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Abstract— Software development is an extremely composite 

plus brainstorming action. In previous days programmers wrote 

programs by means of machine language in which they exhausted 

their more time in thinking about an exacting machine's 

instructions rather than the solution of the problem in their hands. 

Progressively, program developers switched to advanced stage of 

programming languages (high-level languages). Software testing 

is an imperative attribute of software quality. However the 

prediction of this attribute is a cumbersome process. Therefore 

various methodologies are proposed so far to estimate the testing 

time of software. Among them Fuzzy Inference System (FIS) and 

Adaptive Neuro- Fuzzy Inference System (ANFIS) is one of the 

sophisticated methods which have immense prediction capability 

and this paper explores its application to evaluate testing time of 

the aspect-oriented system. Prediction of testing time is performed 

by FIS and ANFIS. The results obtained from the current study 

are compared with adaptive neuro- fuzzy inference system and it is 

revealed that which model is more useful. 

 

Index Terms— Module oriented approach (MOA), Aspect 

oriented software approach (AOSA), Object Oriented 

Approach(OOA), Fuzzy Inference System (FIS), Adaptive Neuro- 

Fuzzy Inference System (ANFIS) 

I. INTRODUCTION 

The brisk enlargement of software products in dimension and 

complication has drawn the consideration of researchers to be 

more decisive on quality assessment. Several reliability 

calculation approaches such as classical statistical methods 

(Linear and Logistic Regression) and modern machine 

learning methods such as Artificial Neural Network (ANN), 

Support Vector Machine (SVM), Decision Tree (DT), Group 

Method of Data Handling (GMDH), Genetic Algorithms 

(GAs), Fuzzy Inference System (FIS), Adaptive 

Neuro-Fuzzy Inference System (ANFIS), Gene Expression 

Programming (GEP) proposed[1,2,3,4,5,6,7].  

There are various ways to expand the software using the high 

level languages. The growth of software is also depends on 

type of application to be developed . 

The Module-Oriented Approach (MOA) [13] is the leading 

approach for the software development. Modular 

programming is a process which is based upon the concept of 

procedure (subroutine, methods and functions). Any 

procedure can be executed during program‟s execution.  

Modular programming is an improved option rather than 

simple, conventional, sequential or unstructured 

programming in several circumstances.  MOA engage 

excessive complexity or which necessitate momentous 

straightforwardness towards maintainability. 
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The Important Features and limitation of MOA are as 

follows: 

1. The ability to recycle and reuse the code at different 

place of the program without bootlegging it. 

2. It is an easier way to retain the path of code flow than „go 

to‟ or „jump‟ statement. 

3. A method that is highly modular than configuration. 

4. To enhance the features of any module where new code 

is obligatory to write. 

5. It does not give a proper way to compile the data along 

with their operations. 

Progressively, complexity grow we necessitate enhanced 

methods. Object-Oriented Approach (OOA) is way to 

remove the obstruction that arises in MOA.  

Today, OOA attains its position and become the typical 

programming concept for real world applications. OOA helps 

to disintegrate the objects into its abstract behaviour. 

Object-Oriented Programming (OOP) consists of various 

fundamental concepts like modularity, encapsulation, 

inheritance and polymorphism. 

Some Important features of OOA [13] are as following: 

1. Pressure on data relative as compared to procedure. 

2. It allows the system to interrelate with objects. 

3. It allows reusable codes via inheritance. 

4. It allows message passing b/w functions via objects. 

5. It allows elasticity for adding new data and functions 

wherever required. 

6. It allows the idea of polymorphism to employ universal 

performance of objects and boundary for related 

concepts. 

7. Preservation of large side project, along with strewn 

various objects. 

Aspect Oriented Software Development (AOSD) is a new 

methodology of splitting up of concerns in software 

development. The process of AOSD promises to modularize 

coding in a system. Similar objects in Object-Oriented Soft. 

Development may happen at any stage of software lifecycle, 

requirement specification, design and implementations etc. 

Some examples of crosscutting concerns are synchronization, 

logging, exception handling and resource sharing. 

Programming codes cannot be efficiently encapsulated in 

terms of modules or objects but must be scattered throughout 

the code which are the restriction of OOA. 

An “aspect weaver” takes the aspects and the core modules 

and composes the concluding system. 

II. ASPECT ORIENTED PROGRAMMING 

LANGUAGE 

The aspect-oriented approach to programming not only is 

applicable for object oriented systems but also for 

module-oriented systems. 
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1 AspectJ 

Out of the existing AOP languages, AspectJ is the most 

admired and mainly used in research areas. AspectJ is a 

straightforward expansion of Java.  

Some significant quality of AspectJ is as follow: 

1. provides definition of new constructors, 

2. Support for modular implementation of crosscutting 

concerns.   

3. Enables plug-and-play implementations of crosscutting 

concerns such as synchronization, consistency checking, 

protocol management and others. 

2 CaesarJ 

CaesarJ is an aspect-oriented language which is known for 

reusability.  

Some significant quality of CaesarJ is as follow: 

1. It wires some more features like virtual classes, mix-in 

composition, aspectual polymorphism, and bindings. 

2. It combines the aspect-oriented constructs, point cut. 

3. It provides the mechanisms for advanced object-oriented 

modularization. 

3 Hyper/J 

Hyper/J urbanized by IBM, is also appropriate and admired 

as the part of AOP languages. While by means of Hyper/J, a 

program developer initiates with three inputs: 

1.  hyperspace file that describes the Java class files that 

can be manipulated by Hyper/J,  

2. concern mapping file that describes which pieces of the 

Java source map to each dimension of concern, and 

3. hypermodule file that describes which dimensions of 

concern should be incorporated (i.e., which hyperslices) 

and how that incorporation should proceed.  

III. LITERATURE SURVEY 

Numerous prediction methods such as LR, ANNs, SVM, DT, 

FIS and ANFIS, are used for predicting software reliability 

prediction effectively. Even though, these methods are 

infrequently applied for assessing testing time based on past 

failure behaviour. Khoshgoftar et al. [8] made an ample study 

in the area of connectionist models to provide the software 

reliability prediction.  

They also introduced a loom for static reliability modelling. 

He founded that neural network models are capable for 

providing the better quality of fit and high accuracy. Several 

other empirical studies based on multivariate linear 

regression and neural network methods have been carried out 

for prediction of software reliability growth trends.  

There are the following methods for predicting software 

testing time based on different severity level:  

 

(i) Linear regression (LR):  
It is a process that is used for analysing dependent variable 

from the set of self-governing variables. On using uni-variate 

linear regression process for showing relations b/w 

dependent variables and each self-governing variable. 

  

(ii) Radial basis function network (RBFN): 

Radial basis function neural network is a method for 

approximating software testing time using Gaussian 

activation function. The structural design of radial basis 

function neural network divides into three layers, i.e.  Input 

layer, hidden layer and output layer.  

 

(iii) Generalized regression neural network (GRNN): 

Generalized Regression Neural Network (GRNN) is a 

method for assessing software testing time based on diverse 

severity stage of errors. The GRNN architecture has one 

radial basis layer and a special linear layer used for function 

approximation with sufficient number of hidden neurons. 

 

(iv) Support Vector Machine (SVM):  

It is a learning process that constructs an N-dimensional 

hyper plane that differentiates data in 2 categories. The basic 

use of SVM modelling is to separate groups of vectors in a 

way that case with one group of dependent variable on one 

part of the plane and the cases of the self-governed variables 

on the other side of the plane. 

  

(v) Decision Tree (DT):  

Decision trees (DTs) are used as a predictive model which 

maps observations of a variable to the target‟s value. DT‟s are 

used as a „predictive machine – learning model‟ that is used 

to decide the average time to failure (MTTF). This is the final 

value as a dependent variable of a fresh sample on the 

attributes of independent variables [10]. 

 

(i) Fuzzy Inference System (FIS) : 

 The Fuzzy Inference System is used to deploy the proposed 

model. Fuzzy inference system consists of five components 

namely data base, rule base, fuzzification, defuzzification and 

decision making. Fuzzy works on both mamdani and sugeno 

type systems.  

 

(ii) Adaptive Neuro-Fuzzy Inference System (ANFIS): 

Employ of adaptive Neuro-FIS for assessing software testing 

time based on different severity stage of errors. In fuzzy 

inference system the partisanship function is accepted 

randomly or used as constant value. But, in case of ANFIS 

the partisanship function and connected attributes can be 

selected automatically that results in improved forecast of 

correctness of the process. 

IV. METRICS SUITE FOR GENERIC ASPECT 

ORIENTED SYSTEM 

This section of the paper describes the metrics complexity 

of generic AOS, it is essential to begin with a appropriate 

harmonized, clear and functioning terminology and 

formalism.  

An AO system (S) consists of a set of three factors, 

(C(S)).they are namely set of characteristics (Att(c)), a set of 

operations (Op(c)) and a set of nested factors (Nested(c)). 

 The set of members of a factor c is defined by following 

equation [14]. 

 M(c) = Att(c)  Op(c)  Nested(c).  
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Fig 1: Factors of an Aspect-Oriented System 

 Definition: Built-in types, user-defined types and factor 

types 

 BT(S): set of built-In types for structure S. 

 UDT(S): set of user defined types of structure S. 

 CT(S): set of factor types of the structure S. 

 T(S): set of all available types 

 T(S) = BT(S) * UDT(S) * CT(S) 

 

Complexity of AO system falls on two major factors: 

(i) code complexity of Component Set (C(S)) 

(ii) Complexity of interactions between the factors ( 

IC(S) ) of Component Set.  

a. complexity of operation invocation 

(CMPXOI(c))  

b. complexity of characteristic references 

(CMPXAR(c))  

c. Complexity of statements (CMPXSTMT(c)). 

 

1.  Complexity of AO system [14] : 

 

CMPXAOS =CMPXC(s) + CMPXIC(S) 

 

Here,  

CMPXAOS =complexity of AO system,  

CMPXC(s) = the code complexity of Factor Set  

CMPXIC(S) = interaction complexity of the Factor Set. 

 

2.  Code Complexity of Factor Set [14]: 

 

CMPXAOS=CMPXc(s)+ CMPXIC(S) 

Here,  

X = sum of no. of factors set 

CMPXM(cx)= code complexity of factor cx . 

 

3.  Code Complexity of a Factor [14]: 

 

    CMPXM(C)=α*CMPXAtt(c)+β*CMPXop(c)+γ *CMPXNested(c) 

 
Here, 

α, β, γ = coefficients for CMPXAtt(c) ,CMPXOp(c) and 

CMPXNested (c). 

CMPXAtt(c) = complexity of characteristics in factor c, 

CMPXOp(c) = complexity of operations in factor c, 

CMPXNested (c) = complexity of nested factors in factor c. 

 

4.  Complexity of Characteristics [14]: 

 

𝐶𝑀𝑃𝑋𝐴𝑡𝑡 (𝑐) =  𝑤𝑖

𝐿

𝑖=1

∗ 𝐴𝑡𝑡𝑖(𝑐) 

Here, 

  L = sum of no. of characteristics in factor c   

wl= equivalent weight assessment of characteristic 

(Attl(c)). 

 

5.  Complexity of Operations [14]: 

𝐶𝑀𝑃𝑋𝑂𝑝 𝑐 =   𝑤𝑚 

𝑀

𝑚=1

∗ 𝑂𝑝𝑚 (𝑐) 

Here, 

 M=total no. of operations in factor c  

 wm = equivalent weight assessment for operation Opm(c). 

 

6.  Complexity of Nested Factors [14]: 

 

𝐶𝑀𝑃𝑋𝑁𝑒𝑠𝑡𝑒𝑑  𝑐 =   𝑤𝑛

𝑁

𝑛=1

∗ 𝑁𝑒𝑠𝑡𝑒𝑑𝑛  (𝑐) 

 

Here, 

 N = total no. of nested factors in c,  

 wn=equivalent wt. assessment of nested factor Nestedn(c). 

finally, we calculated Code Complexity of a Factor as: 

𝐶𝑀𝑃𝑋𝑀(𝑐) =  𝛼 ∗   𝑤𝑖

𝐿

𝑖=1

∗ 𝐴𝑡𝑡𝑖  𝑐 +  𝛽

∗   𝑤𝑚 ∗ 𝑂𝑝𝑛  𝑐 +  𝛾

𝑀

𝑚=1

∗   𝑤𝑛 ∗ 𝑁𝑒𝑠𝑡𝑒𝑑𝑛 (𝑐)

𝑁

𝑛=1

 

 

 

7.  Code Complexity of Factor Set [14]: 

 

𝐶𝑀𝑃𝑋𝑀(𝑐) =  (

𝑥

𝑥=1

 𝛼 ∗   𝑤𝑖

𝐿

𝑖=1

∗ 𝐴𝑡𝑡𝑖  𝑐 +  𝛽

∗   𝑤𝑚 ∗ 𝑂𝑝𝑛  𝑐 +  𝛾

𝑀

𝑚=1

∗   𝑤𝑛 ∗ 𝑁𝑒𝑠𝑡𝑒𝑑𝑛  𝑐 

𝑁

𝑛=1

) 

 

Complexity of Interactions among Factors [14]: 

 

CMPXIC(S)=CMPXOI(S)*CMPXAR(S)*CPMXSTMT(S) 

Here,  

CMPXIC(S) = complexity of interactions between the 

factors of system S,  

CMPXOI (S) = complexity of operation creations in factors 

of system S,  

CMPXAR(S) = complexity of characteristic references in 

factors of system S and 

 CPMXSTMT (S) = complexity of statements in workings 

of system S. 
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Complexity of Operation Invocation [14]: 

 

𝐶𝑀𝑃𝑋𝑂𝐼(𝑆) =  (

𝑋

𝑥=1

 𝑤𝑑 

𝐷

𝑑=1

∗ 𝐼𝑂𝐼𝑆𝑇𝑑 (𝑜) 𝑐𝑥  +  𝑤𝑐

𝐸

𝑒=1

∗  𝐼𝑂𝐼𝐷𝑌𝑁𝑐 
 𝑐𝑥 

+   𝑤𝑓 ∗ 𝐸𝑂𝐼𝑆𝑇
𝑓  𝑜 ,𝑜 ′  

 𝑐𝑥   

𝐹

𝑓=1

+  𝑤𝑔 

𝐺

𝑔=1

∗  𝐸𝑂𝐼𝐼𝐷𝑔  𝑜  𝑐𝑥  ) 

 

Here X = total no. of workings in system S , 

D = total no. of hidden operation creations. These 

operation can completely statically evaluated in factor cx ,  

E = entire no. of hidden operation creations. These 

operation can only dynamically evaluated in factor cx ,  

F = entire no. of explicit operation creations. These 

operation can completely statically evaluated in factor cx and  

G = entire no. of explicit operation creations, i.e. for 

implementing family of the operations factor in factor cx . 

 wd = equivalent weight assessment of IOISTd(o)(cx) , we 

is the equivalent weight assessment of IOIDYNe(o)(cx) ,  

wf = equivalent weight assessment of EOISTf (o, o' )(cx) 

and 

 wg =equivalent weight assessment of EOIIDg(cx) . 

Complexity of Characteristic References [14]: 

 

𝐶𝑀𝑃𝑋𝐴𝑅(𝑆 ) =  (

𝑋

𝑥=1

 𝑤𝑘 

𝐻

𝐻=1

∗ 𝐴𝑅𝑆𝑇𝑕
 𝑐𝑥  +  𝑤𝑖

𝐼

𝑖=1

∗  𝐴𝑅𝐼𝐷𝑖 
 𝑐𝑥 +  𝑤𝑗  ∗ 𝐴𝑅𝐹𝐼𝑗   𝑐𝑥   

𝐽

𝑗 =1

+  𝑤𝑘 

𝐾

𝑘=1

∗  𝐴𝑅𝑆𝑇𝑘 
 𝑐𝑥 ,𝑐𝑥 ′ ) 

Here, 

 X = total no. of factors in system S,  

H = total no. of characteristic references, accounting only 

for statically determined feature in factor cx ,  

J = total no. of characteristic references, accounting only 

for the first statically determined implementation,   

K = total no. of define sets with a meta variable 

representing the target factor in factor cx . 

 wh = equivalent weight assessment of 𝐴𝑅𝑆𝑇𝑕
 𝑐𝑥   ,  

wi = equivalent weight assessment of 𝐴𝑅𝐼𝐷𝑖 
 (cx) ,  

wj = equivalent weight assessment of 𝐴𝑅𝐹𝐼𝑗   𝑐𝑥   
 and  

wk = equivalent weight assessment of 𝐴𝑅𝑆𝑇𝑘 
 𝑐𝑥 ,𝑐𝑥 ′  

 

Complexity of Statements [14]: 

 

𝐶𝑀𝑃𝑋𝑆𝑇𝑀𝑇(𝑆) =  (

𝑋

𝑥=1

 𝑤𝑝 

𝑃

𝑝=1

∗ 𝐸𝑥𝐶𝑝
 𝑐𝑥  +  𝑤𝑞

𝑄

𝑞=1

∗  𝐴𝑟𝑟𝐶𝑞 𝑐𝑥 +   𝑤𝑟 ∗ 𝑇𝑦𝑝𝑒𝐶𝑟 (𝐶𝑥))

𝑅

𝑟=1

 

 

Here, 

X = total no. of factors in system S , 

P = total no. of exception occurred in factor cx , 

Q=total no. of array creations in factor cx , and  

R = total no. of type casting in factor cx .  

wp = equivalent weight assessment of Excp(cx) , 

wq = equivalent weight assessment of ArrCq(cx) , and  

wr = equivalent weight assessment of TypeCr(cx) . 

V. RESEARCH  METHODOLOGY 

The research methodology is adopted to estimate software 

testing time using soft computing method is as follows.  

 

1.  Fuzzy Inference System (FIS)  

We analyse the performance of the proposed system by the 

use of fuzzy inference system. Fuzzy inference system is akin 

to a neural network type configuration that is able to map 

inputs via input membership functions and affiliated 

attributes. 

As It is feasible to use Fuzzy Logic Toolbox [9] via 

functioning rigorously via the command line. It‟s easy to 

make the system with Graphics User Interface (GUI). There 

are 5 important tools for constructing, editing, and observing 

fuzzy inference systems in Fuzzy Logic Toolbox. These are: 

 Fuzzy Inference System (FIS) Editor 

 Membership Function Editor 

 Rule Editor 

 Rule Viewer 

 Surface Editor 

 

2. Adaptive Neuro Fuzzy Interference System (ANFIS) 

 
Fig 2: Flow chart for ANFIS 

 

The FIS is a limitation that maps: 

 Input characteristics to input membership functions, 

 Input membership functions to rules, 

 Rules to set of output characteristics, 

 Output characteristics to output membership functions, 

 Output membership functions to a solitary evaluation 

output 

 Result concurrent with output 

 

3.  ANFIS Model Learning and Inference  

 The Neuro-Adaptive learning process provides a 

technique for the fuzzy modelling exercise for study of 

data sets, in instruct to calculate the membership 

function attributes which permit the best fuzzy inference 

system to follow the provided input or output data [11]. 

 It permits the fuzzy system to adapt and study from the 

information and data it model. 

 

4.  FIS Configuration and Parameter Adjustment 

 Network type config. analogous to neural network maps 

inputs via partisanship functions and linked attributes, & 

then through output partisanship functions and allied 

attributes, to be used to analyse input and output. 
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 The attributes connected with the partisanship functions 

are used to adapt by means of a training process/ method. 

 The analysis and calculation of these attributes or their 

adjustments will be assisted by a ramp vector and that 

provides an analysis of how well the fuzzy inference 

system has modelled the input and output data for a 

provided set of attributes. 

 Any of the various optimization techniques can be 

applied to adjust the parameter as to reduce the error 

measurement. 

 Anfis uses backpropogation or least mean squares 

estimation and backpropogation. 

 When the gradient vector is achieved, one of the 

optimization techniques is applied for adjusting the 

attributes so as to reduce error measurement. 

 Anfis uses backpropogation method or least square 

estimation with back propagation for membership 

function estimation. 

  

 
Fig 3: ANFIS editor 

 

5.  Automatic FIS Configuration Generation with 

ANFIS 

• Partition method: grid partitioning (default) or subtractive 

clustering. 

• For generating FIS choose first the no. of partisanship 

functions, MFs, then the type of input and output partisanship 

functions. 

 
Fig 4: FIS configuration 

 

We can inspect the construction of the resulting FIS: 

 

6.  ANFIS Training 

•  The two „anfis‟ parameter optimization process options 

offered for FIS training are hybrid. 

•  Error Tolerance is used to generate a training stopping 

measure, i.e. related to the error size. 

•  Running training for 40 epochs gives the error results. 

•  Notice the checking error decreases up to a certain point 

in the training and then it increases. 

•  This increase represents the point of model over fitting. 

•  „anfis‟ chooses the model parameters associated with the 

minimum checking error (just prior to this jump point). 

 
Fig 5: ANFIS Training 

•  An example for the assessment data opportunity of 

„anfis‟ is helpful. 

 

Testing the FIS in resistance to the checking data gives the 

following results. 

 

 
Fig 6: Checking Data. 

 

7.  Evaluation Criteria 

To analyse the outcomes, we analyse the efficiency of 

proposition form with the use of different attributes as 

follows: 

 

                                                               

𝑀𝐴𝑅𝐸 =     
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 −𝑎𝑐𝑡𝑢𝑎𝑙

𝑎𝑐𝑡𝑢𝑎𝑙
 𝑛

𝑖=1   % 𝑛 

  

Mean absolute error is a amount use to measure how near 

prediction are to the actual outcomes. MAE guess the 

network output for each observation to estimate whether the 

projected method is subjective and tend to over/under 

estimate.   P is the predicted assessment from the model and 

A is the actual observed assessment. 
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𝑅𝑀𝑆𝐸 =   (𝑃 − 𝐴)2  /𝑛𝑁
𝑖=1                                                             

 

VI. A FUZZY LOGIC APPROACH TO 

COMPLEXITY METRICS 

Our fuzzy model for integrating AO factor complexity 

CMPXM(C) accounts the effect of complexity of 

characteristics CMPXAtt(c), complexity of operation 

CMPXOp(c) and complexity of nested factors CMPXNested 

(c)[12]. The Block diag. for fuzzy representation id shown. 

 

 
Fig 7: Fuzzy Model for Complexity Measurement of a 

Factor [12]. 

The fuzzy model contains the 4 models: 

1. The fuzzy model is the first step in execution of any 

fuzzy model that changes crisp values to fuzzy 

assessments. 

2. In the next phase the assessments are analysed in fuzzy 

field by interface engine on the production rules i.e. 

knowledge base that is given by the domain experts. In 

this phase fuzzy operators are applied. 

3. In the third phase insinuation process is applied and all 

the outputs are averaged. 

4. In the final phase, the processed outputs are converted to 

crisp values via defuzzification method. 

 

Membership Functions For Input Parameters 

 Complexity of factor CMPXM (C) have been taken in the 

scale of 0 to 1 and member functions as Null, Extremely Low, 

Low „L‟, Medium „M‟, High „H‟, Extremely High. Because 

nested factor is also a factor, member function of nested 

factor will be same as of a factor i.e. NIL, VL, L, M, H and 

VH.  

Complexity of nested factor CMPXNested (c) can be 

evaluated recursively with terminal condition as the factor is 

without nested factor i.e. CMPXNested (c) as NIL for that 

factor. For simplification, CMPXAtt(c) and CMPXOp(c) 

assessments have also been accepted in between 0 and 1. For 

CMPXAtt(c) and CMPXOp(c) , member functions have been 

considered as NIL, L, M and H.  

 

 
Fig 8: Member Functions of Input Variable CMPXOp 

VII. FUZZY RULES FOR PROJECTED MODELS 

We have used fuzzy logic and have designed 96 fuzzy 

rules (4 member functions of CMPXAtt(c) *4 member 

functions of CMPXOp(c) *6 member functions of 

CMPXNested (c)). Here, mamdani method for defining fuzzy 

rules issued, which is used for nonlinear equations. 

These rules are designed on the basis of experience and 

expertise knowledge of the field that‟s why these are also 

known as knowledge base. For sample, some of the rules are 

listed in Table 5.4. First column labeled Rule# represent rule 

no., second column is for input linguistic variables, 

CMPXAtt(c) ,CMPXOp(c) and CMPXNested (c) and third 

column is for output linguistic variable CMPXM (C) . 

 

Table 4: Some Sample Rules of the Complexity Fuzzy 

Model 

 
Using projected methodology and model, complexity of all 

the factors of the software system can be measured and can 

evaluate average of these complexity assessments. The 

average complexity assessment will be between 0 and 1 and 

will fall in any of the categories, VL, L, M, H and VH. With 

the help of this assessment, we can specify complexity level 

of AO system. Three dimensional surface view of this rule 

base is in Fig 9. 

 

 
Fig 9: Surface Viewer of AOP Complexity 

VIII. CALCULATIONS 

Table 5: complexity of factors 

 

 

 

 

 

Table 6: Code complexity of factor set 

Code complexity of factor set 

For nil: 3.9 

For Very Low: 3.9 

For Low: 3.9 

CMPXatt(c) 5.63 

CMPXop(c) 5.0 

CMPX(nested) 5.25 

Code complexity of   factor: 10.4 
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For Medium: 5.5 

For High: 11.9 

For Very High: 15.68 

 

 

Table 7: Error Observed 

IX. CONCLUSION AND FUTURE SCOPE 

 We have used fuzzy logic for defining software 

complexity metrics as linguistic variables and for the 

software testing time. Motivation of applying fuzzy logic is 

due to difficulties faced to get total complexity of a factor in 

generic aspect-oriented system because factors, which 

contribute in the complexity of a factor, are different in nature 

and have different type of complexity assessment. Using 

common terminology, formalism and generic/unified 

framework new complexity metrics have been defined. These 

metrics are defined for measuring code complexity and 

interaction complexity of AO system. Software testing time 

is only code complexity has been evaluated. A fuzzy model 

has been defined to measure code complexity of a factor. 

Mean Absolute Error (MARE), Root Mean Square Error 

(RMSE) and Average complexity of all the factors available 

in the AO software system will be indicator of the complexity 

level of the system. Using this model, complexity of software 

developed in most of the AO languages can be measured, 

which further may be used as an indicator to external 

software quality such as maintainability, reusability, 

adaptability and understand ability. In future work, by 

applying similar approach, interaction complexity may also 

be assessed for AOS. 
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