  xxkkO 




 

2
1

1
2

22
12  

where  k ,  k ,  k  and  x  are given in (3.1) to 

(3.4);  and  ks   is the sum of the s-th power of square 

free divisor of .k    

3.9 Lemma   ([12], Theorem 5.2). If the Riemann 

Hypothesis is true then the error term in the asymptotic 

formula in Lemma 3.8 is 

   
 

    ,45
2

1 







 



 xxkkO  


  where  x  is 

given in (3.5). 

 Using Lemma 3.8 and Lemma 3.9; and the Abel’s 

identity László Tóth [8] derived the following: 

3.10 Lemma   ([12], Lemma2, p.6).  For every ,0         
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k

kx
kmm
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 2log
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;
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1
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2
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2

1
2 a

nd if the Riemann Hypothesis is true then the error term in 

this formula can be replaced by 

   
 

    .. 45
57
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 xxkkO  


    

 Our main theorem is  

3.11. Theorem. 

(i)  For 1x ,         

Sr x( )=
x2

2z 2( )
M log x+N( ) +O x

3
2d x( )( ),  

where   

(3.12) 
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and  

(3.13) 
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(ii)  If the Riemann Hypothesis is true the error term in the 

above formula is replaced by       

 

 
    .45
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Proof: -   By Lemma 2.4 and Lemma 3.10, 

(3.14)      
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In view of (3.1), 

(3.15)  
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Also by (3.1) and (3.6) we get   

       nOnnnnr loglog2     so that  

(3.16) 
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Now using (3.15), (3.16), (3.17), (3.12) and (3.13) in (3.14) 

we get 

(3.18)  
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proving part (i) of the theorem. 

If the Riemann Hypothesis is true, then (by the Lemma3.10) 

the only change in the above is in the error term given in 

3.17 and it is replaced by  
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since 1
45
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 implies the partial sum on the  right is 

bounded. 

 Now the dominant among error terms on the right 

of (3.18) is  

















xxO 
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and hence the theorem follows 

in this case also. 

3.19 Remark.  The case 1r of Theorem 3.11 gives an 

asymptotic formula for P n( )
n£x

å , where     

   
 

,,
~

1Re





ngk

nknP  obtained by László Tóth [8], since 

    .1each for 1  nnn   
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