
International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3 Issue-1, March 2013 

196 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1345033113/2013©BEIESP 

 

Abstract— In this paper, we will be studying about various 

artifacts and constructs about many tools to help developer in 

their task of developing. These tools will try to fulfill the basic 

need of any developer which is to have similar code segments to 

help him to reduce his efforts. For this we have various tools 

available in market. After reading this paper the developer will be 

able to choose the best suitable code detection tool for his work. 

Index Terms— Artifacts, Code detection, Code segment, 

Constructs. 

I. INTRODUCTION 

Today world is revolving around computer and internet. 

Basic need to drive any computer system is the hardware and 

its related software. Software is of many types and being 

classified according to the need of user who is going to be 

using it. Classification involves types such as  

i. System software- Made to drive the system hardware or               

provide a platform for running application. 

ii. Application software- These are software developed to 

ease the work of user. 

iii. Programming software- These are created to support other 

program and application or to help developer in creating 

code. 

The fundamental construct for creating software are some 

lines of code. These lines of code are referred as program by 

the developer. Developer can create a program from scratch 

or can make use of the existing code and perform some 

needed modification to fit to his requirement.  

There are many available tools present in the market. These 

tools do differ from each other in many terms such as their 

way of representing code segments, their indexing technique, 

their code matching technique etc.  

 So in this paper we will provide a way for developer to find 

existing program and make use of them in their environment.  

The rest of the paper is divided into four sections namely 

Motivation which state some previous work, Code detection 

tool classification describing type of tools, Code detection 

process describing the step by step methodology of tools,  

Scenario based example followed by Conclusion of the paper.  

II. MOTIVATION 

Collin McMillan, Mark Grechanik, Denys Poshyvanyk, 

Chen Fu, Qing Xie [1] developed a source code search engine 

that made use of three things for finding code as per user 

requirement. They made use of description of the application, 

API calls used by the application and data flows among those  

 

 
Manuscript received March, 2013.  

Akshat Agrawal, Computer Science and Engineering, Lovely 

Professional University, Jalandhar, India,  

Sumit Kumar Yadav, Computer Science and Engineering, Lovely 

Professional University, Jalandhar, India. 

API calls to find source code [1]. Flow of data among 

various API calls was found to be a significant factor in 

finding code segments and was pioneered by them. Main 

objective was to semantically find out code rather than 

syntactically. Their result were find out to be most relevant 

with respect to other source code search engines such as 

Google Code and Sourceforge which are well known search 

engines for code due to semantic matching. 

Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang, 

Sunghun Kim [2] developed a instant code clone search tool 

which focused on improving performance by avoiding a 

post-mortem technique [2] followed by many tools. Usually 

tools finds the code after it has been developed but this tool 

tries to find code as it when developer is creating. They 

propose scalable indexing structures on vector abstractions of 

code. With this indexing approach they achieved a response 

time of sub-seconds. 

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, 

Stephane Glondu [3] modeled a tree based technique for 

finding code clone. There algorithm focused on finding 

similar subtrees and characterized tree by numerical vector 

[3]. They also made use of clustering technique in which these 

numerical vectors are are clustered into one cluster with 

respect to Euclidean distance metric. This tool is able to work 

upon code created in C and JAVA. 

III. CODE DETECTION TOOL CLASSIFICATION 

In today industry, any development task is followed by 

review of some similar task being done before. So the 

developer is looking for the similar thing present in the nature, 

to make himself aware of its benefits and flaws. They make 

use of the existing structure. But in IT field this practice is 

hard to follow.  

The reason behind this is that initially this way of 

developing code segment was not practiced. Developer try to 

create the code that would suit for only their application and 

as a result there is nothing available upon which one can 

extend. Also there was no efficient way to help developer 

search for similar code if needed. 

There are two ways by which we can provide a developer to 

find related programs or code segments. First is to create a 

source code search engine which will be having similar 

functionality to that of search engines such as Google, but 

designed only for code. Second way is to build a tool precise 

for similar code detection. 

So on the basis of analysis applied to the source code, the 

techniques can roughly be classified into four main 

categories: text based, token based, syntax based, and 

semantic based. 

 

 

 

 

Technique for Searching of Similar Code 

Segments 

Akshat Agrawal, Sumit Kumar Yadav 



 

Technique for Searching of Similar Code Segments 
                                                          

197 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1345033113/2013©BEIESP 

Text based approach make use of the source code or 

program without any modification to match them for the 

developer uses. They treat every word of the code with equal 

importance in the process of code matching. Johnson [4] was 

the first one to use text based matching and made use of the 

fingerprints on source code. Ducasse et al. [6] proposed a 

similar technique and made use of the dot plot. They 

considered a dot at (x, y) if these x and y (representing code) 

are equal. Similar Codes are identified as diagonal. 

Token based approach was firstly used by Brenda Baker 

[7]. In this approach each line of code is first divided into 

fixed length word known as tokens. Similar codes are then 

found on the basis of matching percentage between these 

tokens. These tokens can be identifier and literals. Kamiya et 

al. [8] then later incorporated this technique in his code tool 

CCFinder. 

Syntax based approach was first formulated by Baxter et 

al. in his tool namely CloneDr. In this technique code is 

represented in form of AST (Abstract Syntax Tree) and then 

tree matching corresponds to code matching techniques. We 

can make use of characteristic vector to represent the node of 

a tree as being done in DECKARD [3]. 

With semantic based approach we try to find to find the 

codes with more details and precision. In this the code is 

represented as graph, where nodes are statements and edges 

are dependencies (can be in form of function argument). They 

look for control flow and data dependencies both. We try to 

find similar isomorphic sub graph. Komondoor and Horwitz 

[9] used this technique and results were found out to be better 

from others. 

IV. CODE DETECTION PROCESS 

To understand these tools first of all let us discuss about 

some basic terminologies being used by most of these tools. 

1. Code segment- This is nothing but a small part of the whole 

code. Usually developer is interested in this part of code only. 

2. Code representation- This is the way a particular code 

segments will be represented by a tool so as to save them for 

their matching. Various ways are tree, tokens, graphs. 

3. Code clone- This is a similar code segment to the one we 

are finding out. A code is said to be clone of other if they 

exhibit some form of similarity between them. 

Various modules in a tool created for similar code 

detection are: 

A. Code Repository 

B. Pre-Processing 

C. Transformation 

D. Matching process 

E. Filtering 

 
Fig. 1: General Process for finding code segments 

 

The Figure shown above i.e. Fig. 1 is general overview of 

the techniques used by most of the tools. It is not necessary 

that all the tools follow this procedure. A main objective of all 

tools is to find code segments with great precision. Now we 

will discuss these stages one by one. 

A. Code Repository 

This is a database where all the programs made by different 

programmers are stored in some defined format so as to make 

easy work for tool to process them further. The code 

contained into this database has certain amount of validity. 

The code repository schema may vary from tool to tool. 

B. Pre-Processing 

This is first phase in which a tool will process the code so as 

to have only meaningful code. To have a meaningful code 

some part of the code has to be removed. For example, we 

need to remove SQL code embedded into JAVA code. After 

such removal, the code is partitioned into segments depending 

upon the granularity of the tool. For example, Code may be 

partitioned into lines, function units or tokens. 

C. Transformation 

After breaking the code into units, code is then transformed 

into forms similar to their matching technique used by tools. 

For example, AST in syntax based approach or Graph in 

Semantic based approach. During this transformation we need 

to eliminate white spaces in the code as they are done to have 

some of formatting in the base code. Also we can remove 

comments from the code as they are included only for 

programmer or user understanding. Inclusion of these things 

into detection process will only increase time and may affect 

efficiency of the tool. 

D. Matching Process 

After code being pre-processed and transformed they are 

fed into matching process. This is the heart of every tool and 

consists of an algorithm. Every tool have different matching 

algorithm. This phase compare the code of fixed granularity 

so as to find similar code. This process may also combine 

code granule to form the original code segment. 

E. Filtering 

This phase can be considered similar to ranking phase. The 

output of the matching process is 

feed into filtering process whose 

output is ranked order of the 

matching code.  



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3 Issue-1, March 2013 

198 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: A1345033113/2013©BEIESP 

This phase can be carried out manually which include 

intervention from human experts or automatically. 

V. SCENARIO BASED EXAMPLE 

Now let us see how the above diagram would be 

implemented in practice when working upon the code. This 

scenario is given in accordance to general schematic diagram 

Fig. 1 of the tools.  

Consider following code: 

   Void addMult(int n){ 

    Float a=0.0f  

    // Stores Sum of numbers 

    Float m=1.0f  

    // Stores Multiplication of numbers 

  

   For(int i=1;i<=n;i++){ 

       A=a+I; 

       M=m*I; 

   } 

   return(a,m); 

   } 

Consider the above mentioned code is stored in the code 

repository. This code is stored according to some predefined 

schema of the database. This schema is designed so as to 

make easy for tool to process.  

In the pre-processing stage, the text based tool doesn’t 

modify anything in the code; whereas in token based tool this 

code is broken into tokens such as addmult, int , float, for etc. 

This is the only stage were size of granule are decided for 

code. 

Once the granularity is decided, we then proceed toward 

removing repeating tokens or removing white spaces or 

comments or punctuations marks etc. The code then would 

just be a sequence of token with decided granularity. No 

comments and punctuations will be there. After all this 

process, in syntax and semantic based tool we then go further 

by creating their respective structure. We create Abstract 

Syntax Tree (AST) in syntax based tool and Graph in 

Semantic based tool. In AST the body of FOR loop will be 

forming the sub tree of the node representing token of FOR 

loop. Also we can calculate characteristic vector if necessary 

for all the nodes. This process comes under transformation 

stage and is very specific to the tools. 

Next stage is matching. In this stage based upon the 

granularity of the code comparison is made. In text and token 

based tool, comparison is made with simple text and tokens 

respectively. This type of matching is simple as compared to 

syntax and semantic based tools. Syntax and Semantic based 

tool matching are complex due to comparison between tree 

and sub trees and finding isomorphic graph respectively. Tree 

or graph matching algorithms are efficient but are bit time 

consuming. 

The last stage is filtering. This phase can be done manually 

in which a team of expert decide the usefulness of found code 

and rank them accordingly. This technique is used by many 

tools. Other approach includes creation of a ranking algorithm 

which is used by DECKARD and many others. 

VI. CONCLUSION 

In this challenging environment lot of tools are available in 

the market for finding similar code segments or search code 

itself, as a developer these tools will alleviate him to find code 

as he is now able to look up similar code rapidly and 

efficiently. As from the point of view of developer their main 

concern is to reduce their effort and time, so these code search 

tools should consider this as their prime focus. These tools not 

only vary in their searching algorithm but also vary in terms of 

language they support. So a developer should choose a tool 

carefully.  

REFERENCES 

1. Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, Qing 

Xie, “Exemplar: A Source Code Search Engine For Finding Highly 

Relevant Applications,” IEEE, 2010. 

2. Mu-Woong Lee, Seung-won Hwang, Sunghun Kim, “Integrating Code 

Search into the Development Session,” IEEE 2011. 

3. L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable 

and accurate tree-based detection of code clones,” ICSE, 2007. 

4. J. Johnson, “Identifying Redundancy in Source Code Using 

Fingerprints,” Proceedings of the 1993 Conference of the Centre for 

Advanced Studies on Collaborative Research, CASCON 1993, pp. 

171–183. 

5. U. Manber, “Finding Similar Files in a Large File System,” 

Proceedings of the Winter 1994 Usenix Technical Conference, pp. 

1-10. 

6. S. Ducasse, M. Rieger and S. Demeyer, “A Language Independent 

Approach for Detecting Duplicated Code,” Proceedings of the 15th 

International Conference on Software Maintenance, ICSM 1999, pp. 

109-118. 

7. B. Baker, “On Finding Duplication and Near-Duplication in Large 

Software Systems,” Proceedings of the 2nd Working Conference on 

Reverse Engineering, WCRE 1995, pp. 86-95. 

8. T. Kamiya, S. Kusumoto and K. Inoue, “CCFinder: A Multilinguistic 

Token-Based Code Clone Detection System for Large Scale Source 

Code,” IEEE Transactions on Software Engineering, 28(7) pp. 

654-670. 

9. R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication 

in Source Code,” Proceedings of the 8th International Symposium on 

Static Analysis, SAS 2001, pp. 40-56. 

10. Simone Livieri, Yoshiki Higo, Makoto Matushita, Katsuro Inoue 

“Very-Large Scale Code Clone Analysis and Visualization of Open 

Source Programs Using Distributed CCFinder: D-CCFinder,” in IEEE 

2007. 

AUTHORS PROFILE 

 
Akshat Agrawal has completed graduation 

(B.E.) in Information Technology from 

University of Pune in 2011. Currently, he is 

pursuing her Master Degree (M.Tech) in 

Computer Science and Engineering from Lovely 

Professional University. He has keen interest in 

data mining and data warehousing. He has been 

researching in this field from his Bachelor 

degree and had made a project in the same area 

earlier.  

 

 

 Sumit Kumar Yadav has done his 

graduation (B.Tech) from UPTU in 2008 and 

received a M.S degree in Computer Science and 

Engineering from IIIT, Hyderabad, India. 

Currently, He is working as the Assistant 

Professor of Computer Science and Engineering 

in Lovely Professional University, Jalandhar. 

His current research includes Database, Data 

mining and Data warehouse. He has done a lot of 

research in this field and has published many 

paper in International Journals and Conferences. 

 


