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Abstract: — Recently the unified method for finding traveling 

wave solutions of nonlinear evolution equations was proposed by 

the first author. It was shown that, this method unifies all the 

methods being used to find these solutions. In this paper, we 

extend this method to find a class of formal exact solutions to 

Korteweg-de Vries equation with time dependent coefficients. A 

new class of multiple-soliton or wave trains is obtained. 

 
Index Terms— Exact solution, Extended unified method, 

Korteweg-de Vries equation, Variable coefficients 

I. INTRODUCTION 

   We consider the following evolution equation  
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 where f  is a polynomial in its arguments. When Eq. (1) 

does not depend explicitly on x  and t , it can be reduced to a 

subclass of ordinary differential equations by using the Lie 

groups for partial differential equations [1] or by using 

similarity transformations. Among these equations, the 

traveling wave has the form  
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which results due to the translation symmetry of (1). The 

Painleve' analysis is used to testing the integrability of partial 

differential equations, that was developed in [2]. 

Auto Backlund transformation deals with the exact 

solutions that were obtained for integrable forms of (2) by 

truncating Painleve' expansion [3-9]. 

 Recently auto Backlund transformation that was 

extrapolated in [10-14] and the homogeneous balance method 

in [15-19] assert a solution for evolution equations with 

variable coefficients in the form   
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 where   is the base function. 

II. EXTENDED UNIFIED METHOD 

Explicit solutions of Eq. (2) are,  in fact,  particular 

solutions. In this respect,  these  solutions are mapped to other 
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solutions that are given in terms of known elementary or 

special functions.  Recently in [20] the class of these solutions 

were obtained by the generalized mapping method (GMM).  

This method generalizes the results as a polynomial or a 

rational function solutions.  In the present paper,  we extend 

this method to handle equations of type (1). 

A. Polynomial solutions 

In this section, we search for polynomial solutions of Eq. (2)  

in ( )sC R  (the class of continuously partially differentiable 

functions up to order s), and we define the set of functions   
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Indeed the set S  contains elementary or elliptic functions for 

some particular values of 1,, kpq  and k . The mapping 

method asserts that there exists a positive integer n  and a 

mapping   
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such that )(=)( nPuM  and satisfies the properties  
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Thus M  is a ring homomorphism that conserves 

differentiation. By the former conditions we find that, 
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 By using the properties of M  and the last results and as 

,...),,,( tuutxff   is a polynomial in its arguments, we 

find that )( fM  is a polynomial and there exists sso   such 

that )(=)( 
o

sPfM  . It is worthy to notice that all 

these polynomials have different coefficients. More simply 

the mapping M  assigns to u  and f  gives two auxiliary 

equations, the polynomials )(nP  and )(
o

sP  respectively. 

In case of Eq. (1) kmmnso = . The utility of the above 

presentation helps us to give arguments to the statements of 

the conditions in lemmas 2.1 and 2.2. Also, we think that it 

allows for constructing more generalization and it is more 

appropriate when (1) is a vector 

equation.  
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We substitute for u , u
x
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m

m

xt



,...,,  as polynomials in   ,  

so that the function f  is a polynomial in ,  together with 

two auxiliary equations. In the applications we may write 

directly ),(= nPu  and )(= 
o

sPf . From the previous 

analysis we may write  
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where for instance we assume that kk =1 , so that the 

auxiliary equations are  
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 together with the compatibility equation  

                                      
.= txxt                                              (5) 

We mention that solutions of (4) when exist, are elementary 

( 1== qp ). The case of elliptic solutions ( 2== qp ) 

will be considered in a future work.  

When substituting from (3) and (4) into (1) we find that it is 

transformed to 0)()( f

o
sP  that gives rise to  
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 By equating the coefficients of , = 0,1,...,i

oi s  to zero, 

we get a set of 1)( os  algebraic (or differential) equations, 

namely the principle equations, in the functions ii ba ,  and 

ic .  On the other hand the equations that result from (5) 

count: 12 k , 2k . We mention that these later unknown 

functions count: 32  kn  .  

In Eq.(1), if x

juu  and u
xm

m




 are the highest nonlinear and 

the highest order derivative terms respectively, then we get 

the balancing condition as 

mkmnknnjso  =1= . Thus by solving for n , 

we find that it depends on jm,  and k . The last result and the 

number of compatibility equations namely 12 k , 2k  

determine if the equations to be solved are over-determined or 

under-determined. The number of the determining equations, 

balances the number of unknowns, is over-determined or is 

under-determined when the difference,namely 

3)2(1)(21)(  knkkmmn  is equal to 

0,>0,  or 0<  respectively. From this last conditions, we 

may determine a consistency condition that will be identified 

in the lemmas. In what follows necessary conditions for the 

existence of polynomial solutions will be stated. 
Lemma 2.1. For polynomial-solutions of (1) (as a 

polynomial in  ) to exist it is necessary that 

(i) )(:=1)/1)(( njkm   is a positive integer  

(ii) mkm  31)(  when the equation (1) in the absence 

of x , and t  passes the Painleve' test . Otherwise m  is 

replaced by 2. 

We notice that the first and the second conditions in lemma 

2.1 are the balancing and the consistency conditions 

respectively. For details see [20]. 

  

B.  The rational  function  solutions 

Here, also we search for solutions of Eq. (1) in ( )sC R . For 

rational function-solutions of Eq.(1), we consider the space of 

functions }),()/(=,{= SQPvv rnR    and )(rQ  

has no zeros in RK  . The definitions in the above and the 

GMM for rational function solutions assert that there exists a 

mapping   
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The properties of these mapping are the same properties of the 

mapping )(uM  in section 2.1.  By bearing in mind these 

properties and from (4), (5) we find that   
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krn ,,  and also on m , where in the case mentioned in the 

above kmmns =1 rm . Simply, we write  

              

./=
0=0=

i

i

r

i

i

i

n

i

dau  
                                  

(7) 

So that the Eq. (1) is transformed to 
1
( ) 0sP   . 

Equivalently,  the last identity becomes 
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In (8),  by equating the coefficients of 
10,1,...,=, sii  to 

zero, we get a set of 1)( 1 s  equations that determine the 

functions iii cba ,,  and id . We mention that these later 

functions count 32  rkn  . By using the same 

assumptions on Eq. (1), as in section 2.1, the balancing 

condition is 
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Now by solving (9) for n , we find that it depends on jm, , r  

and k  and, in both two cases, we get the same equation for 

rn  . Hereafter, we distinguish between the two cases 

mentioned in (9). From the last 

results and when 1< mj , the 

number of the determining 

equations,  
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balances the number of unknowns, is over-determined or is 

under-determined when the difference, namely  

3)2(1)(21)(  rknkrmmkmn  
 Is equal  to 0, > 0, < 0or  respectively.  

But when 1> mj  this difference is  

3)2(1)(21)))((1(  rknkmjrrmmkmn . 

From these last conditions, we may determine the consistency 

condition that will be identified in the following Lemma. 

Lemma 2.2. For solitary wave-rational solutions of Eq. (2) to 

exist it is necessary that 

(i) )(:=1)/1)(( rnjkm   is an integer  

(ii) 1<,31)(1)(  mjmmkmr  

 or ( 2) ( 1) 2 2, > 1r j k m k j m       , in the 

case when Eq. (1) passes the Painleve'test. Otherwise 

2,21)(1)(  kmkmr 1< mj  

or 1>2,21)(2)(  mjkmkjr . 

For details see [20].  

III. EXACT SOLUTIONS OF TIME DEPENDENT 

KDV  EQUATION 

   We consider the following KdV equation with variable 

coefficients 

       
0,=)()( xxxxt uutgutfu                        (10) 

 where f  and g  are arbitrary functions of t . We mention 

that (10) describes the propagation of waves in a medium with 

time-dependent dispersion and conviction. 

In fact, Nirmala and Vedan [21] and E. Fan [12] studied (10) 

by using cklundaBauto   transformation. In this works, 

solutions of (10) were found in the case when 

)(=)( tgctf , where c  is a constant. 

In this case Eq. (10) is transformed to the KdV equation with 

constant coefficients in the variables dttg )(=  , xx = , and 

uu = . So that one gets the well known solutions for the KdV 

equation in the variable cx , namely soliton, solitary, or 

elliptic wave solutions. We mention that these solutions are 

bounded every where. 

In this respect we have the following theorem. 

Theorem 3.1. There exists at least one bounded solution to 

the equation (10) if and only if )(=)( tgctf , where c  is a 

constant. 

Proof. When )(=)( tgctf , from the previous arguments, 

it is a direct result that at least one bounded solution exists. 

Now, we prove the converse. By using the contra-positive 

statement we assume that )()( tgctf  , then we show that 

there exists at most one unbounded solution (in the sense that 

),( txu  behaves asymptotically as x  when x ). To 

this end we set )()(=)( tgtctf  and in the above new 

variables Eq. (10) becomes .0=)( xxxx uuucu    

Indeed this last equation has the particular solution 
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0A  is a constant.  

In the original variables,   
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 which is unbounded.  

In what follows we shall find solutions of Eq. (10) when 

)()( tgctf  . 

A. The polynomial function solutions  

In lemma 2.1, the consistency condition holds when 2,3=k  

but it does not hold when 4k . So that, only the cases 

2,3=k  will be considered. 

- First case: When 2=2,= nk , by substituting into (3), (4) 

and (10), we get six principle equations. We mention that 

calculations are carried out by using MATHEMATICA 

where standard functions in calculus and algebra were only 

needed. The steps of computations are as follows 

Step 1. Solving the principle equations, where five of them are 

solved explicitly to 

 

)),,(),(4

),(3),(),(),(2),(

),(4),(),(8),(),((

)(),(),((
)(),(

1
=),(

)),,(),(),(()(12=),(

),,()(12=),(

22

2

22211

2

20

3

2

2

2

2

1

2

20

2

2

2211

2

22

txctxc

txctxctxctxctxc

txctxctxctxctxc

thtxctxa
tktxc

txb

txctxctxcthtxa

txcthtxa

xx

xxx

x














            (11) 

 and 
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)(
=)(

tg

tf
th , 

)(

1
=)(

tg
tk , 00,)(  ttg .  

The explicit equations for ),(1 txb  and ),(0 txb  are too 

lengthy to written here. It remains only one unsolved equation 

of the principle ones. 

Step 2. We consider the compatibility equations that result 

from txxt  =  and they are given formally by; 
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To simplify the computations, we make the transformations   
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Where ( , ), ( , )
0 1

C x t C x t  are arbitrary functions. 

By solving the equation in (12) for ),(0 txa , we get 

( ) ( )2
( , ) = ( ) 3 ( , ) ( ) 6 ( , ) ( ) ,

0 00 1 0
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x k t h t

a x t a t C x t h t C x t h t
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                                                                                          (14) 

 where )(00 ta  is an arbitrary function. 

When substituting from (14) into (12) we find that the two 

equations (12) 2  and (12) 3  hold. 

Step 3. Solving the reminded 

equations which are given by 
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From (15) we should have 
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which solves to 
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 or in the original variables 
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 where ,, 10 hh  and 2A  are constants. 

As (15) can not be solved exactly, special cases will be 

considered 

(i) When ( , ) = ( ),
0 00
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0A  is a constant. 

Step 4. solve the auxiliary equation in (4), where (4) 2  solves 

to 
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where )(tw  is an arbitrary function, which is determined 

using (4) 1 . 

Step 5. Evaluate (3) to get a solution of (10) by 
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 where 0w  is a constant. 

It is worth noticing that one can verify that the solution (given 

by (20)) satisfies (10). 

(ii) By taking 
( )
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0 00 2
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x
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we find a second solution of (10); 
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 where 00c  is a constant. 

Again, the solution (21) verifies the equation (10). 

It worth noticing that during the computations, we have found 

that ),(2 txc  and ),(1 txc  are arbitrary functions. So that, 

we think that no loss of generality if we take 1),(2 txc , and 

0),(1 txc . 

We mention that if 0>00c  the solution in (21) gives rise to 

wave train solutions. While when 0<00c , it gives rise to 

soliton solutions. 

The solution (21) is displayed in figures 1 (a)  and (b), when 
21=)( ttg  . 

 
Fig 1: (a) a wave train solution when 1=00c ,  

(b) a ``winged''- soliton solution when 1=00 c  

 

- Second case: When = 3, = 4k n , we follow the same 

steps as in the previous case. 
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( )(2 (2 ) ( ) )

1 0 0 0
2 2 2 2

(12 (2 ) ( ))( ( ) )
0 0 0 0 1 0

( )(2 (2
1 0

u x t

h w h h x h w x h h w

h t h w x h w g t dt

h w h h x h w x g t dt

h t h w x h w g t dt

h w h w h h x g t dt

h t h w x

   


   

    


   

    


 
,

2
) ( ) )

0 0
h w g t dt 

          (22) 

( , ) =
2

87 4 2 4 3
4 144 ( ) 12 ( )( )

0 0 0 ( )
0

83 3 2
( )(2 3 ( )( ))

0
( )

0

8 85 6 2
432 ( )( ) 9 ( )( )

0 0 0( ) ( )
0 0

83 3 2
( )(2 3 ( )( ))

0
( )

0

8 85 6 2
432 ( )( ) 9 ( )( )

0 0 0( ) ( )
0 0

( )

u x t

h x x h t h x h t w
h h t

h t x h t w
h h t

x h t w x h h t w
h h t h h t

h t x h t w
h h t

x h t w x h h t w
h h t h h t

h t

  

 

  



 

  

 .
83 3 2

(2 3 ( )( ))
0 ( )

0

x h t w
h h t

 

 

                                                                                          

(23)       
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The solutions (22) and (23) verify the equation (10). 

The solutions in (22) and (23) that correspond to the case (i) 

and (ii) are displayed in figures 2 (a) and (b) respectively. In 

this figures 
21=)( ttg  .  

 

 
Fig  2: (a) case (i), (b) case(ii) 

 

B. The rational function solutions 

    Here, we seek for rational function-solutionsof (10) where 

by using the condition (i) in lemma 2.2, we have two case; 

1=,= knr  and rnkm  =1)1)(( . We confine 

ourselves to the case when rn = . 

In this case the equation (4) becomes as 

      
),,(),(=),,(),(= 0101 txctxctxbtxb xt                  (24) 

 together with the compatibility equation txxt  = . 

We consider the Eq. (7), without loss of generality we take 

1=nd , so that, we may write 

).),()/(),((=
)(

)(
:=)(

),(),(=),(

1

0=

1

0=

1
1

1

i

i

n

i

ni

i

n

in

n
n

nn

txdtxr
Q

P

txatxu




















 (25)                                                                                                   

Lemma 3.1. na  satisfies KdV equation (10) if and only if 

nn 1,  verify the partial differential equation 

0.=)()()()()()()( 11111 xnnxnnxxxntn atgtf       

                                                                                          (26)                                                                                        

It is worth noticing that for 1n  we have a generalized 

auto Backlund  transformation, but for 1=n  it is the 

auto Backlund t transformation. 

Theorem 3.2. When 1=n , a rational solution to (10) exists 

if and only if )(=)( tgctf , where c  is a constant. 

Proof. If )(=)( tgctf  we use dttg )(=  , xx = , and 

uu = , thus (10) becomes KdV equation with constant 

coefficients. It has a soliton solution in the variable 

0= cxz  , 0c  is a constant. This solution is rational in the 

exponential function that satisfies the auxiliary Eq. (24) when 

0c  and 1c  are constants. 

Now, we prove that if a rational solution exists then 

)(=)( tgctf  by the converse statement. We assume that 

there exists )()( tgctf   and a solution exists when 1=n , 

as 

,
),(

),(
=)(),(),(=),(

0

0
001

txd

txr
txatxu





   (27)  

where   satisfies (24) , when 1=n . 

By taking ),(1 txa  as a particular solution which is given in 

theorem 3.1, in this case, the principle equations, namely 

those arising from substituting into (26), we get 

),(),,( 01 txbtxb  and two other equations; namely 

 

( , )( ( , ) ( , ) ( , )) = 0,
0 0

( , )( ( , ) ( , )) = 0,
0

( , ) = ( , ) ( , ) ( , ) ( , ),
0 0 1 0

A x t A x t d x t B x t

A x t B x t B x t

A x t c x t d x t c x t d x t
x





 

         (28) 

 and ),(0 txA , ),(0 txB , and ),( txB  are functions in 

,...,,,,, 001000 xxx ddccrd , ),(=),(),(),( 00 txAtxBtxdtxA  . 

From the last result and (24) 2  when 1=n , we find that; 

              
.)(=),(),(

),(
1

00

dxtxc

etHtxdtx 
                 

(29) 

 

Thus, the denominator is matched to the numerator in (27). 

The equation (28) has the unique solution 0=),( txA . 

Consequently, no rational solution exists to (10) unless 

)(=)( tgctf .  

The study of the case 2n  is not straightforward and will 

not be considered here. 

IV. CONCLUSION 

   In this paper, we suggested an extended unified method for 

finding exact solutions to evolution equations with variable 

coefficients. A wide class of exact solutions to KdV equation 

with time-dependent coefficients is obtained. Some of these 

solutions show ``winged'' soliton (anti-soliton) or wave train 

solutions. The method and the solutions that we obtained here 

are completely new and we can use this method to find exact 

solutions of coupled evolution equations. But in this case we 

think that parallel computations should be used.  
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