
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

264

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1371033113/2013©BEIESP

Efficient VLSI Architectures of Split-Radix FFT

using New Distributed Arithmetic

Ansuman DiptiSankar Das, Abhishek Mankar, N Prasad, K. K. Mahapatra, Ayas Kanta Swain

 Abstract—Fast Fourier transform (FFT) has become

ubiquitous in many engineering applications. Efficient

algorithms are being designed to improve the architecture of

FFT. Among the different proposed algorithms, split-radix FFT

has shown considerable improvement in terms of reducing

hardware complexity of the architecture compared to radix-2 and

radix-4 FFT algorithms. New distributed arithmetic (NEDA) is

one of the most used techniques in implementing multiplier-less

architectures of many digital systems. This paper proposes

efficient multiplier-less VLSI architectures of split-radix FFT

algorithm using NEDA. As the architecture does not contain any

multiplier block, reduction in terms of power, speed, and area

can greatly be observed. One of the proposed architectures is

designed by considering all the inputs at a time and the other is

designed by considering 4 inputs at a time, the total number of

inputs in both cases being 32. The proposed designs are designed

using both FPGA as well as ASIC design flows. 180nm process

technology is used for ASIC implementation. The results show

the improvements of proposed designs compared to other

architectures.

 Index Terms—Split-radix, FFT, VLSI, NEDA,

multiplier-less, FPGA, ASIC.

I. INTRODUCTION

Fast Fourier Transform (FFT) has become ubiquitous in

many engineering applications [1]. High-speed FFT

architectures are necessary to implement several

communication systems, signal processing systems, etc. [2]

– [4]. The FFT blocks are also used in mechanical

engineering and civil engineering applications [5] – [6]. FFT

has been considered as the most efficient way of

implementing the discrete Fourier transform (DFT) and it

was first implemented in 1965 [7]. The efficiency of the

FFT algorithm lies in its reduced number of arithmetic

operations. DFT has the order of arithmetic

operations whereas FFT has the order of

arithmetic operations. If the architecture is designed for

complex inputs, the number of arithmetic operations

becomes approximately double when compared to those

which are designed for real inputs.

Manuscript received on March, 2013.

Ansuman DiptiSankar Das, Dept. Of ECE, NIT Rourkela, India.

Abhishek Mankar, Dept. Of ECE, NIT Rourkela, India.
N Prasad,Dept. Of ECE, NIT Rourkela, India.

K. K. Mahapatra, Professor, Dept. Of ECE, NIT Rourkela, India.

Ayas Kanta Swain, Asst. Professor, Dept. Of ECE, NIT Rourkela,
India.

One of the disadvantages of conventional FFT

architectures is the presence of multiplier blocks, which has

increased hardware, increased power consumption and

reduced operating frequency. The basic FFT design is based

on radix-2 butterfly block, which was proposed by Cooley-

Tukey [7]. Recent advances in the algorithm include FFT

architectures based on higher and split-radix such as radix-4,

radix-8, radix-2
k
, etc. [8] – [12].

 Split-radix FFT is one of the FFT algorithms that

use combination of different radix FFT. Split-radix FFT

algorithm combines simplicity of radix-2 FFT with less

computational complexity radix-4 FFT. The advantage of

split-radix FFT is that it has considerably fewer number of

arithmetic computations compared to that of radix-4 and

radix-2 FFT. Split-radix also has several other advantages

such as regular structure, no reordering of internal signals

except for outputs, etc. Since it mostly uses radix-2 block in

its architecture, it is possible to implement split-radix FFT

for inputs of kind 2
k
, k being an integer.

 Distributed Arithmetic (DA) was invented about 30

years ago and has since seen widespread applications in area

of VLSI implementation of DSP algorithms [13]. DA has

become one of the most efficient tools in implementation of

multiply and accumulate (MAC) unit in several DSP

systems. Most of the applications, for example discrete

cosine transform (DCT), discrete wavelet transform (DWT)

calculation, are commonly implemented using DA based

approach as they all are hardware intensive with multipliers

and MAC units. MAC unit is implemented using DA by pre-

computing all possible products and then storing them in a

read only memory (ROM). In simple words, DA computes

the inner product of two multi-dimensional vectors. Thus,

increase in the number of dimensions increases the memory

requirement to store all the obtained products. This is due to

the reason that, increase in number of dimensions increases

the number of obtained partial products. The elimination

increased memory requirement is possible only if one or

both of the inputs has a fixed set of coefficients. This

method is commonly known as NEw Distributed Arithmetic

(NEDA) [14]. Thus, using NEDA, distribution of arithmetic

is done on the coefficient values instead of doing on the

inputs. This results in memory-less DA architecture of the

implemented systems. Conventional NEDA based

architectures are bit-serial in nature. Depending on the

application and requirement, they can be designed as digit-

serial or bit-parallel architectures. Thus, NEDA is classified

under the family of shift-add algorithms. VLSI

implementation of NEDA becomes simpler if the constant

coefficients have magnitudes those are less than one.

 DSP system design techniques such as folding,

pipelining have always improved performance of the

systems in terms of hardware, latency, frequency, etc. In

DSP architectures, systematic

control circuits are determined

by using the folding

transformation.

Efficient VLSI Architectures of Split-Radix FFT using New Distributed Arithmetic

265

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1371033113/2013©BEIESP

 In folding technique, time multiplexing of algorithm

operations is done, by reducing to a single functional unit.

Thus, in DSP systems, folding technique provides a means

of trading time for area. Conventional folding technique can

be used to reduce the number of hardware functional units

by a factor of N at the expense of increasing the

computation time or multiplexing time by a factor of N

[15].This technique also helps in data allocation in the

required registers. To avoid excess amount of registers that

are generated in these architectures while folding, there are

techniques to minimise the number of registers needed to

implement DSP architectures through folding.

 In the following sections, first we present a brief

overview of split-radix FFT and NEDA. Then, we propose

multiplier-less VLSI architectures of split-radix using

NEDA. Later, we give the FPGA and ASIC implementation

summary of proposed designs. Next, we compare the

proposed architectures with the existing ones. Finally, we

conclude the paper with mentioning possible further

improvements.

II. OVERVIEW OF SPLIT-RADIX FFT AND NEDA

A. Split-radix FFT

 While calculating FFT using Radix-2 method, it can be

concluded that the even-numbered points and the odd-

numbered points are computed independently. This leads to

the possibility of using different computational methods for

different independent parts of the algorithm which will

reduce computational complexity. Split-radix algorithm uses

the above method by combining the simplicity of radix-2

algorithm and lesser computational complexity of radix-4

algorithm, achieving the lowest number of arithmetic

operation count to compute DFT of power-of-two sizes N.

Split-radix method recursively expresses DFT of length N in

terms of one smaller DFT of length N/2 and two smaller

DFTs of length N/4. Split-radix is only applicable when N is

a multiple of 4, but we can combine this with other FFT

algorithms.

 The N-point DFT of a sequence is given by

(1)

 Where
 is known as the twiddle factor.

 The algorithm for the fast and less complexity

computation of the DFT by Split-radix (SRFFT) was

developed by Duhamel and Hollmann [16], [17] for data

sequences having a length N that is an integer power of 2.

According to them, the even-numbered samples of the N-

point DFT can be calculated by

(2)

 Those even-numbered DFT points can be calculated

without any additional multiplications. So, radix-2 algorithm

is sufficient for the above calculation. The odd-numbered

samples requires an additional multiplication of

 . To implement this, radix-4 algorithm is used for its

lesser computational complexity.

 Using radix-4 algorithm for the odd –numbered samples of

the N-point DFT, the following N/4-point DFTs are

obtained.

(3)

 And

(4)

 Hence, the N-point DFT now has been decomposed into

one N/2-point DFT without phase factor and another two

N/4-point DFTs with phase factor. Figure 1 shows the split-

radix butterfly unit.

Fig. 1. Split-radix butterfly unit

B. New Distributed Arithmetic (NEDA)

 NEw Distributed Arithmetic (NEDA) technique is being

used in many digital signal processing systems that require

MAC unit as their computational block. Transforms such as

FFT, DCT, etc. have many multipliers that in turn require

more hardware. Implementation of such transforms using

NEDA improves performance of the system in terms of

area, speed and power. The mathematical derivation of

NEDA is discussed below.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

266

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1371033113/2013©BEIESP

 Inner product calculation of two sequences can be

represented as

(5)

 Where are constant fixed coefficients and are

varying inputs. Matrix representation of equation (5) may be

given as

 (6)

 Considering both and in 2’s complement form, they

can be expressed in the form

 (7)

 Where , and
 is the sign

bit and
 is the least significant bit. Substituting equation

(7) in equation (6) results in the following matrix product

which is modelled according to the required design of FFT.

(8)

 The matrix containing
 is a sparse matrix, which means

the values are either 1 or 0. The number of rows in matrix

defines the precision of fixed coefficients used. Equation (8)

is rearranged as shown below.

(9)

Where

(10)

 In each row, the matrix consists of sums of the inputs

depending on the coefficient values. An example that shows

the NEDA operations is discussed below. Consider to

evaluate the value of equation (11).

(11)

 Equation (11) can be expressed in the form of equation (8)

as shown in equation (12).

 (12)

 Equation (12) may be rewritten as

 (13)

 Applying precise shifting, we rewrite equation (13) as

(14)

 Thus implementing equation (14) further reduces number

of adders compared to implement equation (13).

Multiplication with , can be realized with the help

of arithmetic shifters. In equation (14), the first row of

matrix shifts right by 1 bit, second row by 2 bits and so on.

More precisely, the shifts carried out are arithmetic right

shifts. The output can be realized as a column matrix

when we need the partial products. Thus, NEDA based

architecture designs have less critical path compared to

traditional MAC units without multipliers as well as

memory.

Efficient VLSI Architectures of Split-Radix FFT using New Distributed Arithmetic

267

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1371033113/2013©BEIESP

Fig. 2. Proposed architecture – I of 32-point split-radix FFT

III. PROPOSED DESIGNS

A. Proposed Architecture – I

 A 32-point complex split-radix FFT has been proposed in

this paper. 32 complex inputs have been taken with a

precession of 16 bits, in parallel. The number of stages to

calculate the final output is 5. The inputs are taken in normal

order and the outputs are in bit-reversal order. The even-

numbered samples have been implemented by radix-2

FFTalgorithm and the odd-numbered samples have been

implemented using radix-4 FFT algorithm. The twiddle

factor multiplications have been implemented using NEDA

technique. The proposed architecture – I is shown in figure

2. In stage-I, eight radix-4 butterfly modules have been

used. The inputs to each radix-4 butterfly present in stage-I

are

 where

 respectively. The first output of each split-radix

butterfly present in stage-I are represented by

 respectively. The second output of

each split-radix butterfly of stage-I are represented

by respectively. Similarly the

third and fourth output of each split-radix butterfly of stage-I

are represented

as

X31

X15

X27

X19

X3

X11

X23

X7

X30

X22

X6

X14

X28

X12

X24

X16

X0

X8

X20

X4

X26

X18

X2

X10

X29

X13

X25

X17

X1

X9

X21

X5

x31

x23

x7

x15

x30

x22

x6

x14

x29

x21

x5

x13

x28

x20

x4

x12

x27

x19

x3

x11

x26

x18

x2

x10

x25

x17

x1

x9

x24

x16

x0

x8 SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

NEDA

BLOCK

for

multiplic

ation of

twiddle

factors

of

where

NEDA

BLOCK

for

multiplic

ation of

twiddle

factors

where

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

NEDA

BLOCK

n=0,1,2,

3

NEDA

BLOCK

n=0,1,2,

3

SPLIT-

RADI

X

BLOC

K

SPLIT-

RADI

X

BLOC

K

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOCK

SPLIT-

RADIX

BLOC

K

NEDA

NEDA

NEDA

NEDA

NEDA

NEDA

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

268

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1371033113/2013©BEIESP

and respectively.

 In stage-II, the samples are

multiplied by twiddle factor of
 and the samples

 are multiplied by twiddle

factor of
 where N=32 and

 respectively.

Those inner product calculations have been done by NEDA

technique to achieve a multiplier-less architecture. The rest

of stage-I samples are fed to four split-radix butterfly units

and the outputs are given to stage-III. In stage-III, the

samples ,
 ,
 are fed to six split-radix

butterfly units and the outputs are given to stage-IV

respectively. The other samples of stage-III are multiplied

by twiddle factor of
 and

 where N=32 and

 respectfully.

 In stage-IV, five more split-radix butterfly units have been

used and the inputs and outputs of those are clearly shown in

figure. The twiddle factor that is to be multiplied in stage-IV

whenever required is
 and

 where N=32

and

 . The final stage (stage-V) uses only

radix-2 butterfly units whenever required. The twiddle

factor to be multiplied in stage-V is
 since

 that is n=0. The NEDA technique has been used here

whenever there is a need for the calculation of inner

products. We got the final output at the end of stage-V.

Figure 3 shows the split-radix butterfly used in the proposed

architectures.

Fig. 3. Split-radix butterfly used in proposed designs

B. Proposed Architecture – II

 The draw-back of the proposed architecture – I lies in its

huge number of input-output pins, which makes the design

less implementable both on FPGAs as well as an ASIC. To

overcome the above draw-back, an intelligent way of

implementing the split-radix FFT is done through folding.

 The proposed architecture – II, shown in figure 4, takes 4

inputs at a time which sums up to 8 clock cycles to read all

the 32 inputs. For every clock cycle, the outputs of the first

stage split-radix block are stored in registers and this process

continues till all 32 outputs are stored. Later, the stored

outputs are processed for second stage computations which

consist of either NEDA blocks or split-radix blocks. The

outputs of second stage split-radix blocks are stored in 16

registers for further processing. The outputs of second stage

NEDA blocks and some outputs of second stage split-radix

blocks are given to third stage split-radix blocks. The

remaining outputs of second stage split-radix blocks are

given to NEDA blocks of third stage. Some outputs of third

stage split-radix blocks are given to fourth stage NEDA

blocks. The remaining outputs of third stage split-radix

blocks along with third stage NEDA blocks are given to

fourth stage split-radix blocks.

 The outputs of fourth stage NEDA blocks and some

outputs of fourth stage split-radix blocks are fed to fifth

stage radix-2 blocks. Rest of the outputs of fourth stage

split-radix blocks are directly mapped to outputs.

TABLE I. DATAFLOW TABLE FOR INPUT-

OUTPUTS OF PROPOSED ARCHITECTURE – II

Clock cycle Inputs Outputs

1 x0,x8,x16,x24

2 x1,x9,x17,x25 P0,P8,P16,P24

3 x2,x10,x18,x26 P1,P9,P17,P25

4 x3,x11,x19,x27 P2,P10,P18,P26

5 x4,x12,x20,x28 P3,P11,P19,P27

6 x5,x13,x21,x29 P4,P12,P20,P28

7 x6,x14,x22,x30 P5,P13,P21,P29

8 x7,x15,x23,x31 P6,P14,P22,P30

9 P7,P15,P23,P31

10 P8,P12,P16,P20

11 P9,P13,P17,P21 Q8,Q12,Q16,Q20

12 P10,P14,P18,P22 Q9,Q13,Q17,Q21

13 P11,P15,P19,P23 Q10,Q14,Q18,Q22

14 Q11,Q15,Q19,Q23

15 W0,W2,W4,W6

16 W1,W3,W5,W7 S0,S2,S4,S6

17 Q12,Q14,Q16,Q18 S1,S3,S5,S7

18 Q13,Q15,Q17,Q19 R12,R14,R16,R18

19 W8,W10,W12,W14 R13,R15,R17,R19

20 W9,W11,W13,W15 S8,S10,S12,S14

21 S9,S11,S13,S15

22 S2,S3,S4,S5

23 T8,T9,T10,T11 Y9,U3,U4,Y25

24 R14,R15,R16,R17 Y10,V9,V10,Y26

25 T20,T21,T22,T23 Y8,U15,U16,Y24

26 S10,S11,S12,S13 Y14,V21,V22,Y30

27 Y11,U11,U12,Y27

28 L0,L1,U3,U4 Y5,Y21,Y1,Y17

29 L6,L7,V9,V10 Y13,Y29,Y2,Y18

30 L12,L13,U15,U16 Y4,Y20,Y0,Y16

31 L18,L19,V21,V22 Y12,Y28,Y6,Y22

32 L8,L9,U11,U12 Y7,Y23,Y3,Y19

33 L14,L15,0,0 Y15,Y31,0,0

 In table I, the internal signals W0 to W15 are obtained

after multiplying the signals P0 to P7 and P24 to P31 with

their respective twiddle factors of second stage. Similarly,

the

Efficient VLSI Architectures of Split-Radix FFT using New Distributed Arithmetic

269

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1371033113/2013©BEIESP

Fig. 4. Proposed architecture – II, of 32-point split-radix FFT

signals T8, T9, T10, T11, T20, T21, T22 and T23 are

obtained after multiplying the signals Q8, Q9, Q10, Q11,

Q20, Q21, Q22 and Q23 with their corresponding twiddle

factors of third stage. Finally, the signals L0, L1, L6, L7,

L12, L13, L18, L19, L8, L9, L14 and L15 are obtained after

multiplying the signals S0, S1, S6, S7, R12, R13, R18, R19,

S8, S9, S14 and S15 with their twiddle factors of fourth

stage respectively. The twiddle factors have been performed

using NEDA blocks at respective stages. The outputs of the

proposed architecture start coming from the 23
rd

 clock cycle

till 33
rd

 clock cycle in bit-reversal order.

IV. FPGA AND ASIC IMPLEMENTATION SUMMARY

 The proposed architectures have been implemented using

Xilinx ISE as well as Altera Quartus II, wherever applicable.

The proposed architecture – I can operate at a maximum

frequency of 100.368 MHz on Xilinx Virtex-5 FPGAs. The

outputs of proposed architecture – I are obtained after 45 ns,

which results in its latency, in parallel. But, as the number of

IOBs is too high to accommodate, we go for proposed

architecture – II. Table II shows the FPGA device utilization

summary of proposed architecture – II. The power has been

calculated using Xilinx XPower Analyzer.

TABLE II. FPGA DEVICE UTILIZATION

SUMMARY OF PROPOSED ARCHITECTURE – II

FPGA device:

XC5VLX330T-

2FF1738

Proposed Architecture – II

Used Utilization

Number of occupied
slices

2426 51840 (4%)

Number of slice

registers
5010 207360 (2%)

Number of slice
LUTs

7099 207360 (3%)

Frequency 527.329 MHz

Dynamic Power at

maximum frequency
0.40262 W

Table III shows the comparison results of the proposed

architecture – II, with the architecture mentioned in [18].

The comparison has been made using Altera Quartus II and

its Cyclone II family of FPGA. From table III, it is clear

that, the proposed architecture gives better results in terms

of speed, power and area.

 Table IV shows the ASIC implementation of the proposed

architectures in 0.18µm process technology using Synopsys

DC for logic synthesis and Cadence SoC Encounter for

physical design. The process technology that has been

followed to carryout physical

design of the proposed

NEDA

BLOC

K

n=0,1

NEDA

BLOC

K

n=0,1

SPL

IT-

RA

DIX

BLO

CK

NEDA

BLOCK

where

n=0,1,2,3

NEDA

BLOCK

where

n=0,1,2,3,

4,5,6,7

NEDA

BLOCK

where

n=0,1,2,3,

4,5,6,7

SPLIT-

RADIX

BLOCK

SPLI

T-

RAD

IX

BLO

CK

SP

LIT

-

RA

DI

X

BL

OC

K

R

A

D

I

X

-

2

B

L

O

C

K

S

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-1, March 2013

270

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1371033113/2013©BEIESP

architectures is UMC 0.18µm mixed mode generic core.

TABLE III. COMPARISON OF PROPOSED ARCHITECTURE – II USING ALTERA CYCLONE II FAMILY OF

FPGA

FPGA comparison results using Altera

Cyclone II
[18] Proposed Architecture – II

Number of inputs 32 32

Combinational functions 1442 14304

Logic registers 857 1123

18x18 multipliers 4 0

Memory 2(1K) 0

Execution time (µs) 7.995 0.14457

Frequency (MHz) 100 210.97

Device EP2C35 EP2C70

TABLE IV. ASIC IMPLEMENTATION RESULTS OF PROPOSED ARCHITECTURES USING SYNOPSYS DC

AND CADENCE SOC ENCOUNTER

ASIC implementation results using Synopsys

DC

Process technology: 0.18µm

Proposed Architecture – I Proposed Architecture – II

Total cell area 1063769.421537 803245.469974

Total dynamic power 84.1841 mW 14.9286 mW

Add-sub width 16 bits 16 bits

Slack at 100 MHz 3.68 ns 6.62 ns

 The physical design of proposed architectures has been

made in such a way that the timing constraints are met after

both placement as well as routing. The layouts are shown in

figure 5 and figure 6. The core utilization of proposed

designs has been set to 0.8 to avoid congestion while

routing. The proposed architectures have been routed using

Nano route. The slack achieved for proposed architecture – I

at 100 MHz clock is 3.68 ns and for proposed architecture –

II is 6.62 ns. From table IV it is clear proposed architecture

– II gives better results in terms of area and power compared

to proposed architecture – I.

Fig. 5. Physical Layout of proposed architecture – I

Fig. 6. Physical layout of proposed architecture – II

V. CONCLUSIONS

 This paper has reported two novel and efficient

architectures of split-radix FFT using NEDA. Both proposed

architectures are designed for complex inputs with a data

width of 16 bits, maintained constant all along. The

simulation outputs of proposed architectures have not shown

much deviation from numerical values. The proposed

architectures are multiplier-less as well as memory-less

ones. Proposed architecture – I is implemented as a fully

dedicated architecture that takes all inputs in parallel and it

has less delay of 4 clock cycles. But, proposed architecture –

I has huge number of input-output pins;

Efficient VLSI Architectures of Split-Radix FFT using New Distributed Arithmetic

271

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1371033113/2013©BEIESP

this drawback has been overcome in the later proposed

architecture. Proposed architecture – II is implemented

using folding which is folded so as to take 4 inputs at a time.

Both the proposed architectures are implemented

sequentially which results in a form of pipelining. The data

flow of proposed architecture – II is clearly mentioned in

table II. Proposed architecture – II gives a maximum

frequency of 527.329 MHz on Xilinx Virtex-5 FPGA and

210.97 MHz on Altera Cyclone II EP2C70 FPGA, thus

showing its applicability in communication systems. There

is a huge decrement in power of proposed architecture – II

when compared. ASIC implementation of proposed

architectures has been done using Synopsys and Cadence

tools.

REFERENCES

1. P. Duhamel and M. Vetterli, “Fast Fourier Transforms: A Tutorial
Review and A State of The Art,” IEEE Signal Processing Society,

vol. 4, no. 19, 1990, pp. 259 – 299.

2. Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1-GS/s FFT/IFFT processor
for UWB applications,” IEEE Journal of Solid-State Circuits, vol.

40, no. 8, Aug. 2005, pp. 1726 – 1735.

3. S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT Processor
for OFDM-Based WPAN Applications,” IEEE Trans. Circuits Syst.

II: Exp. Briefs, vol. 57, no. 6, Jun. 2010, pp. 451 – 455.

4. J ohn G. Proakis, Dimitris G. Manolakis, “Digital Signal
Processing: Principles, Algorithms, and Applications”, Prentice- Hall,

1998.

5. Z. Ismail, N. H. Ramli, Z. Ibrahim, T. A. Majid, G. Sundaraj, and W.
H. W. Badaruzzaman, “Design Wind Speeds using Fast Fourier

Transform: A Case Study,” Computational Intelligence in Control,

Idea Group Publishing, 2012, ch. XVII.

6. Robert Frey, “The FFT Analyzer in Mechanical Engineering

Education,” Sound and Vibration: Instrumentation Reference Issue,

Feb. 1999, pp. 1 – 3.
7. James W. Cooley and John W. Tukey, “An Algorithm for Machine

Calculation of Complex Fourier Series,” Mathematics of

Computation, vol. 19, 1965, pp. 297 – 301.
8. Mario Garrido, J. Grajal, M. A. Sánchez, and Oscar Gustafsson,

“Pipelined Radix-2k Feedforward FFT Architectures,” IEEE Trans.

VLSI Syst., vol. 21, no. 1, Jan. 2013, pp. 23 – 32.
9. Y. Chen, Y. Tsao, Y. Wei, C. Lin, and C. Lee, “An indexed- scaling

pipelined FFT processor for OFDM-based WPAN applications,”

IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 55, no. 2,
Feb. 2008, pp. 146–150.

10. M. Shin and H. Lee, “A high-speed four-parallel radix-24 FFT

processor for UWB applications,” Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), 2008, pp. 960–963.

11. F. Arguello and E. Zapata, “Constant geometry split-radix

algorithms,” Journal of VLSI Signal Processing, 1995.

12. Steven G. Johnson and Matteo Frigo, “A Modified Split-Radix FFT

with Fewer Arithmetic Operations,” IEEE Trans. Signal Processing,
vol. 55, no. 1, Jan. 2007, pp. 111 – 119.

13. Stanley A. White, “Applications of Distributed Arithmetic to Digital

Signal Processing: A Tutorial Review,” IEEE ASSP Magazine, vol. 6,
no. 3, Jul. 1989, pp. 4 – 19.

14. Wendi Pan, Ahmed Shams, and Magdy A. Bayoumi, “NEDA: A

NEw Distributed Arithmetic Architecture and its Application to One
Dimensional Discrete Cosine Transform,” Proc. IEEE Workshop on

Signal Processing Syst., Oct. 1999, pp. 159 – 168.

15. Keshab K. Parhi, “VLSI Digital Signal Processing Systems: Design
and Implementation”, Wiley, 1999.

16. P. Duhamel and H. Hollmann, “Split-radix FFT algorithm,” Electron.

Lett., vol. 20, no. 1, Jan. 1984, pp. 14 – 16.
17. P. Duhamel, “Implementation of split-radix FFT algorithms for

complex, real, and real-symmetric data,” IEEE Trans. Acoust.,

Speech, Signal Processing, vol. ASSP-34, Apr. 1986, pp. 285 – 295.
18. Cynthia Watanabe, Carlos Silva, and Joel Muñoz, “Implementation of

Split-Radix Fast Fourier Transform on FPGA,” Proc. Programmable

Logic Conference, vol. 6, Mar. 2010, pp. 167 – 170.

AUTHORS PROFILE

Ansuman DiptiSankar Das was born in Balasore,

India, in 1986. He received his B. Tech degree in

electronics and telecommunication engineering form

BPUT, Odisha, in 2007. He’s currently pursuing his M.
Tech in VLSI Design and Embedded Systems at

National Institute of Technology Rourkela, India. His

current areas of interest are VLSI architectures for
digital signal processing and design of real-time

embedded systems.

Abhishek Mankar was born in Munger, India, in

1987. He received his B. Tech degree in electronics and
communication engineering from WBUT, Kolkata, in

2010. He’s currently pursuing his M. Tech in VLSI

Design and Embedded Systems at National Institute of
Technology Rourkela, India. His current areas of

interest are FSM based VLSI designs, high

performance VLSI architectures using NEDA.

N Prasad was born in Anantapur, India, in 1990. He
received his B. Tech degree in electronics and

communication engineering from JNTU Hyderabad, in

2011. He’s currently pursuing his M. Tech in VLSI
Design and Embedded Systems at National Institute of

Technology Rourkela, India. His current areas of

interest are VLSI system architectures, design
implementation and applications of CORDIC,

multiplier-less VLSI system designs.

Kamalakanta Mahapatra received his B. Tech

degree (with honors) from the Regional Engineering
College (currently, the National Institute of

Technology), Calicut, India, in 1985, M. Sc. (Engg.)

degree from the Regional Engineering College
(currently, the National Institute of Technology

Rourkela), Rourkela, India, in 1989, and Ph. D. degree

from the Indian Institute of Technology, Kanpur,
India, in 2000.

 Currently, he is with the National Institute of Technology Rourkela as a

professor in the Electronics and Communication Engineering department.
His research interests include power electronics, embedded computing,

real-time systems, and very large scale integration design. Dr. Mahapatra is

a fellow of the Institution of Engineers (India) in the Electronics and
Communication division.

Ayas Kanta Swain received his B. Tech degree from

IGIT, Sarang, Odisha, India, in 2001, M. Tech
(research) degree from the National Institute of

Technology Rourkela, in 2010. He is currently an

assistant professor in department of Electronics and
Communication Engineering at the National Institute

of Technology Rourkela where he is also pursuing his

Ph. D. degree. His current areas of interest are VLSI
Design, Embedded Systems, system on chip designs,

and network on chip designs.

