
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

216

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1355033113/2013©BEIESP

Abstract— In the era of software development there exist a

large number of Models to develop software. Each model has its

own characteristics, limitations and working environment.

According to the requirements, software industry people use

different models to develop different software. There are various

models but none of them is capable to address the issues of client

satisfaction. In this paper we develop a new model (SDLC-2013)

for software development that lays special emphasis on client

satisfaction and also tries to fulfil the objective of the Software

Engineering of developing high quality product within schedule

and budget. The new proposed model is designed in such a way

that it allows client and developer to interact freely with each other

in order to understand and implement requirements in a better

way.

Index Terms— SDLC, Software Development, SDLC Phases,

SDLC-2013 Model, Client Satisfaction

I. INTRODUCTION

Software Engineering is a discipline whose aim is the

production of quality software, software that is delivered on

time, within budget and that satisfies its requirements [1].

Software Engineering is the area which is constantly growing.

It is very interesting subject to learn as all the software

development industry based on this specified area. There exist

various models to develop software. But most of the existing

Software Development Models pay less or very little attention

towards client satisfaction. Client satisfaction matters. It

matters not only to the client, but even more to the developer

because it costs far less to retain a happy client than it does to

find a new client. Satisfying client is an essential element for

staying in this modern world of global competition. Client

satisfaction is very necessary for the acceptance and delivery

of the software product. Software projects fails in the absence

of client satisfaction. Software Development Model must

satisfied and even delight client with the value of software

products and services.

II. WHAT IS SDLC

Software Development Life Cycle is a process to develop

software. This process is divided into some phases such as

Requirement Analysis, Design, Coding, Testing, Installation

 Manuscript received March 2013.

 Naresh Kumar, M. Phil (IT) Scholar, Information Technology

Department, Dr. C. V. Raman university, Bilaspur, India.

Dr. A. S. Zadgaonkar, Vice Chancellor, Dr. C. V. Raman University,

Bilaspur, India.

Abhinav Shukla, Assistant Professors & HOD (IT) Department, Dr. C.

V. Raman University, Bilaspur, India.

and Maintenance. All these activities are carried out in

different ways as per the client’s need. Each way is known as a

Software Development Life Cycle Model. Every system must

go through these phases whether it is small scale or large scale

[2],[3].

A. Requirement Analysis:

Requirement analysis is the initial phase of the Software

Development Life Cycle. The goal of this phase is to

understand the client’s requirements and to document them

properly. The emphasis in requirement analysis is an

identifying what is needed from the system. It is most crucial

phase in Software Development Life Cycle. The output of

requirement analysis is Software Requirement Specification

(SRS) [4],[5].

B. Design:

It is the first step to move from the problem domain towards

the solution domain. It is the most creative phase in Software

Development Life Cycle. The goal of this phase is to

transform the requirement specification into structure [1]. The

output of this phase is Software Design Document (SDD).

C. Coding:

In this phase Software Design Document (SDD) is converted

into code by using some programming language. It is the

logical phase of the Software Development Life Cycle. The

output of this phase is program code.

D. Testing:

This is most important and powerful phase. Effective testing

will contribute to the delivery of high quality software

products, more satisfied users, lower maintenance costs, and

more accurate and reliable results [1],[5],[6].

E. Maintenance:

This phase is started after the delivery of the product. If any

error occurred or modification needed it is implemented in

this phase.

III. SDLC MODELS

A. Waterfall Model

The Waterfall model is provided by Winston W. Royce in

1970. In this model whole work is done in linear fashion.

Entire work is divided into five different phases. All the

phases are cascaded to each other so that second phase is

started as and when defined set of

goals are achieved for the first

phase and it is signed off, so it is

named as “Waterfall Model”.

Evolving a New Software Development Life

Cycle Model SDLC-2013 with

Client Satisfaction

Naresh Kumar, A. S. Zadgaonkar, Abhinav Shukla

Evolving a New Software Development Life Cycle Model SDLC-2013 with Client Satisfaction

217

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1355033113/2013©BEIESP

Requirements are very well understood before start working.

In the un-modifiable waterfall model progress flows from the

top to the bottom, like a waterfall. The waterfall development

model has its origin in the manufacturing and construction

industry; highly structured physical environment in which

change in the requirements are prohibitively costly. Since no

formal software development methodologies existed at the

time, this hardware model was simply adapted for software

development [2],[5],[7].

Figure1. Waterfall Model

Advantages

1) Simple and easy to use.

2) Easy to arrange tasks and clearly defined stages.

3) Requirement should be clear before going to next phases.

4) Each phase of development proceeds in linear order

without any overlapping.

5) Works well for projects where requirements are well

understood.

Disadvantages

1) Users can judge quality only at the end.

2) It does not allow changes as per client’s requirement.

3) High amount of risk and uncertainty.

4) User doesn’t get the feel of the product before delivery.

5) It follows the “Big bang” approach- the entire software is

delivered in one shot at the end.

B. Prototype Model

In this model prototype is built as per the client

requirements. Instead of freezing the requirement before a

design or coding can proceed. The purpose of a prototype is to

allow users of the software to evaluate proposals for the

design of the eventual product by actually trying them out,

rather than having to interpret and evaluate the design based

on descriptions. Prototyping has several benefits: The

software designer and developer can obtain feedback from the

users early in the project. The client and the developer can

compare if the software made matches the software

specification, according to which the software program is

built. It also allows the software engineer some insight into

the accuracy of initial project estimates and whether the

deadlines and milestones proposed can be successfully met. A

prototype model is not a standalone, complete development

methodology, but rather an approach to handle selected part

of a larger, more traditional development methodology. It

attempts to reduce inherent project risk by breaking a project

into smaller segments and providing more ease-of-change

during the development process. User is involved throughout

the development process, which increases the likelihood of

user acceptance of the final implementation. Small-scale

mock-ups of the system are developed following an iterative

modification process until the prototype evolves to meet the

user’s requirement. While most prototypes are developed

with the expectation that they will be discarded, it is possible

in some cases to evolve from prototype to working system. A

basic understanding of the fundamental business problem is

necessary to avoid solving the wrong problem [3],[8],[9].

Figure2. Prototype Model

Advantages

1) Users are actively involved in the development

2) When prototype Model is shown to the user, he gets a

proper clarity about his requirements. And feel the

functionality of the software, so can suggest the changes

and modifications.

3) It reduces risk of failure, as potential risks can be

identified early and steps can be taken to remove that risk.

4) The customer does not need to wait long for working

software.

Disadvantages

1) Wastage of Time and money to build prototype, if client

not satisfied.

2) Too many changes can disturb the rhythm of the

developer team.

3) Long term procedure.

4) It follows the “Quick and dirty” approach- the prototype

is through away after showing to the client.

C. Incremental Model

It is the evolution of waterfall model. In this model all the

activities are repeatable. Multiple activities run parallel. The

phases of waterfall model are employed in such a manner that

the result of the increment is used back as the input for the

next increment. Thus with each increment there are some

clients feedback that is used for getting the next incremental

product. Thus with each ongoing increment the functionality

of the core product gets enhanced. Incremental Model is an

evolution of the waterfall model, where the waterfall model is

incrementally applied. The series of releases is referred to as

increments, with each increment providing more functionality

to the client. After the first increment, a core product is

delivered, which can already be used by the client. Based on

client feedback, a plan is developed for the next increments,

and modifications are made

accordingly.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

218

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1355033113/2013©BEIESP

This process continues, with increments being delivered

until the complete product is delivered [4], [10],[11].

Figure3. Incremental Model

Advantages

1) After using first iteration model, user can give their

suggestion and demand for change.

2) It is flexible to the customer's requirements and easy to

manage model.

3) This model is used when requirements are clear to some

extend but project scope requires pure linear approach.

4) Testing and debugging during smaller iteration is easy.

Disadvantages

1) Each phase of an iteration is very rigid and do not overlap

each other.

2) Mapping requirements to increments may not be easy so

managing documents are very difficult.

3) During development process changes are being done at

first iteration. As if continuous to change and it never

finished.

4) More management attention is required due to frequently

changes in requirements.

IV. NEW PROPOSED SDLC-2013 MODEL

The New SDLC-2013 model is designed in such a way that

it allows client and developer to interact freely with each other

in order to understand and implement requirements in a better

way to produce a high quality software within budget and

schedule. As the Software Development process began with

the client’s need, so the proposed model tries to discover most

of the requirements of the client. It helps in developing an

efficient software product that satisfies client. In the sphere of

computer based system products, client satisfaction is

dependent on how system development process evolves to

build operational product systems that satisfy the perceived

and actual client’s need and associated system requirements.

Ultimately, client satisfaction depends upon the depth of

‘through-life’ understanding about the client needs and

associated user requirements for a future system, and the

ability to communicate those requirements to the system

developer. In addition, client satisfaction and confidence

depends upon the level of system assurance offered

throughout the system development lifecycle. Requirements

understanding problems inevitably lead to poor

client-developer relationship, unnecessary re-work, and

overrun cost and time. The client satisfaction is totally

depended on client needs for this reason SDLC-2013 focus on

the initial phases.

 Figure4. New Proposed SDLC-2013 Model

A. Coordinator

Coordinator have a general knowledge of every aspect of

software development process, software applications, various

applicable operating systems or platforms as well as various

business functions to be performed. He coordinates with all

the phases of the software development process. Coordinator

deals with the client for gathering the requirements and passes

these requirements to the matchmaker team and any query of

client is also solved by the coordinator. After finalizing

requirements coordinator estimates the cost, time and effort

required to develop the software product. Then he passes the

final requirements to the technical team. If client wants any

change in the final requirements during the process, then

coordinator firstly checks whether it can be implemented or

not and what are impacts of change on the whole process in

terms of cost, schedule and effort. If change is possible and its

impact is little or very less then change will be

accommodated.

B. Matchmaker Team

Matchmaker team is an expert team and its team members

are updated with new technologies and new software

products. This team interacts with coordinator and technical

team during its working. Matchmaker team studies the

requirements received from the coordinator which in turn get

these requirements from the client. This team identifies and

gets the existing software whose requirements match with the

current proposed software’s requirements. And accordingly

breakdown the requirements into two parts implemented

requirements and non-implemented requirements.

Implemented requirements are those requirements which are

already implemented in some existing software.

Non-implemented are those requirements which are not

implemented by any of the existing software, mean new fresh

features, and are passed to the technical team. The

Matchmaker team then passes the matching software to the

coordinator, so that coordinator can show the software as a

prototype to the client. Client also gave his suggestion and

feedback to the coordinator in order to change of the

requirement. The result of breaking requirements and

showing existing software as dummy to the client is that the

client gets the feel of graphics,

functionality and features of

product. It helps both client and

developer to identify,

Evolving a New Software Development Life Cycle Model SDLC-2013 with Client Satisfaction

219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1355033113/2013©BEIESP

discovers and implements the requirements efficiently.

C. Technical Team

It is a technically expert team. The member of this team is full

of skills and interacts with coordinator and matchmaker team.

Technical team works on non-implemented requirements.

This team studies the feasibility of requirements to check

whether these are technically possible or not. This team also

identifies and resolves the various risk associated with the

implementation of non-implemented requirements. After

feasibility study and risk analysis the technical team verify the

final requirements and pass these to the next phases, i.e.

designing, coding, testing, each of these phase also followed

by validation process.

D. Client Satisfaction Process

The software development life cycle is initiated by the client’s

needs. In the beginning, these needs are in the mind of the

client. The software developer by using a software

development model has to identify, discover, understand and

fulfill the requirement of the client in order to satisfy the

client. The requirement phase of the Software Development

Life Cycle translates the idea in the mind of the client into a

formal document known as Software Requirement

Specification (SRS). The quality of the SRS impacts client

satisfaction, system validation, quality of final software,

software development cost and schedule. A high quality SRS

is necessary to produce the high quality software. A developer

fails to satisfy the client because of the three reasons:

A. If fail to discover requirement:

The client usually does not understand Software or the

Software Development Life Cycle, and the developer often

does not understand the clients problem and application area.

But the SDLC-2013 allows the client and developer to

interact freely with each other for the better understating of

the problem. Moreover, In SDLC-2013 the requirements are

break downs into two parts i.e. implemented requirements and

non-implemented requirement. For implemented

requirements the existing most matching software with the

client’s requirements are shown to the client so that the client

can easily identify and express the requirement to the

developer.

B. If fail to implement the requirement:

If the discovered requirement are not fulfilled or implemented

properly then it leads to dissatisfaction of client. As, In

SDLC-2013 requirements are break down into implemented

and non-implemented requirements. The non-implemented

requirements are passed to the technical team for the

feasibility study of the requirements. This team also identifies

the various risk associated with the requirements so, that the

conclusion can be drawn about the implementation of

requirements. If some Non-implemented requirements are not

technical possible or feasible then the client is informed about

it during the initialed stages (first phase) so that the client does

expect the system with fulfilled no feasible requirements.

C. If requirement Change:

We know that the requirements frequently changed. Some of

the changes are inevitable due to changing needs and

perceptions. But many changes come because the

requirements are not properly analyzed and not enough effort

was expended to validate the requirements. But SDLC-2013

is designed in such a way that the developer can focus on

proper analyzation of requirements. It is estimated 20% to

40% of total development effort in a software project is due to

rework much of which occurs due to change in requirements.

According to COCOMO model the cost of the requirement

phase is typically about 6% of the total project cost. Consider

a project whose total effort requirement is estimated to be 50

person-months. For this project, the requirement phase

consumed 3 person months. If by spending an edition 50%

effort in the requirement phase. We reduce the total

requirement change request by 33% then the total effort due to

rework will reduce from 10 to 20 person months to 6 to 12

person months, resulting in total saving of 5 to 11 person

months, i.e. a saving of 10 to 20 % of total cost [1].

 The following details explain the applicability of the new

proposed SDLC-2013 Model. The details given below

explain how the new Proposed SDLC-2013 Model has the

strength of satisfying the client.

V. DEPLOYING SOFTWARE

Software is developed for automating the work of a

doctor’s clinic. There are various Software Development

Models for developing software but we choose Waterfall

model, Prototype Model, Incremental Model and New

Proposed SDLC-2013 Model for developing software (DCA,

stand for doctor’s clinic automation) for comparing the

working of existing Models with the SDLC-2013. Software

developed by traditional SDLC Models.

A. Development of software by Waterfall model

As we know waterfall is a linear sequential flow model. We

analyzed the requirements and freeze them and moved toward

the designing phase followed by the Coding and testing

phases for developing software named as DCA-I. But the

DCA-1 was not accepted by the client (doctor) because client

was not satisfied, as the client want to change it in terms of

graphics, functionality and features. As, waterfall model does

not allow changes after freezing the requirements so, it fails to

deliver the software product.

Figure5. Employing waterfall model for software

development

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

220

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1355033113/2013©BEIESP

B. Development of software by Prototype model

We know that prototype model build prototype to give feel of

the proposed software to the client. As we already have

doctor’s requirement so, we build prototype and showed it to

the client. After client’s feedback, we changed it and again

showed it to the client. After building and showing three

prototypes, doctor finalized the requirements and we passed

these final requirements to next phases to develop the

software and named it as DCA-II. Finally DCA-II was

delivered to the client. But building prototype affects cost,

schedule and effort which get exceeded.

Figure6. Employing prototype model for software

development

C. Development of software by Incremental model

Incremental model is an evolution of waterfall model

which has number of iterations and after each iteration, we get

a working product. Initially we analyzed the requirements and

go through the designing, coding and testing phases and

released the first iteration. The first iteration’s working

product was given to the client and after getting client’s

feedback we changed it and released the product of the second

iteration. With each iteration functionality and feature of the

product get enhanced and after three iterations we got

DCA-III which was finally delivered to the client. Incremental

model reduce the cost of building prototype because instead

of building prototype it accommodate the changes into the

working product but due to iterations, schedule get exceeded

which in turn effect the cost and effort.

Figure7. Employing incremental model for software

development

D. Development of software by SDLC-2013 model

SDLC-2013 is a new Advance Model for the software

development. The striking feature of this model is the client

satisfaction. Firstly, Coordinator deal with the client (doctor)

to discover the requirements and then he passed these

requirements to the matchmaker team. Matchmaker team

analyzed the available requirements for the proposed system

and searched the most matching software for them. He found

two such software whose requirements matched with the

proposed software’s requirements. Accordingly, he has to

breakdown the available requirements into implemented and

non-implemented requirements but in this case there was no

non implemented requirement. Implemented requirements

along with their matching software were given back to the

coordinator. Coordinator showed the software to the client so

that the client got the feel of proposed software and also

identifies the undiscovered requirements and gave his

suggestion and feedback to the coordinator. Coordinator

again passed these suggestions to the matchmaker team and

the process goes on until the client finalized the requirements.

Coordinator passed final requirements to the technical team

for the risk analysis and the requirement validation. After

validation and resolving various risk associated with the final

requirements, these requirements were passed to designing,

coding and testing phases followed by the validation process

to develop the final product named as DCA. DCA was

accepted by the client because it satisfied the client’s

requirements within budget and schedule because budget and

schedule were not disturbed or affected due to various

increments or by building prototype.

Figure8. Employing SDLC-2013 model for software

development

Evolving a New Software Development Life Cycle Model SDLC-2013 with Client Satisfaction

221

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1355033113/2013©BEIESP

TABLE I Tabular comparison of SDLC- 2013 with other models

FEATURES WATERFALL PROTOTYPE INCREMENTAL SDLC-2013

UNDERSTANDING WELL

UNDERSTOOD

NOT WELL

UNDERSTOOD

WELL

UNDERSTOOD

WELL

UNDERSTOOD

AT BEGINNING
REQUIREMENTS AT BEGINNING AT BEGINNING AT BEGINNING

COST LOW HIGH MEDIUM LOW

SCHEDULE WITHIN

SCHEDULE

SCHEDULE

MAY EXCEED

SCHEDULE MAY WITHIN

SCHEDULE EXCEED

RISK HIGH LOW MEDIUM LOW

INVOLVEMENT

USER LOW HIGH HIGH HIGH

INVOLVEMENT

GUARANTY LOW GOOD HIGH HIGH

OF SUCCESS

CLIENT

SATISFACTION

LOW HIGH HIGH HIGH

FLEXIBILITY RIGID FLEXIBLE FLEXIBLE FLEXIBLE

TIME FRAME MEDIUM SHORT VERY LONG SHORT

INITIAL PRODUCT

FEEL

NO YES NO YES

VI. CONCLUSIONS

The proposed work can be summarized as the creation of

the approach SDLC-2013 to develop software more

efficiently. The aim of Software Engineering is to develop

software of high quality within budget and schedule. The

proposed plan tries to fulfill the objective of Software

Engineering by showing existing matching software as

prototype to the client for discovering the requirements

efficiently from the client in order to estimate cost, schedule

and effort more accurately.

REFERENCES

1. K. K. Aggarwal, Yogesh Singh Software Engineering 3rd Edition.

2. Software Development Life Cycle (SDLC) – the five common

principles.htm

3. Software Methodologies Advantages & disadvantages of various

SDLC models.mht

4. www.shazsoftware.com/software-development-life-cycle.html

5. www.waterfall-model.com/sdlc/

6. Roger Pressman titled Software Engineering - a practitioner's

approach.

7. www.en.wikipedia.org/wiki/Systems_development_life-cycle

8. Analysis and tabular comparison of popular SDLC models,

International Journal of Advance in Computer and Information

Technology (IJACIT), July 2012, Sema, SonaMalhotra.

9. Comparing various SDLC models and the new proposed model on the

basis of available methodology, International Journal of Advanced

Research in Computer Science and Software Engineering

(IJARCSSE), volume 2, April 2012,Vishwas Massey, Prof. K. J Satao.

10. Evolving a new Software Development Life Cycle Model (SDLC)

incorporated with release management, International Journal of

Engineering and Advanced Technology (IJEAT), volume-I, Aril 2012,

Vishwas Massey, Prof. K. J Satao.

11. Comparative analysis of different types of models in Software

Development Life Cycle, International Journal of Advanced Research

in Computer Science and Software Engineering (IJARCSSE), Volume

2, May 2012, Ms. Shikhamaheshwari, Prof. Dinesh Ch. Jain.

AUTHORS PROFILE

Naresh Kumar dis his Msc-IT from Baba Ghulam Shah

Badshah University, Rajouri, J&K., India and Currently

pursing M.Phil-IT From Dr. C. V. Raman University,

Bilaspur, Chhattisgarh, India.

Dr. A. S. Zadgaonkar, Ph.d (Istru.), Ph.d (Materials),

D. Lit (Speech Recog.) is vice chancellor of Dr. C. V.

Raman University, Bilaspur Chhattisgarh. He has

fourty years of teaching and Adminstrative

Experience. He has published more than 470 papers in

International, National Journals/ Conferences. He has

guided more than 10 Ph.d Candidates. He is author of

3 books. He has received more than 13 Award and 10

Research Grants. He is member of more than 15 socities.

Abhinav Shukla Assistant Professor and HOD (IT) in

Dr. C. V. Raman Univrsity, Bilaspur, Chhattisgarh. He

did his MSc-IT from Guru Gasidass Centeral

University Bilaspur, Chhattisgarh. M. Tech (IT) from

KSOU. and M.Phil from Dr. C. V. Raman University,

Bilaspur, Chhattisgarh. He has more than 10 years of

teaching experience. He has published more than 4

papers in National Journals.

