
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

137

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1318033113/2013©BEIESP

Abstract— In this paper, bitmask based compression of FPGA

bit-streams has been implemented. Reconfiguration system uses

bitstream compression to reduce bitstream size and memory

requirement. It also improves communication bandwidth and

thereby decreases reconfiguration time. The three major

contributions of this paper are; i) Efficient bitmask selection

technique that can create a large set of matching patterns; ii)

Proposes a bitmask based compression using the bitmask and

dictionary selection technique that can significantly reduce the

memory requirement iii) Efficient combination of bitmask-based

compression and G o l o m b coding of repetitive patterns.

Index Terms—Bitmask-based compression, Decompression

engine, Golomb coding, Field Programmable Gate Array

(FPGA).

I. INTRODUCTION

Field-Programmable Gate Arrays (Fpga) is widely used in

reconfigurable systems. The description of the logic circuit is

entered using a hardware description language such as VHDL

or Verilog. The logic design is drawn using a schematic

editor. Logic synthesizer program is used to transform HDL

or schematic into netlist. A netlist is a description of various

logic gates in the design and their interconnections. The

implementation tool is used to map the logic gates and

interconnections into FPGA. The configurable logic block

(CLB) in the FPGA contains look up tables (LUT’s) which

performs the logic operations. The mapping tool collects

netlist gates into groups that fit into the LUTs and then the

place & route tool assigns the gate collections to specific

CLBs while opening or closing the switches in the routing

matrices to connect the gates together. When the

implementation phase is complete, a program extracts the

state of the switches in the routing matrices and generates a

bitstream where the ones and zeroes correspond to open or

closed switches. Since the configuration information for

FPGA has to be stored in internal or external memory as

bit-streams, the limited memory size, and access bandwidth

become the key factors in determining the different

functionalities that a system can be configured and how

quickly the configuration can be performed. It is quite costly

to employ memory with more capacity and access bandwidth,

bitstream compression technique lessen the memory

constraint by reducing the size of the bitstream. The

compressed bit-streams stores more configuration

information using the same memory.

Manuscript received on March 2013.

S.Vigneshwaran, VLSI Design, Anna University/ SNS College of

Technology, Coimbatore, INDIA.

S.Srikanth, VLSI Design, Anna University/SNS College of technology,

Coimbatore, INDIA.

The efficiency of bitstream compression is measured using

Compression Ratio (CR). It is defined as the ratio between the

compressed bitstream size (CS) and the original bitstream

size (OS) (ie CR=CS/OS). A smaller compression ratio

implies a better compression technique. Among various

compression techniques that has been proposed compression

[5] seems to be attractive for bitstream compression, because

of its good compression ratio and relatively simple

decompression scheme. This approach combines the

advantages of previous compression techniques with good

compression ratio and those with fast decompression.

II. RELATED WORK

 The existing bitstream compression techniques can be

classified into two categories based on whether they need

special hardware support during decompression. Some

approaches require special hardware features to access the

configuration memory, like wildcard register, partial

reconfiguration or frame readback, which are provided only

by certain FPGAs. For example, the wildcard compression

scheme is developed for the Xilinx XC6200 series FPGA,

which support wildcard registers. Using these registers, the

same logic configuration can be written to multiple cells by a

single operation. Pan et al. [1] used frame reordering and

active frame readback to achieve better redundancy. The

difference between consecutive frames (difference vector) is

encoded using either Huffman-based run length encoding or

LZSS-based compression. Such sophisticated encoding

schemes can produce excellent compression. However, the

decompression overhead in [1], is a major bottleneck in

reconfigurable systems.

In contrast, many bitstream compression techniques only

access the configuration memory linearly during

decompression, and therefore can be applied to virtually all

FPGAs. The basic idea behind most of these techniques is to

divide the entire bitstream into many small words, then

compress them with common algorithms such as Huffman

coding, arithmetic coding or dictionary-based compression.

LZSS based. For instance, Xilinx [9] introduced a bitstream

compression algorithm based on LZ77 which is integrated in

the System ACE controller. Huebner et al proposed an

LZSS-based technique for Xilinx Virtex XCV2000E FPGA.

The decompression engine is designed carefully to achieve

fast decompression. Stefan et al.[11] observed that simpler

algorithms like LZSS successfully maintain decompression

overhead in an acceptable range but compromises on

compression efficiency. On the other hand, compression

techniques using complex algorithms can achieve significant

compression but incurs considerable hardware overhead

during decompression. Unfortunately, the authors did not

model the buffering circuitry of

the decompression engine in their

work.

S.Vigneshwaran, S.Sreekanth

Bit-Mask Based Compression of FPGA

Bitstreams

Bit-Mask Based Compression of FPGA Bitstreams

138

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1318033113/2013©BEIESP

Hence the hardware overhead presented for some

variable-length coding techniques may be inaccurate.

To increase the decompression throughput of complex

compression algorithms, parallel decompression can be used.

Nikara et al. [12] improved the throughput employing

speculative parallel decoders. Qin et al. [13] introduced a

placement technique of compressed bit-streams to enable

parallel decompression. However, since the structure of each

decoder and buffering circuitry are not changed, the area

overhead is also multiplied. Most importantly, this approach

does not reduce the speed overhead introduced by the

buffering circuitry for VLC bitstream. In contrast, our

proposed approach will significantly improve the maximum

operating frequency by effectively addressing the buffering

circuitry problem.

III. BACKGROUND AND MOTIVATION

In this section, we briefly analyze the decompression hard-

ware complexity of common variable-length compression

techniques. This analysis forms the basis of our approach.

In the following discussion, we use the term symbol to refer

to a sequence of uncompressed bits and code to refer to the

compression result (of a symbol) produced by the

compression While compression efficiency is straightforward

and widely used criteria to evaluate compression techniques,

the complexity of decompression hardware determines

whether an algorithm with promising compression ratio can

be applied to commercial FPGAs. Interestingly, our study

shows that the complexity of the decompression algorithm is

not the only determining factor of the hardware complexity.

I.DECODE-AWARE BITSTREAM COMPRESSION

Figure 1. Decode-aware bitstream compression.

 Fig.1 [9] shows decode-aware bitstream compression

framework. On the compression side, FPGA configuration

bitstream is analyzed for selection of profitable dictionary

entries and bitmask patterns. The compressed bitstream is

then generated using bitmask-based compression and

Golomb coding. Next, our decode-aware placement algorithm

is employed to place the compressed bitstream in the memory

for efficient decompression. During run-time, the compressed

bitstream is transmitted from the memory to the

decompression engine, and the original configuration

bitstream is produced by decompression.

Memory and communication bus are designed in multiple

of bytes (8 bits), storing dictionaries or transmitting data other

than multiple of byte size is not efficient. Therefore, we

restrict the symbol length to be multiples of eight in our

current implementation. Since the dictionary for bitstream

compression is smaller compared to the size of the bitstream

itself, we use to d=2
i
 to fully utilize the bits for dictionary

indexing, where i is the number of indexing bits.

A. Bitmask Selection

 Bitmask is a pattern of binary values which is combined

with some value using bitwise AND with the result that bits in

the value in positions where the mask is zero are also set to

zero. A bitmask might also be used to set certain bits using

bitwise OR, or to invert them using bitwise exclusive or. This

approach tries to incorporate maximum bit changes using

mask patterns without adding significant cost (extra bits) such

that the CR is improved. Our compression technique also

ensures that the decompression efficiency remains the same

compared to that of the existing techniques. Fig 3 [5] below

represents compression using bitmask selection. The

bit-streams which cannot be compressed using dictionary

selection are compressed by bitmask selection. The selection

of bitmask plays an important role in bitmask-based

compression.

Figure 2. Bitstream compression using bitmask selection

approach.

B. Dictionary Selectin

 Dictionary-based code-compression techniques provide

compression efficiency as well as fast decompression

mechanism. The basic idea is to take commonly occurring

instruction sequences by using a dictionary. The repeating

occurrences are replaced with a code word that points to the

index of the dictionary that contains the pattern. The

compressed program consists of both code words and

uncompressed instructions. Fig.2 [11] shows an example of

dictionary based code compression using a simple program

binary. The binary consists of ten 8-b patterns, i.e., a total of

80-b. The dictionary has two 8-b

entries.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

139

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1318033113/2013©BEIESP

The compressed bit-streams requires 62 b, and the dictionary

requires 16 b. In this case, the CR is 97.5%. The bit-stream

CR for dictionary selection is large therefore it does not yield

a better compression technique. Therefore the bit-streams

which cannot be compressed using dictionary selection can be

compressed by bitmask selection which yields a smaller

compression ratio.

Figure 3. Bitstream compression using dictionary

selection

C. Golomb Coding

 This section covers the details regarding Golomb Coding

basic background information. In Golomb Coding, the group

size, m, defines the code structure. Thus, choosing the m

parameter decides variable length code structure which will

have direct impact on the compression efficiency [10]. Once

the parameter m is decided, a table which maps the runs of

zeros until the code is ended with a one is created.

Determination of the run length is shown as in Figure 3. A run

length of multiples of m are grouped into Ak and given the

same prefix, which is (k – 1) number of one’s followed by a

zero. A tail is given for each members of the group, which is

the binary representation of zero until (m – 1). The codeword

is then produced by combining the prefix and the tail. An

example of the table is in Figure 4.

Figure 3. Determination of run-length

Using Figure 4, binary strings can be divided into subsets of

binary strings and replacing the subsets with the equivalent

codeword as shown in Figure 5.

 Figure 4. Golomb coding example with parameter m = 4

Figure 5. Golomb coding example with parameter m = 4

Figure 6. Golomb encoder algorithm (parameter m = 4)

 The Golomb encoder model can be described in the flow

chart as shown in Figure 6. The tail count is controlled by the

number of ‘0’s in the input data. If ‘0’s are read, then the tail

count will be increased proportionally until it reaches the m

parameter where a ‘1’ will be generated as its output data. If

the input data is ‘1’, the algorithm will generate a ‘0’ which

acts as the divider between the prefix and the tail, and output

the current tail count as the tail of the encoded string. The

algorithm will then reset the tail count and waits for the next

input data. The Golomb decoder model can be described in

the flow chart as in Figure 7. The system will firstly detect the

value of the prefix, if it is a ‘1’, the system will generate 4 ‘0’s

and wait for the next value. If a ‘0’ is detected, the system will

acknowledge that the end of prefix has been met and detects

the value of the first tail bit. If the value of the first tail bit is

‘1’, the system will generate another 2 ‘0’s, otherwise, wait

for the next tail bit. If the last tail bit is ‘1’, another extra ‘0’

will be generated and followed by a ‘1’ which marks the end

of a subgroup of the original data. The system will then return

to the status of waiting for the next subgroup prefix data.

IV. FPGA IMPLEMENTATION

The Golomb encoder algorithm shown in Figure 6 is not yet

a complete design for hardware implementation. Few

modifications must be made in order to allow the algorithm to

function properly. The encoded binary data will not

necessarily be in multiples of bytes, thus padding bits must be

placed to make the encoded

binary data to be in multiples of 8.

Bit-Mask Based Compression of FPGA Bitstreams

140

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1318033113/2013©BEIESP

Figure 7. Golomb decoder algorithm (parameter m = 4)

Other than that, the previous design of the algorithm was

made with the assumption of that the input data string will be

terminated with a ‘1’ but however in reality, this will not

always be the case because the input data string may also be

terminated with a ‘0’. In order to overcome this problem, the

algorithm must be capable of detecting the end of data and if

the last bit is a ‘0’, then additional ‘1’ must be added in order

to complete the encoding process. However this will also

cause another problem of original data being modified due to

the additional ‘1’ added, and the decoding process will not

work properly, resulting in different set of data being

reproduced after the decoding process. In order to solve this

matter, header bytes will be added in the beginning of the

encoded data which will give the information of the original

file size, thus allowing the decoding process to be done

correctly by terminating the decoding process after the data

size of the original file size was reached during decoding

process. The modified Golomb encoder algorithm is shown in

Figure 8.

After the system has been reset, the system will move into

State 1, generating the original file size as its output, and

move into State 2 where the system will wait for input. If the

system detects that the total encoded bytes is already reached,

the system will proceed to State 5. If the data input is ‘0’, the

tail count will increase and return back to State 2.

Figure 8. Golomb encoder algorithm on FPGA with

Parameter m = 4

 After the system has been reset, the system will move into

State 1, generating the original file size as its output, and

move into State 2 where the system will wait for input. If the

system detects that the total encoded bytes is already reached,

the system will proceed to State 5. If the data input is ‘0’, the

tail count will increase and return back to State 2. If the tail

count reaches the value 4, the system will generate an output

of ‘1’. On the other hand, if the data input is ‘1’, the system

will generate an output of ‘0’ which is the separator between

the prefix and the tail and move on to State 3. At State 3, the

system will generate the first tail bit and continued by second

tail bit at State 4. If the total encoded byte is met, the system

will move to State 5, otherwise, back to State 2 where the

system will wait for the next input data. At State 5, if the

system detects that there is a need to finish the encode with an

extra ‘1’ due to the input binary string did not terminate with a

‘1’, then extra encoding will be done with the extra ‘1’ added

and then pad the last byte of data with ‘0’ if the encoded data

is not in bytes (multiples of 8). The system will then stop

handling any process until a Reset signal is given. The

Golomb decoder algorithm shown in Figure 7 is not yet a

complete design for hardware implementation, like its

Golomb Encoder algorithm counterpart. The last byte of the

encoded data may be padded with ‘0’s, thus will give wrong

decoding output.

However, this had been solved by introducing original file

length header into the encoded data as in discussed

previously. By knowing the original file size before encoding,

the decoder will decode the encoded data until the encoded

data reaches the Original file size and terminate the decoding

process. The modified Golomb decoder algorithm is as shown

in Figure 9.

Figure 9. Golomb decoder algorithm on FPGA with

Parameter m = 4

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

141

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1318033113/2013©BEIESP

After the system reset, the system will move into State 1

unconditionally where the system will retrieve the original file

size from the encoded data and store it in memory before

proceeding to State 2. State 2 will always check whether the

total decoded data size has already met the target of the

original file size or not. If the target is met, the process will

terminate and the system will be idle until Reset signal is

given. If the target is not met, the system will move to State 3

where the system will wait for incoming data. If the data

received is a ‘1’, the system will generate 4 ‘0’s and return

back to State 3. If a ‘0’ is received, the system will

acknowledge that the marker between prefix and tail has

already been met and proceed to tail decoding process. For

the first tail bit at State 4, if the ‘1’ is received, the system will

generate 2 ‘0’s as the output and move to State 5 where the

system will decode the second tail bit. If a ‘1’ is received, the

system will generate 1 ‘0’ as the output and move to State 6

where the system will generate a ‘1’ to mark the end of a

subgroup. The system will then return back to State 2 to check

whether the total decoded size has already reached the

original file size or not and the process cycle continues.

D. Decompression Engine

Figure 10. Decompression Engine

The decompression engine is a hardware component used

to decode the compressed configuration bitstream and feed the

uncompressed bitstream to the configuration unit in FPGAs.

A decompression engine usually has two parts: the buffering

circuitry is used to buffer and align codes fetched from the

memory, while decoders perform decompression operation to

generate original symbols .

The design of a decompression engine (DCE), shown in

Fig.10 [11] can easily handle bit masks and provide fast

decompression. The most important feature of decompression

engine is the introduction of XOR gate in addition to the

decompression scheme for dictionary based compression.

The decompression engine generates a test data length

bitmask, which is then XOR ed with the dictionary entry. The

test data length bit mask is created by applying the bitmask on

the specified position in the encoding. The generation of bit

mask is done in parallel with dictionary access, thus reducing

additional penalty. The DCE can decode more than one

compressed data in one cycle. The decompression engine

takes the compressed vector as input. It checks the first bit to

see whether the data is compressed. If the first bit is “1”

(implies uncompressed), it directly sends the uncompressed

data to the output buffer.

On the other hand, if the first bit is a “0”, it implies this is a

compressed data. Now, there are two possibilities in this

scenario. The data may be compressed directly using

dictionary entry or may have use bit masks.

V.CONCLUSION

The existing compression algorithms either provide good

compression with slow decompression or fast decompression

at the cost of compression efficiency. In this paper, we

proposed a decoding-aware compression technique that tries

to obtain both best possible compression and fast

decompression performance. The proposed compression

technique analyzes the effect of parameters on compression

ratio and chooses the optimal ones automatically. We also

exploit Golomb Coding of consecutive repetitive patterns

efficiently combined with bitmask-based compression to

further improve both compression ratio and decompression

efficiency.

REFERENCES

1. J. H. Pan, T. Mitra, and W. F. Wong, “Configuration bitstream compression for

dynamically reconfigurable FPGAs,” in Proc. Int. Conf. Comput.-Aided Des.,

2004, pp. 766–773.

2. S. Hauck and W. D. Wilson, “Runlength compression techniques for FPGA

configurations,” in Proc. IEEE Symp. Field-Program. Custom Comput. Mach.,

1999, pp. 286–287.

3. A. Dandalis and V. K. Prasanna, “Configuration compression for FPGA-based

embedded systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13,

no. 12, pp. 1394–1398, Dec. 2005.

4. D. Koch, C. Beckhoff, and J. Teich, “Bitstream decompression for high speed

FPGA configuration from slow memories,” in Proc. Int. Conf. Field-Program.

Technol., 2007, pp. 161–168.

5. S. Seong and P. Mishra, “Bitmask-based code compression for embedded

systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 27, no. 4,

pp. 673–685, Apr. 2008.

6. S. Hauck, Z. Li, and E. Schwabe, “Configuration compression for the Xilinx

XC6200 FPGA,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 18,

no. 8, pp. 1107–1113, Aug. 1999.

7. D. A. Huffman, “A method for the construction of minimum-redundancy codes,”

Proc. IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

8. A. Moffat, R. Neal, and I. H. Witten, “Arithmetic coding revisited,” in Proc. Data

Compression Conf., 1995, pp. 202–211.

9. Xiaoke Qin, Chetan Muthry, and Prabhat Mishra, “Decoding Aware Compression

of FPGA Bitstreams,” in Proc. Data Compression Conf., 2011, pp. 411–419.

10. S. W. Golomb, “Run Length Encodings,” IEEE Transactions on Information

Theory, vol. 12, pp. 399-401, 1966.

11. Quartus II development software literature, available at

http://www.altera.com/literature/lit-qts.jsp.

AUTHORS PROFILE

Mr.S.Vigneshwaran received his B.E. degree in

Instrumentation and Control Engineering from

Dr.Mahalingam College of Engineering and

Technology, Pollachi in the year 2009, under

Anna University, Chennai, and currently

Pursuing M.E., degree in VLSI Design at SNS

College of Technology, Coimbatore. His area of

interest includes VLSI Design Techniques and

Electronics.

S.Srikanth received his B.E. degree in electronics

and communication engineering from S.N.S

College Of Technology, Coimbatore and M.E

degree from Sri Ramakrishna Engineering college,

Coimbatore. He is Currently working as assistant

Professor in S.N.S College of Technology,

Coimbatore. His area of interest is VLSI signal

processing and Computer Architecture.

http://www.altera.com/literature/lit-qts.jsp

