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Abstract—Dynamic textures are sequences of images of moving 

scenes that exhibit certain stationary properties in time; these 

include sea-waves, smoke, foliage, whirlwind etc. In previous 

works [1,2], dynamic textures are usually modeled as linear 

models, and parameters of the model are identified in the sense of 

maximum likelihood or minimum prediction error variance. Once 

its parameters are learned, a model has predictive power and can 

be used for extrapolating synthetic sequences. In this work we 

study a particular type of dynamic textures that can be represented 

in the form of Markov Models. An aggregation algorithm can then 

be adopted to reduce its complexity. The resulting 

low-dimensional models can capture complex visual phenomena 

with low computation cost. 
 

Index Terms— Dynamic Texture, Markov Model, Aggregation, 

Reduced order model. 

I. INTRODUCTION 

The study of Dynamic Textures (DT) is a recent research 

topic in the field of video processing. A dynamic texture can 

be described as a time varying phenomenon with certain 

repetitiveness in both space and time. For example ripples at 

the surface of water or smoke or an escalator are all examples 

of dynamic texture. Rather than a simple extension of static 

textures to the time domain, a dynamic texture is a dynamic 

model that describes the temporal evolution of the textures. 

The study of dynamic texture is an active research topic with 

many applications such as synthesis, segmentation or 

characterization.  

In previous works dynamic texture is usually modeled as 

linear dynamical systems (for example ARMA model). The 

parameters of the model can be identified through impulse 

response [13], maximum likelihood [8] or other methods. But 

generally, for nonlinear systems it is not easy to identify the 

parameters in differential equations describing the system.  

In this paper we first propose a Markov model based 

representation of dynamic textures. This type of 

representation for dynamic textures is shown to be very 

general since it covers both linear and a large class of 

nonlinear systems. Unlike traditional formulations based on 

differential equations, the Markov model representation can 

keep the parameter learning algorithms simple even when the 

system is nonlinear. We then focus on reducing the 

complexity of the Markov dynamic texture model. To be 

more specific, The size of the state space of Markov models 

can be reduced through information theoretic aggregation 

[9].  
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This aggregation algorithm is based on Kullback-Leibler 

rate metric [11, 19] which is widely applied to many areas 

such as machine learning, signal processing, control and 

estimation [9, 11, 14, 19, 20].  

The remaining part of this paper is organized as follows: 

Section.2 provides detailed description of how to represent 

dynamic texture using Markov models. In Section.3 we 

proposed to use the Kullback-Leibler rate based aggregation 

method to reduce the complexity of Markov dynamic texture 

model. The advantages of this method and future work are 

summarized in Section 4. 

 

II. DYNAMIC TEXTURE IN THE FORM OF MARKOV 

MODEL 

A. Definition of Dynamic Texture 

For a sequence of images (time-varying texture), 

individual images should not be treated as independent 

realizations from a stationary distribution, because there is an 

obvious temporal correlation intrinsic in the process. 

Dynamic texture capture this by making an assumption that 

individual images are realizations of the output of a 

dynamical system driven by an independent and identically 

distributed (i.i.d.) process.   

 

The following definition of dynamic texture is given in [8], 

we also presents a more general nonlinear form here. Let 
 I t , t = 1,2,…τ , I(t) ⋲ 𝑅𝑚  be a sequence of  τ images. 

Suppose that at each time t a noisy version of image can be 

measured, denoted as y t = 𝐼 𝑡 + 𝑤(𝑡), where w(t) ⋲ 𝑅𝑚  

is an independent and identically distributed ( i.i.d.) sequence 

drawn from a known distribution P(w) . Similarly let 

v(t)⋲ 𝑅𝑛  and is an i.i.d. sequence with distribution Q(v). The 

sequence I(t) is called a dynamic texture if there exists a 

dynamic system driven by input v(t) and generates output 

y(t): 

 
𝑥 𝑡 + 1 = 𝑓(𝑥 𝑡 , 𝑣(𝑡))

𝑦 𝑡 =  𝛷 𝑥 𝑡  + 𝑤(𝑡)
          (1) 

The output function 𝛷(. ) here satisfies  

I t = 𝛷 𝑥 𝑡            (2) 

When the dynamic system is linear, the dynamic system 

simplifies to  

 
𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑣(𝑡))

𝑦 𝑡 =  𝐶𝑥(𝑡) + 𝑤(𝑡)
          (3) 

where A, B,C are matrices of appropriate dimensions. 

Learning or inference of dynamic textures is an important 

task. Taking linear dynamic texture for example, given a 

sequence of observed images y 1 , y 2 … y τ ,  the 

objective is to find the parameters for matrices A, B, C as well 

as the distribution of the driving random process Q v . 
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This learning task can be formulated as the following 

maximum likelihood problem [8]: 

, B , C , Q(. ) = 𝑎𝑟𝑔 max𝐴,𝐵,𝐶.Q(.) log 𝑝(𝑦 1 , 𝑦 2 … y τ ) 

 (4) 

Subject to the dynamic constraints of equation (3). The 

inference method depends crucially upon whattype of 

representation is chosen for the distribution Q(. ) . Note that 

theabove inference problem involves multiplications of 

unknown variables, for example, the state variables x(t) 

multiplied by the unknown matrix A . Therefore the problem 

is non-linear even though the state-space model is linear. In 

general, one coulduse iterative techniques that alternate 

between estimating (sufficient statistics of) the conditional 

density ofthe state and maximizing the likelihood with 

respectto the unknown parameters, in a fashion similar to 

theexpectation-maximization (EM). The convergence of such 

iterative techniques and other identification algorithms are 

outside the scope of this paper, interested readers are referred 

to the discussion in [1, 6, 8, 13,] and references therein.  

The complexity of identifying a nonlinear system has 

made nonlinear dynamic texture models difficult to apply in 

real-world applications. When the dynamic texture model is 

complex (for example, the number of unknown parameters is 

large), the learning task also become very difficult.  This is 

true even for linear dynamic texture models. In the next 

section we propose a Markov model for dynamic texture 

which can represent a large class of dynamic behaviors and 

also lead to an efficient method of model size reduction 

through information theoretic aggregation [9]. 

B. Markov Model for Nonlinear Stochastic Systems 

A Markov Chain is a random process (usually of discrete 

state space) characterized by memory-less property: the next 

state depends only on the current state and not on the 

sequence of events that preceded it. This property, also 

named as ―Markov property‖ is the key feature of Markov 

models. A typical state transition matrix for a 2-state Markov 

Chain is shown in equation (5). 

 

P =  
0.1 0.9
0.7 0.3

           (5) 

 

Because the Markov property limits the behavior of a 

Markov Chain, it cannot be used to represent all types of 

dynamical systems. A more general class of model is called 

Hidden Markov Model (HMM), where an output layer is 

added to generate observations, while the ‗hidden‘ states 

observe a Markov model. The structure of an example HMM 

is given in Figure.1.  

 
Fig.1 Typical structure of a Hidden Markov Model 

 

The key elements of a HMM are the state transition matrix 

for the hidden states, denoted as H , the observation 

probability matrix, denoted as O (which gives the probability 

of observing a particular output when the true state is of a 

given value), and the initial distribution of hidden states, 

denoted as π. We use the following notation for a HMM 

 

Σ = (H, O,π)           (6) 

 

Hidden Markov model can represent a large class of 

dynamical systems, both linear and nonlinear. Therefore it is 

a good candidate for nonlinear dynamic texture model. For 

example, equation (1) can be equivalently represented by a 

Hidden Markov model: the state equation 𝑓 corresponds to H, 

the output equation corresponds to O, and an initial state 𝑥0 

corresponds to π. 

 

Table.1 Comparison between difference equation 

representation and HMM representation of dynamic textures. 

 

 Difference Equations HMM 

State dynamics 𝑓(. , . ) with noise v(t) H 

Output 𝛷(. ) with noise w(t) O 

Initial Condition 𝑥0 π 

C. Dynamic Texture as Markov Model 

Through some standard technique, we can use a Markov 

model to represent a HMM. This is achieved by combining 

hidden states and some observations to form new states for 

the Markov model [14]. The resulting model is equivalent to 

the HMM, but satisfies Markov property. This model is much 

larger in size because the many possible combinations of 

hidden state and observations. 

For example, given a HMM with four possible hidden 

states a, b, c, d and three possible observation  x, y, z. Then 

the size of the state transition matrix for the hidden states is 

4 × 4 and the size of the observation matrix is 4 × 3. To 

obtain a Markov model, we can re-define new states as 

follows 

𝑠1 =  𝑎, 𝑥 , 𝑠2 =  𝑎, 𝑦 , 𝑠3 =  𝑎, 𝑧  
𝑠4 =  𝑏, 𝑥 , 𝑠5 =  𝑏, 𝑦 , 𝑠6 =  𝑏, 𝑧  
𝑠7 =  𝑐, 𝑥 , 𝑠8 =  𝑐, 𝑦 , 𝑠9 =  𝑐, 𝑧  

𝑠10 =  𝑑, 𝑥 , 𝑠11 =  𝑑, 𝑦 , 𝑠12 =  𝑑, 𝑧  
 

Starting from any of these 12 states, the probability of 

transition to all 12 states can be computed from the 

observation matrix and hidden state transition matrix of the 

HMM. This Markov model has a transition matrix of size 

12 × 12. Using this method we can transform any HMM 

representation of dynamic texture into a larger Markov 

model. 

III. SIMPLIFYING DYNAMIC TEXTURE BY 

MARKOV AGGREGATION 

The Markov model obtained in previous section usually 

has large dimension. It is desirable if the size of this model 

can be reduced since it will lead to a reduction of both the 

memory needed for model parameter storage and the 

computation cost when using this model.  
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In this section we propose to use the Kullback-Leibler rate 

based method in [9] to reduce the Markov dynamic texture 

model. 

A. Kullback-LeiblerRate Metric between Markov Models 

Assume the Markov model obtained from previous section 

is a first-order homogeneous Markov chain, defined on finite 

dimensional state space 𝑁 = {1,2,…n}. The  i, j -th entry of 

the n × n transition probability matrix P is denoted as 

 

𝑃𝑖 ,𝑗 = 𝑃𝑟𝑜𝑏(𝑋 𝑡 + 1 = 𝑗|𝑋 𝑡 = 𝑖), i,j⋲ 𝑁   (7) 

 

Here X(t) denotes the state value of the Markov chain at 

time step t. Let π be the stationary distribution and its ith 

entry be π𝑖(it is assumed that this Markov chain is stationary, 

meaning that π is unique). The following formula gives the 

Kullback-Leibler divergence rate between two stationary 

Markov chains P and Q with stationary distribution πand θ, 

respectively. 

 

R(P| Q =   π𝑖𝑃𝑖 ,𝑗 log
𝑃𝑖 ,𝑗

𝑄𝑖 ,𝑗
𝑖 ,𝑗⋲𝑁         (8) 

 

To avoid divided by zero, it is required that P is absolutely 

continuous with respect to Q, which means Q𝑖 ,𝑗 = 0 implies 

P𝑖 ,𝑗 = 0. 

B. Model Reduction for Markov Dynamic Texture 

 Let (π,𝑃) be a stationary Markov dynamic texture model 

that needs to be reduced. The state space reduction is 

achieved through aggregation, meaning we put together 

states of (π,𝑃) that is ―close‖ to each other and treat them as 

a new state. The resulting Markov chain, denoted as (θ,𝑄), 

have fewer states than the original one, however it should be 

not very different from the original model  π,𝑃  when 

measured through the Kullback-Leibler rate (8). Suppose 

(θ,𝑄) has m states with m < 𝑛, and denote the state space 

for this new Markov chains as 𝑀 =  1,2,…m ,  the 

optimization problem that generates parameters for (θ,𝑄) is 

posed as: 

 

min𝜔 .𝑄 𝑅𝜔 (𝑃||𝑄)s.t.  𝑄𝑘𝑙 = 1𝑙⋲𝑀 , 𝑘 ⋲ 𝑀,      

  𝑄𝑘𝑙 ≥ 0,   𝑘, 𝑙 ⋲ 𝑀(9) 

 

Here 𝑅𝜔(𝑃||𝑄)  is the Kullback-Leibler divergence rate 

between𝑃 and the π-lifted version of 𝑄, denoted as Q  . This 

lifting is necessary because it makes the size of the state space 

of Q  to be n, and based on definition (8) two Markov chains 

with state space of different sizes cannot be compared. Only 

after lifting the comparison using Kullback-Leibler 

divergence rate make sense. 

The optimal solution for optimization problem (9) is not 

easy to solve directly. In [9] the authors took a two-step 

approach for the m = 2 case, and then the more general 

problem (9) can be solved recursively applying this 

bi-section procedure. We brief the two-step approach in the 

next sub-section just to make this paper self-contained. For 

more details the interested readers are referred to [9].  

C. Solution of Bi-section Problem based on Spectral 

Partition 

The bi-section version of problem (9) can be solved in 

two-steps: firstly, a partition function 𝜔: 𝑁 → 𝑀 is computed 

to decide which state of P belongs to which partition; then 

under the given partition function, the optimal parameters of 

Q is computed so that the Kullback-Leibler divergence rate is 

minimized. This can be summarized by the following two 

problems: 

 

P1: min𝜔 :𝑁→𝑀 𝑅𝜔(𝑃||𝑄)         (10) 

 

Suppose the solution of P1 is 𝜔 , then the second problem is 

 

P2: min𝑄 𝑅𝜔(𝑃||𝑄), with 𝜔 = 𝜔         (11) 

 

It has been proved that the solution of problem P2 can be 

written in closed form with respect to πand 𝜔 . The problem 

P1 can be approximated by the solution of an eigenvalue 

problem: 

 

(
П𝑃+𝑃′П

2
) 𝑣 = λП𝑣          (12) 

 

This eigenvalue problem can be solved relatively easily 

and the sign structure of the resulting eigen-vector 𝑣 gives 

the optimal partition function 𝜔 . 

IV. DISCUSSION 

In this paper we focus on the complexity reduction of 

dynamic textures. Our major contribution is the Markov 

model based dynamic texture representation, which can 

cover a large class of linear and nonlinear dynamic texture 

models. Due to the relatively large state space size of the 

proposed model, we also adopt the information theoretic 

aggregation method in [9] to do state space reduction for the 

Markov dynamic texture models. Previous works on 

differential equation based dynamic texture models are 

mostly limited to linear systems because the difficulty 

associated with nonlinear system identification. Our 

proposed approach can describe a variety of nonlinearities in 

both state evolution and observation map, and the rich 

literature on Markov chains provides a large pool of tools for 

parameter learning. In the future we will study the optimal 

procedure of obtaining the Markov model from images. 
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