
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

352

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1351033113/2013©BEIESP

Comparative Study of Test Driven

Development with Traditional Techniques

Shaweta Kumar, Sanjeev Bansal

Abstract - Test-Driven Development is the evolutionary

approach in which unit test cases are incrementally written prior

to code implementation. In our research, we will be doing

comparative study of Test Driven development with traditional

techniques through literature study as well as industrial survey.

Through this research, we would like to find out the factors

encouraging the use of Test Driven Development and also the

obstacles that are limiting the adoption of Test Driven

Development in the industry. The TDD method is radically

different from the traditional way to create software. In

traditional software development models, the tests are written

after the code is implemented, in other words we could refer it as

test-last. This does not drive the design of the code to be testable.

Defining the tests with the requirements, rather than after, and

using those tests to drive the development effort, gives us much

more clearly picture and share focus on the goal. If tests are

written after the implementation, there is a risk that tests are

written to satisfy the implementation, not the requirements. An

important rule in TDD is: “If you can’t write test for what you

are about to code, then you shouldn’t even be thinking about

coding.”

 Keywords- extreme programming, refactoring, test driven

development, test-first methodology, test-last methodology.

I. INTRODUCTION

Test-driven development (TDD) is the core part of the

agile code development approach drives from Extreme

Programming (XP) and the principles of the Agile

Manifesto. According to literature, TDD is not all that new;

an early reference to the use of TDD is the NASA Project

Mercury in the 1960's. Several positive effects have been

reported to be achievable with TDD.

TDD is not a testing technique, as its name indicates, but

rather a development and design technique in which the tests

are written prior to the production code. The tests are added

gradually during the implementation and when the test is

passed, the code is refactored to improve the internal

structure of the code. This cycle is repeated until whole

functionality is implemented. The TDD cycle consists of six

fundamental steps:

Manuscript Received on March, 2013

Shaweta Kumar working as System Analyst at Aon Hewitt, is currently

pursuing M.Tech Computer Science, ASET, Amity University, Noida,

India.
Prof. Dr Sanjeev Bansal, Guide, Amity Business School, Amity

University, Noida, India.

1. Write a test for a piece of functionality,

2. Run all tests to see the new test should fail,

3. Write code that passes the tests,

4. Run the test to verify they pass,

5. Refactor the code and

6. Run all tests to see the refactoring did not change the

external behavior. [1]

The first step involves simply writing a piece of code that

tests the desired functionality. The second one is required to

validate that the test is correct, i.e. the test must not pass at

this point, because functionality has not been implemented

yet. Nonetheless, if the test passes, the test is not correct and

requires update. The third step is the writing of the code.

However, it should be kept in mind to only write as little

code as possible to pass the test. Next, all tests must be run

in order to verify desired functionality is implemented. Once

all tests pass, the internal structure of the code should be

improved by refactoring.

Figure 1: Test Driven development

A. Write test:

Tests in TDD are somewhat like unit tests with the

difference that they are written for behaviors, not for

methods. It is important that tests are written so that they are

order independent, i.e. the result remains the same

regardless of the sequence in which the tests are run. [3]

When writing the tests it should be kept in mind that the

tests should concentrate on testing the true behaviors, i.e. if

a system has to handle multiple inputs, the tests should

reflect multiple inputs. [3]

B. Run test:

The test is run to verify if test written is useful or not. In

case, test case passes, this indicates that test is worthless.

This also validates that the test harness is working correctly

and that the new test does not mistakenly pass without

requiring any new code. The new

test should also fail for the

expected reason.

http://en.wikipedia.org/wiki/Test_harness

Comparative Study of Test Driven Development with Traditional Techniques

353

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A1351033113/2013©BEIESP

This increases confidence (although it does not entirely

guarantee) that it is testing the right thing, and will pass only

in intended cases.

 C. Write Code:

In TDD, the code writing is actually a process for making

the test work, i.e. writing the code that passes the test. Beck

proposes three different approaches for doing that: fake it,

triangulation, and obvious implementation. The first two are

techniques that are less used in concrete development work.

Figure 2: TDD Flowchart

"Fake it" may be employed, for example, by replacing the

return value of some method with a constant. It provides a

quick way to make the test pass. It has a psychological

effect while giving the programmer confidence to proceed

with refactoring and it also takes care of the scope control

by starting from one concrete example and then generalizing

from there. The abstract implementation is driven through

sensing the duplication between the test and the code. "Fake

it" implementation can give a push towards the right

solution, if the programmer really does not know where to

begin to write the code. [3]

Triangulation technique can be used to get to the correct

abstraction of the behavior, i.e. the "fake it" solution is not

usable anymore. For example, there are at least two different

cases in the test method requiring different return values,

and obviously, returning of the constant does not satisfy

both of them. After reaching the abstract implementation,

the other assertion becomes redundant with the first one and

it should be eliminated. [3]

The obvious implementation is used when the

programmer is confident and knows for sure how to

implement some operation. Constant practicing of "obvious

implementation” can be exhaustive, since it requires

constant perfection. When the tests start to fail

consecutively, it is recommended to practice the "fake it" or

the "triangulation" until confidence returns. [3]

D. Refactor:

Refactoring is a process of improving the internal

structure by editing the existing working code, without

changing its external behavior. It is essential, because the

design integrity of software scatters over time due to the

accumulated pressure of modifications, enhancements and

bug fixes. Now the code can be cleaned up as necessary.

The idea of refactoring is to carry out the modifications as

a series of small steps without introducing new defects into

to the system. By re-running the test cases, the developer

can be confident that code refactoring is not damaging any

existing functionality.

In our research, we would be doing comparative study of

Test Driven development with traditional techniques and

discussing pros and cons of these techniques. This study will

reveal factors that encourage the use of Test Driven

Development in industry and would try to find the

weaknesses of TDD that limits their use in industry.

II. BACKGROUND DETAILS

TDD has been studied in a number of prior experiments.

Boby George and Laurie [7] conducted a structured

experiment with 24 professional pair programmers to

evaluate the External code quality, Productivity, and Code

coverage using the TDD and the classical model. One group

developed code using TDD while the other a waterfall-like

approach. Study involved both quantitative as well as

qualitative approach to examine the effects of TDD on

external quality and programmer productivity.

Adnan, Daniel and Sasikumar [8] conducted survey to

find out the roadblocks in adoption of TDD approach. In this

study, they found seven limiting factors viz., increased

development time, insufficient TDD experience/ knowledge,

lack of upfront design, domain and tool specific issues, lack

of developer skill in writing test cases, insufficient

adherence to TDD protocol, and legacy code.

A study similar to the one presented in this research tried

to evaluate the programmers’ productivity, internal and

external quality of the product, and the programmers’

perception of the methodology [9]. In the study, few

undergraduate students used a TDD methodology as

opposed to a traditional development process and found

using TDD more productive in comparison to traditional

approach.

Janzen [10] demonstrated that programmers using TDD in

industry produced code that passed in up to 50% more

external tests than code produced by control groups not

using TDD and spent less time in debugging. Janzen also

reported that computational complexity is much lower in

test-first code while test volume and coverage are higher.

In this research, we have conducted a survey that was

distributed through Survey Monkey to 80 anonymous

participants who have came from a range of organizational

and team structures; from large multinational companies to

small start-ups. Attempts were made to gather different

perspectives of Test driven development as represented by

different team roles.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

354

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1351033113/2013©BEIESP

III. COMPARATIVE STUDY OF TEST DRIVEN

DEVELOPMENT WITH TRADITIONAL

TECHNIQUES

According to Test Driven Development, TDD can be

described as to “only ever write code to fix a failing test”.

Before any production code is ever written, the programmer

must first write a test that will define the new functionality

being coded. This is referred as Test-First. However, there is

difference in test first and test driven development.

Test Driven Development = Test First + Refactoring

In Traditional techniques, first code is written, and then

code is written and executed. So it is also referred as Test-

Last.

The Test driven development and Traditional Techniques

approach can be summarized in Figure 3. These figures only

describe the detailed design, code, and unit test phases of the

software development lifecycle.

According to Koskela, “The final step of the Test-Driven

Development cycle of test-code-refactor is when we take a

step back, look at our design, and figure out ways of making

it better.” [5] Although none of the steps in the Traditional

technique sequence contain the word “refactor”, this does

not imply that this activity is omitted. Refactoring

occasionally occurs during the test phase of the Traditional

methodology when programmers are addressing known

software defects.

The following are the steps of Test Driven Development:

1. Pick a feature or a user requirement.

2. Write a test that fulfills a small task or piece of the

feature or user requirement (e.g. one method) and have

the test fail.

3. Write the production code that implements the task and

will pass the test.

4. Run all of the tests.

5. Refactor the production and test code to make them as

simple as possible, ensuring all tests pass.

6. Repeat steps 2 to 5 until the feature or user requirement

is implemented.

Figure 3: Comparison of TDD and Traditional

approach

The following are the steps of Traditional Techniques:

1. Pick a feature or a user requirement.

2. Write the production code that implements the feature or

user requirement.

3. Write the tests to validate the feature or user requirement.

4. Run all the tests.

5. Refactor if necessary

Now, we will be doing detail comparative study of

different Traditional Techniques and Test Driven

Development. We will be discussing the factors that

encourage their use and factors that limit their use in

industry.

A. Traditional Techniques

Most commonly Software Development techniques are

Waterfall Model, Spiral Model and V Model. Though, all of

them have different concepts, but all of them have one thing

in common i.e. Test is executed only after coding. In below

section we will be discussing common stages of traditional

techniques.

1. Requirement Analysis & Specification: All possible

requirements of the system to be developed are captured in

this phase. Requirements are set of functionalities and

constraints that the end-user (who will be using the system)

expects from the system. The requirements are gathered by

discussion with client, these requirements are analyzed for

their validity and the possibility of incorporating the

requirements in the system to be development is also

studied. Finally, a Requirement Specification document is

created which serves the purpose of guideline for the next

phase of the model.

2. System & Software Design: Before a starting for actual

coding, it is highly important to understand what we are

going to create and what it should look like?

The requirement specifications from first phase are

studied in this phase and system design is prepared. System

Design helps in specifying hardware and system

requirements and also helps in defining overall system

architecture. The system design specifications serve as input

for the next phase of the model.

3. Implementation and Unit testing: On receiving system

design documents, the works divided in modules/units and

actual coding is started. The system is first developed in

small programs called units, which are integrated in the next

phase. Each unit is developed and tested for its

functionality; this is referred to as Unit Testing. Unit testing

mainly verifies if the modules/units meet their

specifications.

Figure 4: Traditional Techniques

4. Integration and System testing: As specified above, the

system is first divided in units which are developed and

tested for their functionalities. These units are integrated

into a complete system during Integration phase and tested

to check if all modules/units

coordinate between each other

and the system as a whole

behaves as per the specifications.

Comparative Study of Test Driven Development with Traditional Techniques

355

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A1351033113/2013©BEIESP

After successfully testing the software, it is delivered to the

customer.

5. Operations and Maintenance: This phase of "The

Waterfall Model" is virtually never ending phase. Generally,

problems with the system developed (which are not found

during the development life cycle) come up after its

practical use starts, so the issues related to the system are

solved after deployment of the system. Not all the problems

come in picture directly but they arise time to time and

needs to be solved; hence this process is referred as

Maintenance.

Shortcomings:




test the new functionality.

 Some redundant code got implemented that are never

executed.

B. Test Driven Development

On the surface, TDD is a very simple methodology that

relies on two main concepts: unit tests and refactoring. TDD

is basically composed of the following steps:

• Writing a test that defines how a small part of the

software should behave.

• Making the test run as easily and quickly as possible.

Design of the code is not a concern; the sole aim is just

getting it to work.

• Cleaning up the code. A step back is taken and any

duplication or any other problems that were introduced to

get the test to run is refactored and removed.

TDD is an iterative process, and these steps are repeated a

number of times until satisfaction with the new code is

achieved. TDD doesn't rely on a lot of up-front design to

determine how the software is structured. The way TDD

works is that requirements, or use cases, are decomposed

into a set of behaviors that are needed to fulfill the

requirement. For each behavior of the system, the first thing

done is to write a unit test that will test this behavior. The

unit test is written first so that a well-defined set of criteria

is formed that can be used to tell when just enough code to

implement the behavior has been written. One of the

benefits of writing the test first is that it actually helps better

define the behavior of the system and answer some design

questions

1. Benefits of Test Driven Development

Test Driven Development contributes to software

development practice from many aspects such as

requirements definition, writing clean and well designed

code, and change and configuration management. Few other

benefits can be summarized as:

Simpler Development Process: Developers who use TDD

are more focused. The only thing that a TDD developer has

to worry about is getting the next test to pass. The goal is

focusing the attention on a small piece of the software,

getting it to work, and moving on rather than trying to create

the software by doing a lot of up-front design.

Improved Communication: Communicating how a piece

of software will work is not always easy with words or

pictures. Words are often imprecise when it comes to

explaining the complexities of the functionality of software.

The unit tests can serve as a common language that can be

used to communicate the exact behavior of a software

component without ambiguities.

Improved Understanding of Required Software Behavior:

The level of requirements on a project varies greatly.

Sometimes requirements are very detailed and other times

they are vague. Writing unit tests before writing the code

helps developers focus on understanding the required

behavior of the software. Each of these pass/fail criteria

adds to the knowledge of how the software must behave. As

more unit tests are added because of new features or new

bugs, the set of unit tests come to represent a set of required

behaviors of higher and higher fidelity.

Reduced Design Complexity: Developers try to be forward

looking and build flexibility into software so that it can

adapt to the ever-changing requirements and requests for

new features. Developers are always adding methods into

classes just in case they may be needed. This flexibility

comes at the price of complexity. In the TDD process,

developers will constantly be refactoring code. Having the

confidence to make major code changes any time during the

development cycle will prevent developers from

overbuilding the software and allow them to keep the design

simple.

2. TDD relation with other lifecycle stages

2.1 TDD and Software Requirements:

It is a well known fact that one of the main reasons of a

software project failure is misunderstood or badly managed

requirements. Requirements documented in the form of text

or design program have the risk of being incomplete or

unclear in comparison to program code, which is formal and

by its nature, is unambiguous.

Consequently, simply designed and well decomposed

tests reveal the behavior of a piece of code in an

unambiguous and clear way. Agile software development

methodologies assume that a full set of requirements for a

system cannot be determined upfront. Instead, requirements

are gathered and modified throughout development leading

to a flexible development process. Requirements gathering

process is accomplished through small releases and constant

feedback from the customer.

In Extreme Programming (XP) requirements are collected

as short user stories written on small cards. That means high

level business functions are expressed as a collection of

finer grained features. This is complementary with the

rhythm of test first design, deciding on a feature, writing a

small test that validates the feature is working and

implementing it. [2]

2.2 TDD and Software Design:

One of the main focuses of agile software development

practices is keeping the software as simple as possible

without sacrificing quality. That is, any duplication of logic

in software must be eliminated and the code should be kept

clean. Agile methods proposes a key approach to

accomplish these goals; implementing the simplest solution

that works for a feature, just enough to pass the tests.

Customer requirements constantly change. Trying to

estimate possible future requirements and designing the

software with this in mind may introduce many unneeded

features into the software. This might make the software

more complicated and bigger than needed, which in the end

would result in additional

maintenance burden.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

356

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1351033113/2013©BEIESP

Refactoring simplifies that burden and thus test driven

development also helps designing modular and well

decomposed software.

2.3 TDD and Software Maintenance:

The design of a software system tends to decay during its

lifetime, as new or changing requirements or bug fixes

patched into the code unless it is continuously refactored

and rearchitectured. Without a suite of complete regression

tests, refactoring software is practically impossible because

it will not be possible to know which parts of the software

are affected from a change. Test driven development

includes continuous but small refactoring into the

development activity itself. The code, test, refactor cycle is

applied at every small step so that the design is always kept

clean and the code is always kept working.

2.4 TDD and Software Documentation

Documenting software code is a daunting and mechanical

task. Just like software design tends to decay in time,

documentation tends to get outdated, including the

comments in the code. Besides, it is not possible to validate

the documentation by an automated process. In contrast,

automated tests are always kept up to date because they are

run all the time. An agile methodology does not claim that

all documentation should be replaced with automated tests;

however they tend to keep the documentation as small as

possible.

IV. RESEARCH METHODOLOGY

The methodologies used in this research are systematic

literature review using guidelines from Kitchenham [5] and

survey. According to Kitchenham, a systematic literature

review or systematic review is a mean of identifying,

evaluating and interpreting all available research relevant to

a particular research question, topic area or phenomenon of

interest.

This research study will utilize both qualitative and

quantitative research methods to analyze the compare results

of TDD and rest Traditional techniques. In this research, as

there are a number of studies particularly from software

practitioners reporting their experiences of using Test

Driven Development in many different ways, the systematic

review is selected as an appropriate methodology in order to

summarize the existing empirical evidence regarding TDD

practices adaptation.

A. Objectives:

The goal of this research is to compare Test Driven

Development with Traditional techniques for the purpose

of evaluating internal quality, programmer productivity,

and programmer perceptions.

 The objective of this study is:

· To identify the factors affecting the choice of the Test

Driven Development in the software/IT industry

· To determine the factors limiting the adoption of TDD

in industry To ensure validity of results, various

methods will be used for validation and verification.

B. Data Collection:

Authors have undertaken a survey-based approach to

assess use software life cycle models in Indian Software

Industry. In a survey based approach the usual proceeding to

gather information is the usage of questionnaires or

interviews. These are applied to a representative sample

group and the outcomes are then analyzed. Both qualitative

as well as quantitative data can be derived from this

strategy.

Questionnaire survey methodology was preferred for this

research since it is a reliable and economical method for

data collection. A questionnaire was distributed through

Survey Monkey to gather survey data.

C. Survey Design:

The web-based survey contains ten questions in total and

can be divided into two main parts: demographics and

Comparison of test driven development with traditional

development.

Survey Link http://www.surveymonkey.com/s/9LNJ2HZ

The demographics of the respondents are addressed by

question one to three. It covers the following information:

o The respondent’s role in the company

o Respondent’s knowledge of Traditional development

o Respondent’s knowledge of Test Driven development

Next section starts from question four to ten which discuss

comparative study of Traditional Technology with Test

driven development on the basis of respondent’s work

experience.

It also covers following information:

o It discusses organization’s main drivers for introducing

Test Drive Development

o Effect of TDD on various parameter are discussed

o Main difficulties impacting industry acceptance to Test

driven development

D. Pilot and Implementation

In order to make the survey as comprehensive and

compact as possible, a survey pilot was performed to test

whether the respondents understand the questions and

whether all respondents interpret the meaning of the

questions in the same way. The invitation emails for the

pilot survey were sent to 5 recipients who are the sample of

the target population members. The pilot survey was opened

for two days. The feedback from the pilot participants were

collected and used to modify the survey design. The results

from the pilot show that the survey design was good enough,

only some minor changes were made.

After the survey design was finalized and updated on the

online survey tool, the survey was released over a period of

three weeks (9 Jan – 5 Feb 2013). The invitation emails

were sent to numerous software companies. We also

identified several online discussion groups e.g. LinkedIn and

Face book that focus on Test driven development and posted

a solicitation message inviting the group members who had

experience using Test driven development approach.

Attempts were made to gather different perspectives of Test

driven development as represented by different team roles.

In all 15 software development companies were selected

on random basis. The lists of companies/Institutes the

questionnaire has been distributed are as follows:

1) Aon Hewitt, Gurgaon 2) Naukri, Noida

3) Clear2pay, Noida 4) HCL, Noida

5) Sapient, Bangalore 6) SAP labs, Gurgaon

7) Nucleus, Noida

 8) Accenture, Noida

Comparative Study of Test Driven Development with Traditional Techniques

357

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A1351033113/2013©BEIESP

9) Reliance (ADA), Mumbai 10) TCS, Pune

11) Avaya, Pune 12) Erikson, Gurgaon

13) AMDOCS, Pune 14) UHG, Noida

15) Infosys, Hyderabad

In total 52 software tester participated in the study. The

percentage for each item was calculated to reach the

inference. The view point of the participant was tabulated

and graphs were made to shows the results.

E. Experience Sharing:

At the end of our survey, which consisted mostly of

structured questions, we invited our respondents to share

additional comments about Test Driven Development and

traditional techniques and their experiences with using them.

This helps us to get to know some other facts and key points

that we might not able to cover in survey. However, in

reviewing the literature and with questionnaire, these

methods were seen as most reflective of current usage and

were considered most likely to produce practical

information. The use of a mix of qualitative and quantitative

research methods provided an opportunity to gain a better

understanding of the factors that impact developers

experiences in Test Driven development.

V. DATA ANALYSIS AND RESULTS

Participants came from a range of organizational and

team structures; from large multinational companies to small

start-ups, and from entirely self-regulating teams to teams

with high levels of management supervision.

Figure 5: Respondent’s profile

Survey Question 1

The first research question was, ‘‘How would you rate

your knowledge of Traditional Methodologies?’’

From the findings discussed above, the answer is clearly

“Average” or “Extensive”. These Traditional developments

are in trend from past so many years that we have worked

on either of them. Thus consider their knowledge extensive.

Few people believe these traditional technologies are so vast

that it would be wrong if they say their knowledge is so

extensive. But half of them believe, they have worked so

much on these methodologies that had that much knowledge

Figure 6: Respondent’s knowledge of Traditional

techniques

Survey Question 2

The first research question was, ‘‘How would you rate

your knowledge of Test driven development?’’

From the findings discussed above, the answer is clearly

“Average”. People somehow feel TDD approach is too new

to the market, so in comparison to Traditional Technology

their knowledge of TDD would be average or less.

Figure 7: Respondent’s knowledge of TDD

Few respondents rated their knowledge of TDD as

extensive as they have prior that much experience for this.

Survey Question 3

The next research question was, ‘‘what is your personal

belief in the effectiveness of Developer TDD (Check all that

applies, if any)? ’’ Majority of the participants considers

TDD “Has some potential for quality improvement” and

“Will increase ability to react to stakeholders changing

needs“. Few participants believe TDD will increase the

change of project failure. Rest People somehow don’t want

to give any opinion on this.

While sharing their experience, we came to know that

respondents are not against the TDD but the main factor that

limits TDD adoption is Company acceptance to TDD.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

358

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1351033113/2013©BEIESP

Figure 8: Respondent’s belief for TDD

Survey Question 4

The next research question was, ‘‘What benefits of

Developer TDD have you Actually experienced (check all

that apply, if any)?”

Figure 9: Benefits respondent experienced

From the finding below, this clearly shows, all benefits

are equally important for TDD.

“Increased quality”, “Increased ability of developers to

safely change software”, “Increased ability to react to

changing stakeholder needs”, “Improved specification

accuracy”, “Increased amount of specification” and

“Improved chance of keeping specifications in sync with the

code”

Survey Question 5

Figure 10: Effect of TDD on defect density

The next research question was, “How much Test Driven

Development impact Defect Density in comparison to

traditional technique?” With regards to defect density, all

respondents cited that TDD decrease defect density either

immediately or in the long run. Simply designed and well

decomposed tests enables them to understand the

requirement more clearly and unambiguous which decrease

defect density.

Survey Question 6

The next research question was, “How much Test Driven

Development impact Productivity of software in comparison

to traditional technique?” When the impact of productivity

of software was presented to the respondents the majority of

the respondents were inclined to say that TDD improves the

productivity in the long run.

Figure 11: Effect of TDD on productivity

Few of the respondents stated that they have experienced

increase productivity immediately where as few experienced

the opposite i.e. decrease productivity immediately.

Survey Question 7

The next research question was, “How much Test driven

developments impact the Complexity of source code in

comparison to traditional technique?”

The findings of the effects of TDD approach on code

complexity of source code do not support my earlier reading

and observed study in this section. Through Literature

survey, we noticed that refactoring decrease code

complexity. But more than 60% of the respondents stated

that there was no significant impact on Code complexity

while using TDD approach. Few of the respondents, find

that TDD approach often results into decreasing code

complexity.

Figure 12: Effect of TDD on code complexity

Comparative Study of Test Driven Development with Traditional Techniques

359

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: A1351033113/2013©BEIESP

Survey Question 8

The next research question was, “What is your opinion

about ease of learning TDD approaches (Junit, acceptance

TDD)?”

When asked about ease of learning TDD approaches,

Most of the respondents had neutral opinion of learning

TDD approaches. Few people think it was difficult to learn

them. When asked about the reason that we lead to

conclusion inadequate training material, reluctance to accept

new approach is somehow the factor that make them

difficult to learn TDD approach.

Figure 13: TDD ease of learning

Last Question was “What are the factors that are limiting

the adoption of Test Driven development in industry (check

all that apply, if any)?”

Figure 14: Factors limiting TDD adoption

Finally we tried to find out the biggest barrier to the

adoption of Test Driven Development in industry, and came

to conclusion that Main factor that limits TDD adoption is in

sufficient TDD experience. Also With any significant

process change, the biggest barrier is the ability to change

organizational culture followed by general resistance to

change. The other common concerns listed by respondents

were increased development time, insufficient design and

Domain and tool specific limitation.

Threats to Validity

In this section, we list threats that potentially would

invalidate our results and findings, in order to limit the

scope our claims as well as explain their utility.

Experience: Although many respondents showed great

theoretical and practical knowledge about TDD, it is hard to

know if they do exactly the way they reported. In addition, a

considerable amount of them talked about practices that

differ from what TDD suggests. As some of them do not

follow TDD steps the way they theoretically should, it may

influence their opinion.

Subjective biases: There is the possibility of survey

participants were subjective biases such as TDD proponents

trying to claim TDD success in introductory projects (in

order to promote the adoption of their methodology), and

the lack of independent, non-TDD advocates in the survey.

Population Size: Lastly, the sample size was still small,

considering the large TDD community population. A larger

sample size could provide more robust and accurate

statistical calculation and analysis, and also could include

other agile methods that were missing in this sample size.

VI. CONCLUSIONS AND FUTURE WORK

Though, the existing studies provide valuable

information about Test-driven development, but most were

based on empirical studies or qualitative study amongst the

university students. Our research is more focused on

industrial survey, Software developers, Testers and other

software personnel from different MNC participated in this

survey and discussed their personnel experiences while

working on TDD.

Through the literature review and observations resulted

on analyzing the data collected in the survey, we came to

following conclusion:

1. Benefits: Although we have discussed many benefits for

TDD in literature survey, Main benefits that were observed

in this survey are TDD has potential for quality

improvement and increase ability to react to stakeholders

changing needs. On further discussion with the participants,

we tried to find out the reason behind these benefits. With

changing industry trends, Software companies have had to

dramatically change their approach to quality to create the

higher quality products that consumers are now demanding,

TDD approach enables thorough unit testing which

improves the quality of the software and enhance customer

satisfaction.

Productivity: This study provided substantial evidence that

Test-Driven Development is, indeed, an effective tool to

improve productivity in long run. Though it was observed

that productivity gets decreased immediately while

implementing TDD because of increased development time,

but with time, Productivity starts increasing.

2. Complexity of source code: Regarding code complexity,

our literature results were quite different with the survey

results. In literature review, we noted refactoring decrease

code complexity but most of the respondents believe neutral

effect on code complexity.

3. Defect density: With regards to defect density, Most of

the respondents believe TDD can significantly reduce the

defect density of developed software either immediately or

in the long run. We have got similar picture through

literature survey.

4. Ease of learning: Despite, most of the respondents give

neutral feedback for ease of learning, but on further

discussing, we found that main factor that drive ease of

learning is TDD requires the change in mindset for those

who have chosen to learn it.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

360

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1351033113/2013©BEIESP

Factor limiting the adoption of TDD in industry: Most

common factor that limits TDD adoption is insufficient

TDD experience and tools specific limitation. As TDD is

new approach, so we don’t have that much experience in

that domain as comparison to Traditional approach.

Increased development time, insufficient design description,

reluctance to new approach and upper management support

are other factors limiting TDD adoption.

These results need to be viewed within the limitations of

the experiments conducted. Further controlled studies on a

larger scale in industry could strengthen or disprove these

findings. Also, this research includes qualitative study,

adding Empirical study will strengthen the results.

ACKNOWLEDGEMENT

I would like to thank all of the participants of the

survey whom we were fortunate enough to work with

throughout this research. I would also like to thank my

guide, Dr Sanjeev Bansal (Amity University) for his helpful

feedback.

REFRENCES

1. Shrivastava and Jain, "Metrics for Test Case Design in Test Driven

Development", International Journal of Computer Theory and
Engineering, Vol.2, No.6, December, 2010, Pg: 1793-8201.

2. Astels, D., Test-Driven Development: A Practical Guide. Upper

Saddle River, New Jersey, USA, Prentice Hall, 2003
3. Beck, K, Test-Driven Development By Example. Boston,

Massachusetts, USA, Addison-Wesley, 2003

4. Maria Siniaalto, "Test driven development: empirical body of
evidence", Agile Software development of Embedded Systems, 2006

5. Kitchenham, B, Procedures for Performing Systematic Reviews.

United Kingdom and Australian: Department of Computer Science
Keele University, Australian Technology Park, 2004

6. L. Koskela, Test Driven, Manning Publications, Greenwich,

Connecticut, USA, 2008.
7. B. George and L. Williams, "An initial investigation of test driven

development in industry," presented at ACM Symposium on

Applied Computing, Melbourne, Florida, 2003.
8. Adnan Causevic, Daniel Sundmark and Sasikumar Punnekkat

"Factors Limiting Industrial Adoption of Test Driven Development: A

Systematic Review" IEEE Computer Society Washington, DC, USA
©2011

9. John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, and David S.

Janzen "Evaluating Test-Driven Development in an Industry-
sponsored Capstone Project" 2009 Sixth International Conference on

Information Technology: New Generations

10. Janzen, D., Software Architecture Improvement through Test-Driven
Development. Conference on Object Oriented Programming Systems

Languages and Applications, ACM, 2005.

