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Abstract— The electrocardiogram (ECG) records the cardiac 

activity and it is extensively used for diagnosis of heart diseases. It 

is also an essential tool to allow monitoring patient sat home, 

thereby advancing telemedical applications. Even though these 

contributions are for different projects, the issue common to each 

is the use of ECG for remote monitoring and assistance under 

different telecommunication platforms. The transmission of ECG 

often introduces noise due to poor channel conditions. In this 

paper, we propose a new method for removing the baseline 

wander interferences based on Empirical Mode Decomposition 

(EMD). EMD is a relatively new, data-driven adaptive technique 

used to decompose ECG signals into a series of Intrinsic Mode 

Functions (IMFs).The baseline wander is mainly involved in 

special lower frequency IMFs. To evaluate the performance of the 

method, Clinic ECG signals are used. Results indicate that the 

method is powerful and useful in removing the baseline wander in 

ECG signal and does not distort the ECG signals. 

 

Index Terms— Baseline Wander, Empirical mode 

decomposition, Electro cardio Gram, Intrinsic Mode Functions 

I. INTRODUCTION 

One of the first applications of Empirical Mode 

decomposition (EMD) is in the field of Biomedical 

Engineering, where blood pressure is studied. Some other 

applications of EMD are in ECG signal processing for 

investigating its chaotic nature, analysis of heart rate visibility 

(HRV), artifact reduction in gastric signals and extraction of 

lower esophageal sphincter pressure in the gastro esophageal 

reflux disease. EMD is an emerging new technique for 

adaptively decomposing nonstationary signal in a sum of local 

oscillatory components (IMFs). It is local in time, fully 

data-driven, and does not require any prior knowledge on the 

nature and the number of IMF components embedded in the 

data[1]. This technique has already been applied with success 

in biology and medicine. The idea of EMD is applied to 

develop strategies to automatically identify the relevant IMFs 

that contribute to the slow-varying trend in the data and 

presented its application on the extraction of the LES pressure 

in GERD. Through both computer simulations and actual data 

that the method is able to successfully extract the LES 

pressure signal and compares favorably to the conventional 

low-pass filer.  
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A. Motivation 

Electrocardiogram (ECG) has been used extensively for 

detection of heart disease. A classical problem in recording 

the ECG signal is that the measured signal is corrupted by 

baseline wander. The baseline wander is a interference may 

severely corrupt an ECG recording. Removing the baseline 

interference in ECG signal is usually the necessary 

preprocessing step to enhance the signal characteristics for 

diagnosis. Problems with patient movement, bad electrodes 

and improper electrode site preparation etc can cause baseline 

wander. The frequency range of baseline wander is usually 

below 0.5Hz, which is similar as the frequency range of ST 

segments. Baseline wander makes interpretation ECG 

recordings difficult, especially the assessment of ST 

deviation. So before analyzing the ECG signal, removing the 

baseline wander is necessary. 

B. Problem Description 

The main goal of this work is to separate the valid ECG from 

the undesired artifacts so as to present a signal that allows 

easy visual interpretation. Many approaches have been 

reported in the literature to address ECG enhancement.  Some 

recent relevant contributions have proposed solutions using a 

wide range of different techniques, such as perfect 

reconstruction maximally decimated filter banks and 

nonlinear filter banks, advanced averaging, the wavelet 

transform, adaptive filtering, singular value decomposition, 

and independent component analysis. 

C. Related Work 

Many approaches have been reported in the literature to 

address ECG enhancement. Some recent relevant 

contributions have proposed solutions using a wide range of 

different techniques, such as perfect reconstruction 

maximally decimated filter banks and nonlinear filter banks, 

advanced averaging, the wavelet transform, adaptive filtering, 

singular value decomposition, and independent component 

analysis. 

 In this paper, we propose a new method for ECG 

enhancement based on the empirical mode decomposition 

(EMD). The EMD was recently introduced in as a technique 

for processing nonlinear and no stationary signals. It also 

serves as an alternative to methods such as the wavelet 

analysis, Wigner–Ville distribution, and the short-time 

Fourier transform. It is proposed as a preprocessing stage to 

efficiently compute the instantaneous frequency through the 

Hilbert transform, although it can be applied independently as 

well.  
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It is reported in that EMD behaves as a “wavelet-like” dyadic 

filter bank for fractional Gaussian noise. This conclusion has 

been applied in a detruding and denoising example in.  

The present work is one of the first applications of EMD in 

biomedical engineering, where signals are studied. Regarding 

ECG signal processing, one of the first EMD-based 

contributions is, which investigates the chaotic nature of 

ECG. Also related to the cardiac system, the EMD is utilized 

in the analysis of heart rate variability (HRV). The EMD is 

also used for artifact reduction in gastric signals. Finally in, 

the EMD is utilized to extract the lower esophageal sphincter 

pressure in the gastro esophageal reflux disease. 

As the brief review above demonstrates, the EMD is a good 

tool for artifact reduction applications. This motivates the 

proposed use of the EMD for ECG enhancement. In this work, 

we address both denoising and BW removal based on the 

EMD. 

The contributions of this work lie in two aspects. First, we 

introduce the use of the EMD in ECG enhancement. Second, 

noting that both high-frequency noise and BW components 

are mixed with ECG signal component in the EMD domain, 

we develop novel methods to remove both types of artifacts. 

The performance of the proposed algorithm is demonstrated 

through various experiments performed over several records 

from the MIT–BIH arrhythmia database. Quantitative and 

qualitative experiments are carried out for synthetic and real 

noise cases. The experimental studies show that the proposed 

EMD-based method is a good tool for ECG denoising and 

BW removal, especially for the important real noise cases.  

II. OVERVIEW OF PROPOSED SYSTEM 

A. Introduction of Problem and its Related Concepts 

The electrocardiogram (ECG) is the recording of the cardiac 

activity and it is extensively used for diagnosis of heart 

diseases. It is also an essential tool to allow monitoring patient 

sat home, thereby advancing telemedical applications. Recent 

contributions in this topic are reported in. Even though these 

contributions are for different projects, the issue common to 

each is the use of ECG for remote monitoring and assistance 

under different telecommunication platforms. The 

transmission of ECG often introduces noise due to poor 

channel conditions. Moreover, there are other types of noise 

inherent in the data collection process. These artifacts are 

particularly significant during a stress test. The main sources 

of such artifacts are: (1) the baseline wander (BW) mainly 

caused by respiration, and (2) high-frequency noise such as 

the electromyography (EMG)noise caused by the muscle 

activity. Moreover, the motion of the patient or the leads 

affects both types of artifacts. In ECG enhancement, the goal 

is to separate the valid ECG from the undesired artifacts so as 

to present a signal that allows easy visual interpretation. 

Many approaches have been reported in the literature to 

address ECG enhancement. Some recent relevant 

contributions have proposed solutions using a wide range of 

different techniques, such as perfect reconstruction 

maximally decimated filter banks and nonlinear filter banks, 

advanced averaging, the wavelet transform, adaptive filtering, 

singular value decomposition, and independent component 

analysis. 

In this paper, we propose a new method for ECG 

enhancement based on the empirical mode decomposition 

(EMD). The EMD was recently introduced in as a technique 

for processing nonlinear and no stationary signals. It also 

serves as an alternative to methods such as the wavelet 

analysis, Wigner–Ville distribution, and the short-time 

Fourier transform. It is proposed as a preprocessing stage to 

efficiently compute the instantaneous frequency through the 

Hilbert transform, although it can be applied independently as 

well.         

B. Gaps Identified from Existing System 

Up to now, many methods of removing the baseline wander in 

ECG signal are proposed. Highpass filter is the classical 

method which removes very low frequency component from 

ECG recording. The component with frequencies below 

0.5Hz is filtered out, while frequencies above are completely 

preserved in both amplitude and phase. Unfortunately, 

because the spectra of baseline wander and the ECG signal are 

very close, and in some cases may overlap, it is difficult to 

eliminate the wander and leave the ECG signal undistorted. 

Other methods for removal of baseline wander include cubic 

spline approximation and subtraction technique, which 

involves estimating the baseline with polynomial or cubic 

spline and subtracting it from the disturbed signal; the 

performance of this method depends on the knots 

determination accuracy. Adaptive filtering can also be used to 

remove baseline wander, which was first proposed by 

Widrow [9] [10]. The method does not disturb the ECG 

frequency spectrum but it requires reference signal, which 

adds to the complexity of hardware and software adaptive 

filter etc. 

C. Proposed Solution 

We propose a new method for ECG enhancement based on 

the empirical mode decomposition (EMD). The EMD was 

recently introduced in as a technique for processing nonlinear 

and nonstationary signals. It also serves as an alternative to 

methods such as the wavelet analysis, the Wigner–Ville 

distribution, and the short-time Fourier transform. It is 

proposed as a preprocessing stage to efficiently compute the 

instantaneous frequency through the Hilbert transform, 

although it can be applied independently as well. It is reported 

in that EMD behaves as a “wavelet-like” dyadic filter bank for 

fractional Gaussian noise. This conclusion has been applied in 

a detrending and denoising example the work in presents one 

of the first applications of EMD in biomedical engineering, 

where blood pressure is studied. Regarding ECG signal 

processing, one of the first EMD-based contributions, which 

investigates the chaotic nature of ECG. Also related to the 

cardiac system, the EMD is utilized in the analysis of heart 

rate variability (HRV). The EMD is also used for artifact 

reduction in gastric signals. Finally, in the EMD is utilized to 

extract the lower esophageal sphincters pressure in the gastro 

esophageal reflux disease. As the brief review above 

demonstrates, the EMD is a good tool for artifact reduction 

applications. This motivates the proposed use of the EMD for 

ECG enhancement. In this work, we address both denoising 

and BW removal based on the EMD. The contributions of this 

work lie in two aspects. First, we introduce the use of the 

EMD in ECG enhancement. Second, noting that both 

high-frequency noise and BW components are mixed with 

ECG signal component in the EMD domain, we develop 

novel methods to remove both types 

of artifacts.  
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The performance of the proposed algorithm is demonstrated 

through various experiments performed over several records 

from the MIT–BIH arrhythmia database. Quantitative and 

qualitative experiments are carried out for synthetic and real 

noise cases. The experimental studies show that the proposed 

EMD-based method is a good tool for ECG denoising and 

BW removal, especially for the important real noise cases. 

III. OVERALL DESIGN 

The design of the system consists of a brief review of the 

EMD is presented. The algorithms for denoising and baseline 

removal are explained. Next section presents the experimental 

studies that demonstrate the performances of the proposed 

method. Finally, conclusions are given at the end.  

A. System Architecture Design 

The system is designed in an efficient way to provide a clean 

ECG signal. The signal inputs are obtained, the corresponding 

maxima and minima  points are identified, the correspondence 

IMFs are obtained  and finally the first three IMFs are added 

together in order to get a clear ECG signal. 

 
Fig. 1.  System Architecture Design. 

B. Empirical Mode Decomposition 

The EMD was recently proposed by Huang et al. as  a tool to 

adaptively decompose a signal into a collection of AM–FM 

components. Traditional data analysis methods, like Fourier 

and wavelet-based methods require some predefined basis 

functions to represent a signal. The EMD relies on a fully 

data-driven mechanism that does not require any a priori 

known basis. It is especially well suited for nonlinear and 

nonstationary signals, such as biomedical signals. The aim of 

the EMD is to decompose the signal into a sum of intrinsic 

mode functions (IMFs). An IMF is defined as a function with 

equal number of extrema and zero crossings (or at most 

differed by one) with its envelopes, as defined by all the local 

maxima and minima, being symmetric with respect to zero. 

An IMF represents a simple oscillatory mode as a counterpart 

to the simple harmonic function used in Fourier analysis. 

Given a signal x(t), the starting point of the EMD is the 

identification of all the local maxima and minima. All the 

local maxima are then connected by a cubic spline curve as 

the upper envelope eu(t). Similarly, all the local minima are 

connected by a spline curve as the lower envelope el(t). The 

mean of the two envelopes is denoted as    

1 1( ) [ ( ) ( )] / 2um t e t e t  and is subtracted from the signal. 

Thus, the first proto-IMF 1( )h t is obtained as 

1 1( ) ( ) ( )h t x t m t                  (1) 

The above procedure to extract the IMF is referred to as the 

sifting process. Since 1( )h t still contains multiple extrema in 

between zero crossings, the sifting process is performed again 

on 1( )h t . This process is applied repetitively to the 

proto-IMF ( )kh t until the first IMF 1( )c t , which satisfies the 

IMF condition, is obtained. Some stopping criteria are used to 

terminate the sifting process. A commonly used criterion is 

the sum of difference (SD): 
2

1

2
0 1

[ ( ) ( )]

( )

T
k k

t k

h t h t

h t



 


                         (2) 

When the SD is smaller than a threshold, the first IMF 1( )c t  

is obtained, which is written as 

1 1( ) ( ) ( )r t x t c t                       (3) 

Note that the residue 1( )r t still contains some useful 

information. We can therefore treat the residue as a new signal 

and apply the above procedure to obtain 

 1 2 2( ) ( ) ( )r t c t r t  , 

……..  ……..  ………                                          (4) 

1( ) ( ) ( )n n nr t c t r t   .                                                              

The whole procedure terminates when the residue ( )N tr is 

either a constant, a monotonic slope, or a function with only 

one extreme um. Combining the equations in (3) and (4) 

yields the EMD of the original signal: 

( )( ) ( )n N tx t c t r                                                     (5) 

The result of the EMD produces N IMFs and a residue signal. 

For convenience, we refer to ( )nc t  as the nth-order IMF. By 

this convention, lower-order IMFs capture fast oscillation 

modes while higher-order IMFs typically represent slow 

oscillation modes. If we interpret the EMD as a time-scale 

analysis method, lower-order IMFs and higher-order IMFs 

correspond to the fine and coarse scales, respectively. 

Huang‟s data-driven EMD method was initially proposed for 

the study of ocean waves, and found immediate applications 

in biomedical engineering. The major advantage of EMD is 

that the basis functions are derived directly from the signal 

itself. Hence the analysis is adaptive, in contrast to Fourier 

analysis, where the basis functions are fixed sine and cosine 

waves. 

The central idea of this method is an iterative sifting process 

that decomposes a given signal into a sum of IMFs, those 

basic building blocks that make up data complex time series. 

A signal must satisfy two criteria to be an IMF: (1) the number 

of extrema and the number of zero crossings are either equal 

or differ at most by one; and (2) the mean of its upper and 

lower envelopes equals zero.  

The first criterion is similar to the narrow-band requirement. 

The second criterion modifies a global requirement to a local 

one, and is necessary to ensure that the instantaneous 

frequency will not have unwanted fluctuations as induced by 

asymmetric waveforms. 



 

System Design for Baseline Wander Removal of ECG Signals with Empirical Mode Decomposition using Matlab 

88 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C1609073313/2013©BEIESP 

 To make use of EMD, the signal must have at least two 

extreme one maximum and one minimum to be successfully 

decomposed into IMFs. Given these two definitive 

requirements of an IMF, the sifting process for extracting an 

IMF from a given signal x(t) is described as follows: 

1. Two smooth splines are constructed connecting all the 

maxima and minima of x(t) to get its upper envelope, ( )upx t , 

and its lower envelope, ( )lowx t ; The extreme can be simply 

found by determining the change of sign of the derivative of 

the signal. Once the extreme are identified, all the maxima are 

connected by a cubic spline line as the upper envelope. The 

procedure is repeated for the local minima to produce the 

lower envelope. All the data points should be covered by the 

upper and lower envelopes. 

2. The mean of the two envelopes is subtracted from the data 

to get their difference 

  ( ) [ ( ) ( )] / 2low upd t x t x t    

3. The process is repeated for d(t) until the resulting signal, 

1( )c t , the first IMF, satisfies the criteria of an intrinsic mode 

function. The residue 1 1( ) ( ) ( )r t x t c t  is then treated as 

new data subject to the sifting process as described above, 

yielding the second IMF from 1( )r t . The procedure continues 

until either the recovered IMF or the residual data are too 

small, in the sense that the integrals of their absolute values or 

the residual data have no turning points. Once all of the 

wavelike IMFs are subtracted from the data, the final residual 

component represents the overall trend of the data.  At the end 

of this process, the signal x(t) satisfies (5), where N is the 

number of IMFs, Nr  denotes the final residue (signal trend), 

and ( )jc t are nearly orthogonal to each other, and all have 

zero means. Due to this iterative procedure, none of the sifted 

IMFs is derived in closed analytical form. In practice, after a 

certain number of iterations, the resulting signals do not carry 

significant physical information, because, if sifting is carried 

on to an extreme, it could result in a pure frequency 

modulated signal of constant amplitude.  

To avoid this, we can stop the sifting process by limiting the 

standard deviation, computed from two consecutive sifting 

results, which is usually set between 0.2 and 0.3. By 

construction, the number of extrema is decreased when going 

from one residual to the next, and the whole decomposition is 

guaranteed to be completed with a finite number of modes. By 

the sifting process, the data are represented by intrinsic mode 

functions, to which the Hilbert transform can be applied. The 

Hilbert spectrum enables us to represent the amplitude and the 

instantaneous frequency as functions of time in a 

three-dimensional plot.  

The resulting time–frequency distribution of the amplitude is 

called the Hilbert amplitude spectrum. The two-step 

procedure, EMD and its subsequent Hilbert spectral analysis, 

is called the Hilbert–Huang transform (HHT). The HHT 

method provides not only a more precise definition of 

particular events in time–frequency space than wavelet 

analysis, but also more physically meaningful interpretations 

of the underlying dynamic processes. 

1) ECG Denoising using EMD: High-frequency denoising by 

the EMD is in general carried out by partial signal 

reconstruction, which is premised on the fact that noise 

components lie in the first several IMFs. This strategy works 

well for those signals whose frequency content is clearly 

distinguished from that of noise and is successfully applied in.  

The basic idea is to statistically determine the index of the 

IMFs that contain most of the noise components, beginning 

from fine to coarse scale. Given the index, the IMFs 

corresponding to the noise are removed and the 

reconstruction of the original signal is obtained by summing 

up the remaining IMFs.  

However, this approach cannot be assumed in the ECG case 

because the QRS complex spreads over the lower-order IMFs. 

Therefore, in the ECG case, EMD-based denoising requires a 

different strategy. Noise encountered in ECG applications is 

usually located in the high-frequency band. Although most 

ECG signal power is concentrated in lower frequencies, the 

QRS complex spreads across the mid- to high-frequency 

bands.  

This complicates ECG denoising since lowpass filtering or 

simply removing lower order IMFs will introduce severe QRS 

complex distortion, e.g., R-wave amplitude attenuation. As 

Section 2 illustrates, the EMD decomposes a signal into IMFs 

with decreasing frequency content.  

The EMD of clean and noisy ECG records are illustrated in 

the following two examples, thus revealing specific patterns 

associated with the QRS complex and noise in the EMD 

domain. Consider first a clean ECG signal (first lead of record 

103) from the MIT–BIH arrhythmia database decomposed by 

the EMD as shown in Fig. 2. 

 
Fig. 2.  EMD of Clean ECG, from top to bottom: clean 

ECG and resulting IMF 1- 13. Vertical axes subplot are 

not in the same scale. 
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The top plot shows the original ECG, and the remaining show 

all the IMFs from low to high orders. Consider next the EMD 

of a noisy ECG. A representative noisy signal is obtained by 

adding Gaussian noise to the clean signal in Fig. 2, the result 

of which is shown in the top graph of Fig. 3. The IMFs of the 

noisy signal are also shown in Fig. 3. 

Compared to the clean signal case, the first IMF of the noisy 

signal contains strong noise components. The oscillatory 

patterns of the QRS complex become more apparent starting 

from the second IMF. An analysis of EMD on clean and noisy 

ECG indicates that it is possible to filter the noise and at the 

same time preserve the QRS complex by temporal processing 

in the EMD domain. Multiple evaluations show these 

characteristics for all EMD decompositions of ECG signals.  

Therefore, the following four steps constitute the proposed 

denoising procedure: 

STEP 1: Delineate and separate the QRS complex. 

STEP 2: Use proper windowing to preserve the QRS 

complex. 

STEP 3: Use statistical tests to determine the number of IMFs 

contributing to the noise. 

STEP 4:  Filter the noise by partial reconstruction 

 

 
Fig. 3.  EMD of a Noisy ECG, from top to bottom: Noisy 

ECG and resulting IMF 1- 11. Vertical axes subplot are 

not in the same scale. 
 

2) ECG BW Removal with EMD: Since BW is a 

low-frequency phenomenon, it is expected that the major BW 

components are located in the higher-order IMFs. The 

residue, which can also be regarded as the last IMF, may not 

correspond to the BW because the BW may have multiple 

extrema and zero crossings, which violates the residue 

definition. Indeed, the BW spreads over the last several IMFs. 

Simply removing the last several IMFs may introduce 

significant distortions.  

Thus, the BW must be separated from the desired components 

in the last several IMFs. Moreover, as in the denoising case, 

the number of IMFs that contribute to the BW must be 

established. This number is referred to as BW order.  

To remove the BW, a BW estimate is first obtained via a 

“multiband” filtering approach. The estimated BW is then 

subtracted from the signal, yielding the reconstructed signal. 

A bank of lowpass filters are applied to the last several IMFs.  

The sum of the output of this filter bank serves as the BW 

estimate. Suppose the signal with BW is x(t).  

After performing the EMD, we obtain all the IMFs: 
1

1

( ) ( )
N

i

i

x t c t




                     (14) 

where the residue is included in the summation as the last 

IMF, 1( )Nc t . Denote the BW order as Q. We design a bank 

of lowpass filters ( )ih t , i = 1, 2. . . Q, and then filter the IMFs 

starting from the last, 1( )Nc t , by these lowpass filters. The 

outputs of these filters are 

1 1 1

2 2

2

( ) ( ) ( ),

( ) ( ) ( ),

..... .... .....

( ) ( ) ( ), (15)

N

N

Q Q N Q

b t h t c t

b t h t c t

b t h t c t



 

 

 

 

        (15)      

where ∗ denotes the convolution. The cutoff frequencies of 

the lowpass filters are chosen as follows. Set the cutoff 

frequency of the first lowpass filter 1( )h t to be 0. The cutoff 

frequency of the k
th

 filter is set as 

0

1
k

kM


 


,                                            (16) 

 where Mk-1 is a frequency-folding number. The cutoff 

frequencies are related in this fashion due to the fact that, as 

the IMF order decreases, fewer BW components, but more 

signal components, are present in the IMF.  

This multiband filtering scheme considers each IMF as a 

subband of the signal and performs filtering on each subband. 

The output ( )ib t extracts the BW component in each IMF. 

Therefore, it can be used to determine the BW order Q. The 

variance of each ( )ib t  is determined as 

1
2

0

1
var{ ( )} [ ( ) ]

1

L

i i i

t

b t b t b
L






 

 ,                 (17)   

where ib  is the mean value of ib (t). Starting from the last 

IMF, we choose Q such that 1var{ ( )}Qb t  and 

var{ ( )}Qb t , where is an appropriate established threshold. 

The selection of the parameters can be based on a priori 

knowledge or can be experimentally tuned according to the 

BW behavior. In the later simulations, some typical values are 

given for these parameters.  

Once the BW order Q is determined, the outputs of all the 

filters are synthesized to form the estimate 

1

( ) ( )
Q

i

i

b t b t


                          (18) 

Finally, removing the BW yields the reconstructed signal 

        (19) 
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Fig. 4.  Example for set of Signals 

In the most general case, ECG signals are contaminated by 

both high-frequency noise and BW. The method of denoising 

in and the method of removing BW in can be combined to 

remove both artifacts. Because the noise only affects the 

lower-order IMFs while the BW only affects the higher-order 

IMFs, the methods do not interfere with each other. 

Consequently, the reconstructed signal after removing both 

high-frequency noise and BW is 
1

2

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
QP P N

i i i i i i j N j

i i i P j

x t t c t a t c t c t h t c t 


 

    

         

Where the residue ( )Nr t  in (13) is rewritten as 1( )Nc t . 

3) Real Noise Removal: In this experiment, we consider the 

ECG case corrupted by real noise. Here, the denoising is 

considered since the wavelet based method is targeted for 

denoising. Two real noise records are taken from the 

MIT–BIH noise stress test database [25], the muscle artifact 

“ma” record and the electrode motion “em” record. The BWin 

each record is eliminated by lowpass filtering in order to 

provide quantitative results with (21). Let nma(t) and nem(t) 

be the “ma” and “em” BW free noise records, respectively. 

The total noise utilized to corrupt the original clean signal x(t) 

is obtained as n(t) = k1nma(t) + k2nem(t), so that ki, i = 1, 2, is 

chosen to contribute with the same SNR0: 

  

A long-term experiment is carried out to show how the 

proposed method works when a signal is processed under real 

conditions. The first 46,000 samples (corresponding to a bit 

more than 2 min) from an MIT noise free signal are used. The 

noisy signals are split into consecutive blocks to continuously 

process the long-term records (except in the lowpass filtering 

method).  

Figure.4 shows an example of the set of signals involved in 

this experiment. In (a), the 46,000-samples long noise free 

record from the MIT database is depicted (record 103).The 

noisy signal is obtained by adding the noise record in (d) 

attaining an SNR of 9.01 dB. The noise signal is obtained as 

the contribution of “ma” and “em” noise in (b) and (c), 

respectively, at an SNR0 of 12 dB in both cases. In the 

original, noisy, and reconstructed signals from the 

EMD-based, the Butterworth lowpass filtering, and the 

wavelet-based methods are displayed in the range of samples 

from 10,000 to 15,000, which has been arbitrarily chosen. 

 
Fig. 5.   Set of Signals 

The figure 5 shows that the significant noise components are 

eliminated by the proposed method. However, both lowpass 

filtering and wavelet-based methods fail to remove the real 

noise satisfactorily. In addition, the SERs for the EMD based, 

the Butterworth filtering, and the wavelet-based methods are 

calculated to be 12.27, 4.65, and 9.15 dB, respectively, which 

again confirm the superior performance of the proposed 

method when applied to the real noise. In the EMD based 

method, the signal is processed in consecutive blocks of 2000 

samples, and, as it can be seen in (c), the method does not 

introduce any distortion at the borders of consecutive 

segments. Finally, the long-term test is repeated under the 

same circumstances with the records 100, 103, 105, 119, and 

213 at different SNRs. The results are presented in Table 1 in 

terms of SER for the corresponding methods. As can be 

observed here once again, the wavelet-based method shows 

less ability to deal with real noise than the EMD-based 

method. We can see the behavior of the wavelet-based 

method in (e) where only few noise components are smoothed 

(see also (b) to compare), but it is unable to remove the strong 

noise components. These results further demonstrate that the 

proposed method is not only applicable to synthetic noise 

cases, but also suitable for real noise cases. 

IV. IMPLEMENTATION 

The performance of the existing method is tested with actual 

ECG signals. Results indicate that the method is powerful and 

useful and the baseline interference can be eliminated from 

the ECG signal and does not distort the ECG signal. 

Performance of the new method is implemented on the actual 

ECG signal corrupted by baseline interferences. Finally, 

conclusions are drawn in section 5. 
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A. Tools Used 

We used MATLAB for the process of registering images. 

MATLAB (matrix laboratory) is a numerical computing 

environment and fourth-generation programming language. 

Developed by MathWorks, MATLAB allows matrix 

manipulations, plotting of functions and data, implementation 

of algorithms, creation of user interfaces, and interfacing with 

programs written in other languages, including C, C++, Java, 

and Fortran. MATLAB is specialized for image processing 

and digital signal processing. 

B. User Interface Design 

The user interface consists of options for choosing image files 

as input to the system. The preview of the images is made 

available in the same window as soon as the image files are 

selected using the „browse‟ button. Once the previews are 

shown, the user is expected to click on the „execute‟ button. 

As the button is clicked the system starts processing and 

carries out all the steps involved. When the processing is 

done, intermediate results are shown in separate windows and 

the final output image is shown in the same GUI window. 

C. Screen Images 

 

Fig. 6.   Clean ECG Signal and Noisy Signal 

 

Fig. 7.   Calculation of IMF 

 

Fig. 8.   Sum of three components of IMF 

 

Fig. 9.   Removal of Synthetic Noise using EMD 

 

Fig. 10.   Adding Baseline Wander for original Signal 

 

Fig. 11.   Removal Baseline Wander with EMD 

 

Fig. 12.   Removal of Real Noise using EMD 

D. Result and Discussion 

The effectiveness of the EMD in ECG enhancement is shown 

through several experiments that consider real and synthetic 

noise and BW. Results indicate that the EMD is an effective 

enhancement tool, especially for real noise and BW.  
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The techniques used here can be applied in practical stress 

ECG tests and long-term Holter monitoring as in these cases 

strong noise and BW components are present in the recorded 

ECG. Results further demonstrate that the proposed method is 

not only applicable to synthetic noise cases, but also suitable 

for real noise case. 

V. CONCLUSION 

A novel method for ECG enhancement based on the EMD is 

presented. Both high-frequency noise and BW removal are 

addressed. Enhancement is achieved through the 

development of two EMD-based methods to address each 

type of artifact. The techniques developed are not based on 

simple partial summation of IMFs, as in previous work. 

Rather, different IMFs are chosen and processed to 

successfully achieve the denoising and BW removal. The 

effectiveness of the EMD in ECG enhancement is shown 

through several experiments that consider real and synthetic 

noise and BW. Results indicate that the EMD is an effective 

enhancement tool, especially for real noise and BW. The 

techniques used here can be applied in practical stress ECG 

tests and long-term Holter monitoring as in these cases strong 

noise and BW components are present in the recorded ECG. 
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