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Abstract— In this paper, a fuzzy equivalence relation is 

defined, generally, superseding most of the established results. 

The technique of employing sets of values for tuple components to 

express imprecision and redundancy in relational databases was 

proposed by Buckles and Petry in their classic works on fuzzy 

relational databases [1], [2]. By employing finite scalar domains 

with similarity relations and special fuzzy number domains, 

Buckles and Petry have demonstrated that the classical properties 

of uniqueness of tuple interpretations and well-definedness of the 

relational algebra can be retained in the fuzzy relational database 

model. The key to the preservation of these properties is the fact 

that scalar domains with similarity relations and the fuzzy number 

domains can be partitioned into equivalence classes. However, 

since equivalence classes can be constructed by assuming the 

existence of similarity relations, it is desirable to generalize the 

fuzzy relational database model to one based only on equivalence 

classes. In this work, we show that the important properties of 

classical relational databases (and of fuzzy relational databases) 

are preserved in a generalized model built on equivalence 

relations on finite database domains.  

 
Index Terms— Domain partitions, Equivalence classes, 

Equivalence relations, Fuzzy relational databases, Relational 

algebra.   

I. INTRODUCTION 

  Discovery of Object oriented databases are considered 

better than the relational and other databases due to increasing 

demand of new approaches to deal with complex data, 

complex relationship existing among such data and large data 

intensive applications. A major goal for database research has 

been the corporation of additional semantics into the data 

model. In real-world applications, information is often vague 

or ambiguous or inexact. Therefore, different kinds of 

incomplete information or data redundancy have extensively 

been introduced into relational databases. However, many 

studies have been carried out on the development of some 

database models to deal with complex objects and data 

redundancy together. 

  The technique of employing subsets of values for tuple 

components to express imprecision in relational databases 

was proposed by Buckles and Petry in their classic papers on 

the fuzzy relational database model [1]-[4].  

 

For various types of reflexive fuzzy relations the reader is 
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referred to [5]. The standard definition of a fuzzy reflexive 

relation μ in A demands μ (a, a) = 1, which we have seen to be 

too strong. We have proposed positive values for all μ (a, a) 

and μ (u, v) ≤ μ (a, a) for all u ≠ v, and a in A. We have shown 

that with this definition of a fuzzy reflexive relation the 

redefined fuzzy equivalence relation supersedes most of the 

theorems proposed by Murali [6]. 

  Since Zadeh introduced the definition of a fuzzy relation 

from A to B as a fuzzy subset of A×B [7], the theory of fuzzy 

relations has been developed [5], [8], [9]. Dubois and Prade 

provided an account of fuzzy relations [10]. More recently, 

Nemitz has studied fuzzy relations connected with fuzzy 

relations and fuzzy functions [8]. Murali defined the fuzzy 

equivalence relation on a set and showed that there exists a 

correspondence between fuzzy equivalence relations and 

certain classes of fuzzy subsets [6]. In this equivalence 

relation, the equivalence class and partition were introduced. 

The concept of a fuzzy equivalence class was introduced by 

Zadeh as a natural generalization of the concept of an 

equivalence class [11]. Ovchinnikov and De Baets et al. 

defined a fuzzy partition as the set of all fuzzy equivalence 

classes of some fuzzy equivalence relation [12], [13].  

II.  OUR CONTRIBUTION 

  In this paper, an attempt has been made to reduce data 

redundancy over a database relation. Reduced dada 

redundancy spanning multiple relations forms an interesting 

extension to previous work. The data redundancy is described 

in basis of equivalence relation. Partition and equivalence 

classes are also used to find out the redundancy easily and 

efficiently. In that way, a data base without error is described. 

It is efficient in practice and also applicable in much larger 

datasets. 

III. EQUIVALENCE RELATION 

  Definition [5]: A fuzzy relation μ in a set A is a fuzzy subset 

of A×A. μ is reflexive in A if μ(a, a) = 1 and μ is symmetric in 

A if μ(a, b) = μ(a, b) for all a, b in A. 

  In mathematics, we often investigate relationships between 

certain objects (numbers, functions, sets, figures, etc.). If an 

element „a‟ of a set A is related to an element „b‟ of a set B, we 

might write: 

a is related to b 

or shortly,  

a related b 

or even more shortly,  

a R b. 

  The essential point is that 

we have two objects, a and b, 

that are related in some way. 
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Also, we say “a is related to b”, not “b is related to a”, so the 

order of a and b is important. In other words, the ordered pair 

(a, b) is distinguished by the relation. This observation 

suggests the following formal definitions of a relation. 

A. Definition  

Let A and B be two sets. A relation R from A into B is a 

subset of the Cartesian product A×B. 

If A and B happen to be equal, we speak of a relation on A 

instead of using the longer phrase “a relation from A into A”. 

Equivalence relations constitute a very important type of 

relations on a set. 

B. Definition 

Let A be a nonempty set. A relation R on A (that is, a subset 

R of A×A) is called an equivalence relation on A if the 

following hold. 

(i) (a,a) ∊ R for all a ∊A, 

(ii) if (a,b) ∊R, then (b,a) ∊R (for all a,b∊ A) 

(iii) if (a,b) ∊R and (b,c) ∊R, then (a,c) ∊R (for all a,b,c∊ R). 

This definition presents the logical structure of an 

equivalence relation very clearly, but we will almost never use 

this notation. We prefer to write a~b, or a≈b, or a≡b or some 

similar symbolism instead of (a,b) ∊ R in order to express that 

a,b are related by an equivalence relation R. Here, a~ b can be 

read as “a is equivalent to b”. Our definition then assumes the 

form below.  

C. Definition  

Let A be a nonempty set. A relation R on A (that is, a subset 

R of A× A) is called an equivalence relation on A if the 

following hold. 

(i) a~a for all a∊ A, 

(ii) if a~ b, then b ~a (for all a,b∊ A), 

(iii) if a ~b and b ~c then a~ c (for all a,b,c∊ A).  

A relation ~ that satisfies the first condition (i) is called a 

reflexive relation; one that satisfies the second condition (ii) is 

called a symmetric relation and one that satisfies the third 

condition (iii) is called a transitive relation. An equivalence 

relation is therefore a relation which is reflexive, symmetric 

and transitive. Notice that symmetry and transitivity 

requirements involve conditional statements (if..., then...). In 

order to show that ~ is symmetric, for example, we must make 

the hypothesis a ~ b and use this hypothesis to establish b ~ a. 

On the other hand, in order to show that ~ is reflexive, we 

have to establish a ~ a for all a∊ A, without any further 

assumption. 

Examples: (a) Let A be a nonempty set of numbers and let 

equality = be our relation. Then = is certainly an equivalence 

relation on A since 

(i) a = a for all a ∊ A, 

(ii) if a = b, then b = a (for all a,b ∊ A), 

(iii) if a = b and b =c, then a = c (for all a,b,c ∊ A). 

(b) Let A be the set of all points in the plane except the 

origin. For any two points P and R in A, let us put P~R if R 

lies on the line through the origin and P. 

(i) P~P for all points P in A since any point lies on the line 

through the origin and itself. Thus ~ is reflexive. 

(ii) If P ~R, then R lies on the line through the origin and P; 

therefore the origin, P, R lie on one and the same line; 

therefore P lies on the line through the origin and R; and R~ 

P. Thus ~is symmetric. 

(iii) If P ~R and R ~T, then the line through the origin and 

R contains the points P and T, so T lies on the line through the 

origin and P, so we get P T. Thus~ is transitive. This proves 

that is an equivalence relation on A. 

D. Definition (equivalence relation)  

A binary relation R on a set A is an equivalence relation if 

and only if  

(1)  R is reflexive  

(2)  R is symmetric, and  

(3)  R is transitive.  

Example 1: The equality relation (=) on a set of numbers 

such as {1, 2, 3} is an equivalence relation.  

Example 2: The congruent modulo m relation on the set of 

integers i.e. {<a, b>| a≡b (mod m)}, where m is a positive 

integer greater than 1, is an equivalence relation.  

Note that the equivalence relation on hours on a clock is the 

congruent mod 12, and that when m = 2, i.e. the congruent 

mod 2, all even numbers are equivalent and all odd numbers 

are equivalent. Thus the set of integers are divided into two 

subsets: evens and odds.  

Example 3: Taking this discrete structures course together 

this semester is another equivalence relation. 

Equivalence relations can also be represented by a digraph 

since they are a binary relation on a set. For example, the 

digraph of the equivalence relation congruent mod 3 on {0, 1, 

2, 3, 4, 5, 6} is shown in Fig. 1. It consists of three connected 

components.  

 
Fig. 1 Example digraph of the equivalence relation  

IV. EQUIVALENCE CLASSES FOR EQUIVALENCE 

RELATION 

The set of even numbers and that of odd numbers in the 

equivalence relation of congruent mod 2, and the set of 

integers equivalent to a number between 1 and 12 in the 

equivalence relation on hours in the clock example are called 

an equivalence class. Formally it is defined as follows: 

Let ~ be an equivalence relation on a nonempty set A, and 

let a be an element of A. The equivalence class of a is defined 

to be the set of all elements of A that are equivalent to a The 

equivalence class of a will be denoted by [a] (or by class(a), 

cl(a), ba or by a similar symbol): [a] = { x ∊ A : x ~ a }. 

An element of an equivalence class X ⊆ A is called a 

representative of X. Notice that x∊ [a] and x ~ a have exactly 

the same meaning. In particular, we have a∊[a] by reflexivity. 

So, any a∊A is a representative of its own equivalence class. 

In mathematics, given a set X and an equivalence relation ~ 

on X, the equivalence class of an element n in X is the subset 

of all elements in X which are equivalent to n. Equivalence 

classes among elements of a 

structure are often used to 

produce a smaller structure whose 

elements are the classes, distilling 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Equivalence_relation
http://en.wikipedia.org/wiki/Subset
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a relationship every element of the class shares with at least 

one other element of another class. This is known as modding 

out by the class. The class may assume the identity of one of 

the original elements, as when fractions are put in reduced 

form. 

(1) Let R be an equivalence relation on A and let a ∊ A. The 

set [a] = {x|aRx} is called the equivalence class of a. 

(2) The element in the bracket in the above notation is 

called the Representative of the equivalence class. 

Every element x of X is a member of the equivalence class 

[x]. Every two equivalence classes [x] and [y] are either equal 

or disjoint. Therefore, the set of all equivalence classes of X 

forms a partition of X: every element of X belongs to one and 

only one equivalence class. Conversely every partition of X 

comes from an equivalence relation in this way, according to 

which x ~ y if and only if x and y belong to the same set of the 

partition. It follows from the properties of an equivalence 

relation that x ~ y if and only if [x] = [y]. 

In other words, if ~ is an equivalence relation on a set X, 

and x and y are two elements of X, these statements are 

equivalent: 

x ~ y, 

[x] = [y], and 

[x]∩[y] ≠ Ø 

Example: Let X be the set of ordered pairs of integers (a,b) 

with b not zero, and define an equivalence relation ~ on X 

according to which (a,b) ~ (c,d) if and only if ad = bc. Then 

the equivalence class of the pair (a,b) can be identified with 

the rational number a/b, and this equivalence relation and its 

equivalence classes can be used to give a formal definition of 

the set of rational numbers. The same construction can be 

generalized to the field of fractions of any integral domain. 

V. EQUIVALENCE CLASSES FOR SIMILARITY 

RELATIONS 

A similarity relation allows us to measure nearness of 

domain elements. For each domain D, a similarity relation s is 

defined over its domain elements, s: D x D→[0, 1] [11]. A 

similarity relation is the generalization of an equivalence 

relation. If x, y, z ∊ D, s can be defined as, 

reflexive: s(x,x) = 1.0 

symmetric: s(x,y) = s(y, x) 

transitive: s(x,z) = Max[Min(S(x,y), S(y,z))] for all y∊D 

Reflexive, Symmetric, Transitive: implies an equivalence 

relation. 

A similarity-based fuzzy relational database is defined as a 

set of relations consists of tuples [14]. Fuzzy tuple is any 

member of a fuzzy relation. For interpretation of a fuzzy 

tuple, it is essential to select any one element from each set of 

the tuple. The space of interpretations is the cross product (D1 

× D2×   … × Dn). Let ti represents the i-th tuple of a relation R 

in the form (ti1,ti2,..., tim), where tij is defined on the domain 

set D, 1≤  j ≤ m. Allowing tuple component tij to be a subset of 

the domain Dj means that fuzzy information can be 

represented. This leads to the definition that Fuzzy Relation is 

essentially the subset of the cross product P(D1) ×  P(D2) × 

… × P(Dn), where P(D) is the power set of the domain D. 

Different degrees of similarity to the elements in each 

domain are introduced and compared with similarity relation 

for the representation of “fuzziness” in the fuzzy 

object-oriented data model based on fuzzy similarity database 

model. Table I illustrates a simple fuzzy object-oriented 

database representing NINE EMPLOYERS OF SCHOOL. 

Fig. 2 shows the similarity relations for domains attributing to 

JOB-POSITION, EXPERIENCE and SALARY respectively 

[15]. 

 

TABLE I A fuzzy object-oriented database relation 

EMP# JOB-POSITION EXP SALARY 

1 Principal 7 60k 

2 Dean 5 60k 

3 Clark 2 10k 

4 
Teacher of Software 

Engineering 
6 42k 

5 
Teacher of 

Operating system 
3 42k 

6 Clark 2 8k 

7 
Teacher of Software 

Engineering 
3 35k 

8 
Teacher of 

Networking 
5 60K 

9 
Teacher of 

Operating system 
2 35k 

 

 

 

 

 

 

 Principal Dean Clark 
Teacher of Software 

Engineering 

Teacher of Operating 

system 

Teacher of 

Networking 

Principal 1 0.5 0.7 0.5 0.4 0.2 

Dean 0.5 1 0.5 0.7 0.4 0.2 

Clark 0.7 0.5 1 0.5 0.4 0.2 

Teacher of Software 

Engineering 
0.5 0.7 0.5 1 0.4 0.4 

Teacher of Operating 

system 
0.4 0.4 0.4 0.4 1 0.4 

Teacher of Networking 0.25 0.7 0.5 0.7 0.4 1 

 
JOB-POSITION = {Principal, Dean, Teacher of Software Engineering, Teacher   of Operating system, Teacher of 

Networking} 

 

http://en.wikipedia.org/wiki/Modulo_%28jargon%29
http://en.wikipedia.org/wiki/Modulo_%28jargon%29
http://en.wikipedia.org/wiki/Irreducible_fraction
http://en.wikipedia.org/wiki/Irreducible_fraction
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Rational_number
http://en.wikipedia.org/wiki/Field_of_fractions
http://en.wikipedia.org/wiki/Integral_domain
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   2  3  5  6  7 

       2   1 0.8 0.6 0.6 0.4 

      3  0.8 1 0.6 0.6 0.4 

      5  0.6 0.6 1 0.8 0.6 

      6  0.6 0.6 0.8 1 0.6 

      7  0.4 0.4 0.6 0.6 1 

 
EXPERIENCE 

 

 8 10 35 42 60 

 8 1 0.7 0.5 0.2 0.2 

10 0.7 1 0.5 0.2 0.2 

35 0.5 0.5 1 0.2 0.2 

42 0.2 0.2 0.2 1 0.4 

60 0.2 0.2 0.2 0.4 1 

 
SALARY

 

Fig. 2 Reduce data redundancy using Similarity relation for attribute domains 

 

In Fuzzy, a similarity relation, S, is a fuzzy relation which 

is reflexive, symmetric, and transitive. Let x, y be elements of 

a set X and μs(x,y) denotes the grade of membership of the 

ordered pair (x,y) in S. Then S is a similarity relation in X if 

and only if, for all x, y, z in X, 

μs(x,x) = 1 (reflexivity),  

μs(x,y) = μs(y,x) (symmetry), and 

μs(x,z) ⩾ ∀ (μs(x,y) Å μs(y,z)) (transitivity),   

Where, ∀  and Å denote max and min respectively. Fig. 3 

illustrates an example of similarity relation. A partition tree is 

shown in Fig. 4.  

 

Sim(x, 

y) 
A B C D E 

A 1.0 0.8 0.4 0.5 0.8 

B 0.8 1.0 0.4 0.5 0.9 

C 0.4 0.4 1.0 0.4 0.4 

D 0.5 0.5 0.4 1.0 0.5 

E 0.8 0.9 0.4 0.5 1.0 

 

Fig. 3 An example of similarity relation 

 

Fig. 4 Partition Tree 

 

 

The -level set S ={(x,y)|Sim(x,y)  } is an equivalence 

relation, e.g., S0.8 = {{A,B,E}, {C}, {D}} 

VI. PARTITIONS AND EQUIVALENCE RELATION 

An equivalence relation R on a set A, every element of A is 

in an equivalence class. For if an element, say b, does not 

belong to the equivalence class of any other element in A, then 

the set consisting of the element b itself is an equivalence 

class. Thus the set A is in a sense covered by the equivalence 

classes. Another property of equivalence class is that 

equivalence classes of two elements of a set A are either 

disjoint or identical, that is either [a] = [b] or [a]⋂[b] = Ø for 

arbitrary elements a and b of A. Thus the set A is partitioned 

into equivalence classes by an equivalence relation on A. This 

is formally stated as a theorem below after the definition of 

partition. An equivalence relation partitions a set into several 

disjoint subsets as shown in Fig. 5. 

Let A be a set and A1, A2, ..., An be subsets of A. Then {A1, 

A2, ..., An} is a partition of A, if and only if,  

(1) ⋃n 
i=1Ai = A, and 

(2) Ai⋂Aj = Ø for Ai ≠Aj, 1 ≤ i, j ≤n  

A partition of a set S is a family F of non-empty subsets of S 

such that 

(i) if A and B are in F, then either A=B or A⋂B = Ø and 

(ii) union A = S 
       A∈F    

 
Fig. 5 An equivalence relation partitions a set into several 

disjoint subsets 

If S is a set with an equivalence relation R, it is easy to see 

the equivalence classes of R form 

a partition of the set S. 

Since F is a partition, for each x 

in S there is one (and only one) set 

http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Disjoint_set
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of F which contains x. Thus, x R x for each x in S (R is 

reflexive) If there is a set containing x and y then x R y and y R 

x both hold. (R is symmetric).If xRy and yRz, then there is a 

set of F containing x and y, and a set containing y and z. Since 

F is a partition, and these two sets both contain y, they must be 

the same set. Thus, x and z are both in this set and xRz (R is 

transitive). Thus, R is an equivalence relation. 

In Fuzzy we construct a fuzzy equivalence relation 

associated with a class of fuzzy subsets on S. We constructed 

the class of fuzzy subsets {μX}, x∈ S, on S associated with a 

fuzzy equivalence relation p. We call this collection as the 

fuzzy partition of S with respect to μ. It is uniquely 

determined by μ. Let {μj}j∊J,J an indexing set be a class of 

fuzzy subsets on S. It is called a fuzzy partition of SX, In the 

follows [6]: 

(i) For each x∈ S, there is a unique j∊J such that μj(S) = 1. 

(ii) For each α∈ [0, 1], W{( μj, α)} (j∊J) form a crisp 

partition of S.  

(iii) For each α such that 0< α ≤1,{W( μj, α), (j∊J)  } is a 

refinement of  {W(μj, β ), j∊J }With 0≤β≤α≤1. 

In this case, we can associate a unique fuzzy equivalence 

relation μ on S as follows: 

sup

Jj

)y,x(



  (μj (x) ⋀ μj (y) for all x, y ∊ S.) 

VII. CONCLUSION 

The major objective of this paper is to reduce data 

redundancy over databases. Different degrees of similarity to 

the elements in each domain are introduced and compared 

with similarity relation for the representation of “fuzziness” in 

the fuzzy object-oriented database .An attempt has been used 

equivalence relation to reduce data redundancy in fuzzy 

object oriented databases. This approach is based on 

considering partitions of the relation and equivalence class 

that deriving valid dependencies from the relation. Partition 

and equivalence classes are also used to find out the 

redundancy easily and efficiently. In that way, a data base 

without error is described. This kind of facility will certainly 

improve the cooperative nature of objected-oriented 

databases and enhance the user friendliness of the database 

systems. 
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