

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

441

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1569053213/2013©BEIESP



 Abstract—In this paper an effective Services selection

mechanism has been introduced for creating a practically

useful Service Broker. Selection of Services is based on

characteristics such as performance, reliability and cost,

ranking and integrity are also considered. In Cloud computing

a service broker is responsible for routing the user requests to

the most appropriate Services. Traditionally, user of a service

issues service request with some specific characteristics to a

service broker and the broker searches all available Services

with specified service and with a certain level of the user

satisfaction. But, how can we select a set of available services

from a query of service user with the some restriction? To

solve this issue, we propose a service selector for service broker

that can denote the restriction of similar services into a service

test data, which is a set of similar cloud services, and select a

set of services that provide a certain level of service

consumer’s satisfaction. We first identify the performance,

reliability and cost of services which could be important for a

cloud service consumer while requesting and then represent

them in a knowledge base. And then we implement a Usage

Pattern based selection mechanism to handle a service request

with Limitation and the selection method is experimented on a

simulated service test data. F i r s t Part also involves the

testing and comparison of the Usage Pattern mechanism with

traditional selection mechanism. In Part II, some of

functionally similar Cloud services with different

non-functional characteristics are modeled and each web

service is differentiated with their non-functional properties.

The usage pattern based mechanism is then incorporated with

a user interface for consumer, so that user can request the

service-broker for a set of best cloud services in terms of

required levels of non-functional characteristics. The Usage

Pattern based service selection mechanism in the

service-broker will give a set of best services according to the

required level of consumer satisfaction. The consumer can

then select any service from the set and invoke it through its

Uniform Resource Locator (URL) address. This last Part leads

to the concept of an automated service broker satisfying the

needs of the consumer with usage pattern. This usage

pattern-based Broker would be able to satisfy the consumer

requests better than a traditional broker by finding more

cloud services and at the same time giving consumer the

flexibility to describe its requirements in a flexible and more

realistic manner.

Manuscript received on May, 2013.

Mandeep Devgan, Department of Information Technology, Chandigarh

Engineering College, Landran, Mohali, India.
Kanwalvir Singh Dhindsa, Department of CSE/IT, Baba Banda Singh

Bahadur Engineering College, Fatehgarh Sahib.

.

Keywords—Cloud Computing, Service Broker, Service

Selection, Usage Pattern.

I. INTRODUCTION

 Cloud computing is an on demand service in which shared

resources, information, software and other devices are

provided according to the clients requirement at specific

time. Capital and operational costs can be cut using cloud

computing [11]. Cloud computing is a marketing term for

technologies that provide computation, software, data

access, and storage services that do not require end-user

knowledge of the physical location and configuration of the

system that delivers the services. A parallel to this concept

can be drawn with the electricity grid, wherein end-users

consume power without needing to understand the

component devices or infrastructure required to provide the

service. There are three main stakeholders in the Cloud

Computing, which are the service producers, service brokers

and service consumers [12]. Service producers implement

softwares, computing platforms and computing

infrastructure related components and publishes some of

them as cloud services onto service directories. A service

consumer issues service requests with precise limitation to a

service broker and the broker searches a set of available

services for the service consumer. While selecting a service

the service broker takes into consideration the minimum

required level matching between requirements and service.

A service broker is an important part of the cloud services

model of modern computing, which handles queries about

the available service and provides results to the consumer

[21]. When several similar cloud services are available, their

characteristics like performance, reliability and cost become

significant [26]. Then the cloud services can be

differentiated with this information and can be used by a

good service selection mechanism for discovering a set of

best available services during the discovery time. This paper

proposes a cloud service selection mechanism for an

Intelligent Service Broker, parameters such as performance;

reliability and cost etc. are used for searching a service.

Furthermore, a Usage Pattern Matching method (UPM) is

used in mapping the queries to services. Usage pattern of a

particular service in a particular region can help in

predicting the service scheduling.

QoS and Cost Aware Service Brokering Using

Pattern Based Service Selection in Cloud

Computing

Mandeep Devgan, Kanwalvir Singh Dhindsa

QoS and Cost Aware Service Brokering Using Pattern Based Service Selection in Cloud Computing

442

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1569053213/2013©BEIESP

This approach will attempt to achieve user satisfaction by

offering a cloud service selection mechanism (CSSM),

which promises higher levels of user satisfaction and at the

same time being light and simple. The service selection is

done, based on performance, reliability and cost. Dr. Lotfi

A. Zadeh first introduced usage pattern in 1965 in his paper

“Usage Pattern Sets” [27] in which he detailed the

mathematics of Usage Pattern set theory. In 1973 he

proposed his theory of usage pattern [11]. In another paper

[4], Dr. Zadeh claims that the real world is pervasively

imprecise and uncertain. This means that most of the

concepts can and should be represented as a matter of

degrees in order to make them realistic and more satisfactory

as opposed to the best fit approach. The two-valued logic is

not always sufficient to answer every question, whether it is

about how good looking a person is or how warm the water

should be in a washing machine?

 Our approach is the same in case of cloud services.

Because it is not always possible for a user to describe the

performance and reliability related information clearly.

While requesting, the service consumer can take advantage of

requesting indefinite non-functional limitation. For example

the required cost of a service can be expressed as „around 10

$‟ by the consumer, instead of saying „under 1 0 $,‟ which

will definitely not give a chance to a service to be chosen with

cost of 10 $ but a lot of other perfect matches for the requested

performance and reliability. Therefore, a Usage Pattern

Selector for the cloud services will make it possible to

increase the level of satisfaction of the consumer by selecting

a set of best services, which will suit the consumer‟s Quality

of Service requirements. Cloud Services are categorized into

Software as Service (SaaS), Platform as Service (PaaS) and

Infrastructure as Service (IaaS) [22]. Semantics are applied to

the cloud services, which help improve software reuse,

composition and discovery and allow incorporation of legacy

applications as part of business process integration [17]. We

use metadata to add semantics to the cloud services, which

provides simple and lightweight semantics [25]. The rest of

the paper is structured as follows. Section 2 briefly discusses

the related work. Section 3 describes the issues, our

approaches to solve them and their specifications. Section 4

and 5 present the details of Parts I and II respectively along

with the specifications of the experiments performed and their

results. In Section 6, we represent the overall conclusions and

reveal the opportunities for future work.

II. RELATED WORK

Many researchers have considered web service consumer

satisfaction in the past and they have come up with different

solutions. Harney and Doshi suggest a mechanism of using

expiration times for web services after which their QoS

parameters are re-evaluated [23]. However, one issue in this

approach is that it is computationally intensive and

complicated. Several algorithms are involved for adaptive

web process, policy implementation and for querying the

producer for updated statistics. A similar effort for the

improvement of consumer Satisfaction is done by Yolum

and Sensoy [24], where they record the consumer

experience with service producers and based on that, let the

system decide which provider will be the best. However,

this approach is more service provider oriented and does

not discuss how a set of services can be selected amongst

several services of the same functionality but different QoS

values, in order to satisfy consumer requirements. There are

also several previous efforts that handle the application of

usage pattern with the cloud services in one way or the

other but no one has ever proposed the Limitation

selection and insertion mechanisms with minimal semantics

using usage pattern for the improvement of end-to- end

satisfaction level.

 The closest to the work done in this project is Di Penta

and Troiano‟s work in [5], in which they try to resolve the

problem of automated discovery, which is faced while using

genetic algorithms. As a solution, they relax the limitation

by defining them as imprecise numbers. However, the focus

of the paper is on matching the Limitation at the consumer

side and at the broker side to obtain a fitness function. First

of all, there is no implementation or experimentation that

has been done or reported in this paper. Secondly the

imprecise specification is only limited to the consumer and

broker. However in our project we also allow the service

producer to be able to describe its limitation in a Usage

Pattern manner. Lin and et al [6] also apply usage pattern

for the constraint Representation of the web services. It also

applies QoS trade-off between the limitations but clearly the

focus of this paper is towards the composition of the web

services and the speed of the cloud services. The user

satisfaction is not discussed in detail and again the insertion

mechanism is not even touched. Tong and Zhang also apply

usage pattern for imprecise QoS service limitation and

implement a ranking algorithm in order to rank service

according to the values of their non- functional

characteristics in [22]. But unlike our approach they do not

take the inaccurate and Usage Pattern limitation from the

user but preset and precise values are taken. Our approach

is to give consumer the liberty to use Usage Pattern words

like “around” while describing the limitation.

 Perryea and Chung is one of the big inspirations for this

project, as they introduce the community-based

architecture for the web service composition and automatic

discovery [2]. We like the idea of service community and

implement similar community with test data of cloud

services in our project. However the paper is mostly focused

on the web service composition and not about the

satisfaction level of the end-to- end communication. Also

they do not use the SACSDL mechanism, which is a way to

introduce the minimal semantics for such lightweight

services. Instead they use the OWL-S, which is very

complicated, and limits the reuse and integration of the

service with OWL-S only, where as SACSDL offers

annotations independent of what ontology language is used.

III. ISSUES AND SOLVING APPROACH

In order to solve the problem of cloud service consumer

satisfaction several efforts have been done in the past.

However there are two issues need more attention:

1) How can a cloud service consumer be given the flexibility

to roughly specify his quality of

service, cost and other related

requirements while requesting

for a web service?

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

443

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1569053213/2013©BEIESP

 2) How can a simple and light mechanism which promises to

offer such flexibility to the service consumer be implemented

and compared with traditional mechanism and put to real

time use in cloud service technology?

A. System at a Glance

These issues are tackled in this paper by following an

incremental approach in two Parts. In the first Part, the first

issue is resolved in this paper by using Usage Pattern

concepts. First the cost and quality of service characteristics

of the cloud services are identified and stored in a knowledge

base. Then a service selection mechanism is implemented

which utilizes the very basics of Usage Pattern theory. We

call this mechanism „Usage Pattern Selector for Broker ‟.

Usage Pattern theory suggests a way of processing data so

that to allow partial set membership as opposed to crisp

membership in the case of best fit approach [22]. This

mechanism handles a service request with limitation and

experimented on a simulated service test data. The

mechanism is then tested and compared with the „Traditional

Selector for Broker‟ in order to show that it works better.

After making sure that pattern selector based broker is

satisfying the consumer requests better than the Traditional

broker, we move towards the further integration and testing of

pattern based selector with some simulated cloud services.

 The second issue is how to integrate the Usage Pattern

mechanism with the real cloud services. Cloud services are

described with the help of their non-functional characteristics

which can be described with the help of semantics. In Part II,

we use the latest recommendation of W3C in order to

semantically annotate web services. These recommendations

are used to reference the ontology that describes the

non-functional and QoS characteristics of web services. In

order to utilize this information we use the semantics fetcher.

The overall structure of the system is shown in Fig. 1.

Fig. 1. System Overview

In Part II, a set of cloud services is simulated in simulation

environment. So the consumer will request the service

broker for a set of best cloud services in terms of her

required levels of cost and rating etc. The Usage Pattern

selection mechanism in the service-broker will yield a set of

best services according to the required level of consumer

satisfaction. The consumer can then select any service from

the set and invoke it through its Uniform Resource Locator

(URL) address. This last Part leads to the concept of an

automated service broker satisfying the needs of the

consumer with usage pattern.

 B. The Usage Pattern Concept

 The usage of a Cloud client can sometimes have a

repetitive behavior. This can be caused by the similarities

between tasks that the Cloud client is running or the repetitive

nature of human behavior. Given the self-similar nature of

web traffic, it follows that current usage patterns of online

services have a probability of having already occurred in the

past in a very similar form. Therefore we can infer what the

system usage will be for a Cloud client by examining its past

usage and extracting similar usages .A careful analysis of the

service request logs of any service can provide better

information about the usage patterns of that service by same

or different customers. SB broker in cloud computing can

use this concept to improve its service scheduling process.

This concept is normally used in predicting the user behavior

in many activities. Accuracy of Prediction improves with

time and increase in number of patterns. Usage pattern

concept can be easily modeled using set theory [26]. Just like

the normal set operations, Usage Pattern sets also have some

basic operations that can be performed. Most common

operations are compliment, intersection and union.

In our research, since we are using usage patterns to predict

the service scheduling, we will need to find match between

history and current Usage patterns.

IV. PART I - SERVICE SELECTION AND LIMITATIONS

In Part I, we first identify the Performance, Reliability and

Cost related characteristics of cloud services which could be

important for a service consumer while querying and then

represent them in a knowledge base. After that we implement

a usage pattern based selection mechanism to handle a

service request with constraint, the selection method is

experimented on a simulated service test data. Part I also

involves the testing and comparison of the Usage Pattern

based selection mechanism with traditional selection

mechanism.

A. Quality of Service and other Characteristics of a

Cloud Service

First we identify and define the QoS and non-functional

properties of the web services: QoS properties such as

performance and reliability and non-functional properties

such as cost, rating, and integrity are described respectively.

Performance

 Performance is a QoS characteristic, which represents

the execution time of a service. Most of the time the

performance of a system is determined by the efficiency of

that system, which is further

defined as amount of work done

in a period of time. Therefore,

execution time of a service can

QoS and Cost Aware Service Brokering Using Pattern Based Service Selection in Cloud Computing

444

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1569053213/2013©BEIESP

be a good

Reliability

The reliability of a service is also a QoS characteristic and

can be determined by analyzing the number of times a

particular service works well over a certain number of its

invocations.

Cost

The cost of a service is a self-explanatory non-functional

characteristic. Cost is the amount of money charged for a

certain number of invocations of a service. For example a

particular service can cost 10 cents for 100 invocations while

another can cost 80 cents for 100 invocations.

Rating

The rating of a web service is a non-functional

characteristic that is determined by the consumer and is

optional. Since the broker tends to take off the work from the

consumer‟s shoulders as much as possible, rating a particular

service is left optional. However, if a consumer choose to

participate and has a mechanism to provide its feedback, the

rating can be stored at the broker‟s end.

Integrity

The integrity of the web service is also a non-functional

characteristic and is determined by the broker. The rating is

about a particular service whereas the integrity is about a

particular service producer. Since the consumer does not

have the producer‟s information, it can only rate the service.

However based on that rating a broker can determine the

integrity of a particular service producer.

Security

 The security of the web service is also a non-functional

characteristic and is also determined by the broker. The

security of a cloud service is composed of security at various

levels of cloud service architecture.

B. Traditional Selector for Broker

 For the traditional selector the best fit approach is applied

which determines whether a service satisfies the conditions

or not. For example if time (T) and reliability (R) are the QoS

parameters for a web service, it determines whether the

execution time is less than or equal to the required level AND

reliability is greater than or equal to a required level provided

by the consumer

(Time ≤ RL1) AND (Reliability ≥ RL2) (I)

Equation I shows the relation where RL1 and RL2 are the

rough values provided by the consumer and T and R are the

actual QoS values for the service described in the test data.

So the consumer requests to select a service that has an

execution time at most c1 (ms) and a reliability of at least c2

(%). Based on equation (1) we can definitely have a single

value function for Time and one for reliability.

C. Experiments and Results (Comparison and Testing)

 For the comparison and testing purposes in the, which is

shown in Fig. 2, is implemented in which the same input is

given to both the traditional and Usage Pattern selection

mechanisms. Both the mechanisms also share the same test

data so that there are no unfair circumstances. A knowledge

base is created which is a set of 600 test data of cloud services

divided in 4 groups. Each group is having 150 cloud services,

of 2, 3, 4 and 5 numbers of Limitations. Each test data is

tested with 200 randomly and automatically generated input

values, which are supposedly provided by the consumer.

Finally, the results are generated by averaging 100 such

iterations.

Fig. 2. Comparisons of Service Selection Mechanisms

The results of the experiment show a significant improvement

in the consumer satisfaction as we move from hard to soft

limitation. The results are divided into Response time, Query

Processing time and Cost. The support perspective is based on

average number of services selected by each mechanism. The

Usage Pattern mechanism‟s performance is significantly

better than the traditional mechanism and can be easily

noticed in the graph. Table I, II and III shows the results and

small difference between Usage Pattern and traditional

mechanism that can be seen. However, it is observed that as

we increase the number of the number of requests, the Usage

Pattern mechanism performs even better than the traditional

one. We call „increasing the number of requests‟ as „moving

towards the real world‟, as in real web services the number of

non-functional and QoS limitations can be much more than

ones in this paper.

Requests/

User/Hour

Response Time(ms)

Traditional Service

Selector

Usage Pattern Based

Selector

100 52.69 50

200 58.78 50.14

300 58.46 50.08

400 58.64 50.16

500 58.56 51

600 59.25 51

Table I. Response Time Comparison

Requests/

User/Hour

 Query Processing Time(ms)

Traditional Service

Selector

Usage Pattern Based

Selector

100 3.07 0.48

200 9.14 0.50

300 8.89 0.50

400 8.99 0.50

500 8.88 0.51

600 9.65 0.49

Table II. Query Processing Time Comparison

Requests/ Cost($)

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

445

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1569053213/2013©BEIESP

User/Hour Traditional Service

Selector

Usage Pattern Based

Selector

100 12.34 1.21

200 12.54 1.5

300 12.62 1.63

400 12.96 2.01

500 13.03 2.06

600 13.54 2.26

Table III. Cost Comparison

Above comparisons clearly reveal that Traditional Service

Selector is no longer beneficial in cloud environment. When

number of requests increases the Response Time, Query

Processing Time and Cost increase in case of Traditional

Service Selector.

Fig. 3.Comparison of User Request Response Time

Fig. 4.Comparison of Query Processing Time

Fig. 5. Comparison of Total Cost

V. PART II-USAGE PATTERN SELECTION MECHANISM

Sometimes the client of a cloud service may exhibit a

repetitive behavior. This can be caused by the nature of

human activities or similarities between tasks that the Cloud

client is performing. Given the self-similar nature of web

traffic, it follows that current usage patterns of online

services have a probability of having already occurred in the

past in a very similar form. Therefore we can infer what the

system usage will be for a Cloud client by examining its past

usage and extracting similar usages.

 The pattern strategy has two inputs: a set of past Cloud

client usage traces and the present usage pattern that consists

of the last usage measures of the Cloud client. Cloud clients

working in the same application domain have a higher

similarity in resource usages. Due to this similarity it follows

that the most relevant historic resource usage data that can be

used comes from Cloud clients working in the same

application domain. Therefore it would make sense to isolate

historical data based on application domains before usage [3].

A. Inspecting Sources of Data

 We need to have a better way to choose the pattern that

would give more relevant results and avoid pollution as much

as possible. The pattern should be influenced by the time it

takes to service a request on the server. By analyzing the data

sources we have obtained the running time in mili seconds of

each request with the results given in Table IV. The

conclusions here are that, for all practical purposes, a pattern

length that is a minimum or even a median of the time it takes

for a request to be executed is unusable when dealing with

servers that have a similar usage to the Cloud applications

described above. In practice we have used the average of the

request service time and have obtained good results.

 B. Denotation of cloud services

 In order to interpret the cloud services with their non-

functional information and Quality of Service characteristics

(Performance, Reliability, Cost), we used the Meta Data.

In real life scenarios, automated cloud service brokering is

often challenging because the service descriptions may

involve complex constraints and require flexible semantic

matching. Furthermore, cloud providers often use

non-standard formats leading to semantic interoperability

issues. In this paper, we formulate cloud service brokering

under a service oriented framework, and propose usage

pattern based cloud service discovery and selection system.

The proposed system supports dynamic semantic matching

of cloud services described with complex constraints.

C. Pattern Selector for Broker

 The Pattern Selector mechanism for Broker is

implemented to interact with Accumulator and User

Requests. Pattern Selector utilizes the Repository of

solutions and usage patterns to fetch the „Reference Pattern‟

elements from the usage log files. Furthermore, the Metadata

obtained from the usage history and current request is

referred to get the values for The QoS and the cost related

characteristics of the web service. The Java-based Document

Object Model (JDOM) is used to interact with the XML files.

 The accumulator with selector mechanism populates the

test data after fetching the information about the

non-functional and QoS

characteristics of the cloud

services. The test data once

populated by the accumulator

QoS and Cost Aware Service Brokering Using Pattern Based Service Selection in Cloud Computing

446

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1569053213/2013©BEIESP

can be used by the selector in order to select the best set of

services.

D. Experiments and Results (Pattern Selector integrated

with Cloud Service)

Since the comparison of the Usage Pattern mechanism with

a traditional mechanism was already done in Part I, the

challenge now is to test the Usage Pattern mechanism with

real web service technology. After that integration with the

help of the tools and technologies like CloudSim,

CloudAnalyst system is tested with three use case scenarios.

 One of the scenarios considered is the Response time

comparison in both the cases. The results are shown in Table

IV. As we can see average response time, average request

processing time are higher in case of Service Broker with

Traditional Selector.

Service Broker

with A/B

Avg.

Response

Time(ms)

Avg. Request

Processing

Time(ms)

Avg.

Cost($)

Traditional

Selector

57.7

8.1

12.8

Pattern

Selector

50.4

0.5

1.8

Table IV. Results for Traditional and Pattern

based Selectors

VI. CONCLUSIONS AND FUTURE SCOPE

Both the QoS and non-functional characteristics of the

cloud services can be represented in an imprecise manner

during the discovery time. The selection mechanism can take

the advantage of the usage pattern to increase the consumer

satisfaction. The Usage Pattern and traditional mechanisms

were compared and tested and it can be noticed that the Usage

Pattern mechanism satisfies the consumer with higher levels

of satisfaction from performance and cost related aspects.

Also, as we increase the number of requests more

improvements can be seen. Usage pattern also offers a natural

way of ranking different services as it associates each

element of the result ser to some degree to which it satisfies

the consumer. The Usage Pattern mechanism is also less

susceptible to the changes in the situations. The Usage

Pattern based service selection mechanism can be integrated

and used with the current web service technology.

 In future more work can be done on the implementation

of usage pattern in the service oriented computing paradigm.

Just like the web service consumer was satisfied in this

project by giving it a flexibility to express its non-functional

requirements in a Usage Pattern manner, the service producer

can also be given this flexibility by letting him provide his

service characteristics in a Usage Pattern manner. In addition,

service producers can also represent both the QoS and

non-functional characteristics of the cloud services during the

publication time. The emerging technologies allow the service

producers to describe the semantics for each service in a

simple manner. By inserting a reference of a semantic

description for the non-functional and QoS properties in

existing web service description, a service broker can fetch

the information from the published cloud services.

 Also the service brokering can be improved by

having a periodic mechanism to automatically gather the non-

functional information from the URL‟s and updates the

knowledge base periodically with the new values. Through

this way, a service consumer does not need to provide the

broker with his service information but he can only change

his service information on his URL‟s.

REFERENCES

[1] Hull, R., Su Jianwen. (2010), Tools for design of composite cloud

services, Proceedings of the 2004 ACM SIGMOD International

Conference on Management of Data, New York, pp. 958 – 961

[2] Perryea, C., Chung, S. (2011), Community-Based Service Discovery,

Proceedings of the IEEE International Conference on cloud services

(ICWS‟06), Washington D C, pp. 903 – 906

[3] Zadeh, L. A. (2009), Usage Pattern, Computer IEEE, Vol. 21 (4), pp.
83-93

[4] Zadeh, L.A. (2012), Soft Computing and Usage pattern, Software IEEE,

Vol. 11(6), pp. 48 – 56

[5] M. Di Penta, L. Troiano, Using Usage pattern to Relax Limitation in GA-

Based Service Composition. Late breaking paper presented at the

Genetic and Computation Conference (GECCO 2005), 2011

 [6] M. Lin, J. Xie, H. Guo, H. Wang, Solving QoS–driven Web Service

Dynamic Composition as Usage Pattern Constraint Satisfaction.

Proceedings of the 2005 IEEE International Conference on

e-Technology, e-Commerce and e-Service (EEE ‟05), p. 9–14, 2005.

[7] McIlraith , A , S., Son, C, T., Zeng, H. (2001), Semantic cloud services,

Intelligent Systems IEEE, Vol. 16(2), pp. 46 - 53

 [8] Fung, C.K., Hung, P.C.K., Wang, G., Linger, R.C., Walton, G.H. (2005),

A study of service composition with QoS management, cloud services

IEEE, Digital Object Identifier 10.1109/ICWS.2005.19

[9] Jaeger, M.C., Muhl, G., Golze, S. (2005), QoS-aware composition of

cloud services: a look at selection algorithms, cloud services IEEE,

Digital Object Identifier 10.1109/ICWS.2005.95

 [10] Birman, K (2005), Can cloud services scale up?, Computer IEEE, Vol.

38 (10), pp. 107 - 110.

 [11] Zadeh, L.A. (1965), Usage Pattern sets. Information and Control 8, 18

Pasteur 96, 15-23 17, pp. 338 - 353

 [12] Booth, D., Haas, H., McCabe, F., Newcomer, E., Michael, I., Ferris, C.,

Orchard, D. (2004), cloud services Architecture, CLOUD FORUMS

Working Group, retrieved from http://www.w3.org/TR/ws-arch/ on

May 2, 2007.

 [13] Mika, P., Oberle, D., Gangemi, A., Sabou, M. (2004), Foundations for

service ontologies: aligning OWL-S to dolce, Proceedings of the 13th

international conference on World Wide Web, pp. 563 - 572
 [14] Christensen, E., Curbera, F., Meredith, G., Weerawarana, F (2001), W3C

Working Group , retrieved from http://www.w3.org/TR/wsdl on May 2,

2007 .
 [15] W3C Schools, SOAP tutorial, retrieved from http: // www. w3schools.

com/ soap / on May 5, 2007 .

 [16] Miller, J., Verma, K., Rajasekaran, P., Sheth, A., Aggarwal, R.,
Sivashanmugam, K. (2004), WSDL-S: A Proposal to W3C WSDL 2.0

Committee, METEOR-S: Semantic Web Services and Processes,

retrieved from http://lsdis.cs.uga.edu/projects/wsdl-s/WSDL-S.pdf on
May 08, 2007 .

 [17] Miller, J., Verma, K., Akkiraju, R., Sheth, A., Schmidt, M., Farrell, J.,
Nagarajan, M. (2005), Web Service Semantics - WSDL-S, W3C,

retrieved from http://www.w3.org/Submission/WSDL-S/ on May 08,

2007 .
 [18] Organization for the Advancement of Structured Information Standards

(2004), Introduction to UDDI:Important Features and Functional

Concepts, retrieved from http://uddi.org/pubs/uddi-tech-wp.pdf on May
8, 2007 .

 [19] Badidi, E., Esmahi, L., Serhani, M.A. (2005), A queuing model for

service selection of multi-classes Q0S-aware Web services, Web
Services ECOWS IEEE, pp. 9 - 17

 [20] Degwekar, S., Su, S.Y.W., Lam, H (2004). Constraint specification and

processing in Web services publication and discovery. Web Services,
2004 proceedings. IEEE International Conference. 6- 9 July 2004, pp

210 - 217

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

447

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B1569053213/2013©BEIESP

 [21] H. Kreger (2001), Web Services Conceptual Architecture, IBM Software

Group, May 2001.
 [22] World Wide Web consortium (W3C), Web Service Activity Statement,

retrieved from http://www.w3.org/2002/ws/Activity on June 03, 2007 .

 [23] Harney, J., Doshi, P. (2007), Speeding up adaptation of web service
compositions using expiration times, International World Wide Web

Conference archive, Proceedings of the 16th international conference on

World Wide Web, Pages: 1023 - 1032
 [24] Yolum, P., Sensoy, M. (2006), A context-aware approach for service

selection using ontologies, International Conference on Autonomous

Agents, Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, ACM, Pages: 931 - 938 .

[25] World Wide Web Consortium (W3C), Semantic Annotations for WSDL

Working Group, retrieved from http://www.w3.org/2002/ws/sawsdl/ on
February 25, 2008.

[26] De Cock, M, Chung, S., & Hafeez, O. (2007). Selection of Web Services

with Imprecise QoS Constraints. Proceedings of WI-2007 (2007
IEEE/WIC/ACM International Joint Conference on Web Intelligence),

p.535-541.

[27] World Wide Web Consortium (W3C), Semantic Annotations for
WSDL and XML Schema - Specification retrieved from http: // www.

w3. Org / TR/ sawsdl/ on February 25, 2008.

