
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-3, July 2013

58

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C1630073313/2013©BEIESP

Abstract— Software development is an extremely composite

plus brainstorming action. In previous days programmers wrote

programs by means of machine language in which they exhausted

their more time in thinking about an exacting machine's

instructions rather than the solution of the problem in their hands.

Progressively, program developers switched to advanced stage of

programming languages (high-level languages). Software testing

is an imperative attribute of software quality. However the

prediction of this attribute is a cumbersome process. Therefore

various methodologies are proposed so far to estimate the testing

time of software. Among them Fuzzy Inference System (FIS) and

Adaptive Neuro- Fuzzy Inference System (ANFIS) is one of the

sophisticated methods which have immense prediction capability

and this paper explores its application to evaluate testing time of

the aspect-oriented system. Prediction of testing time is performed

by FIS and ANFIS. The results obtained from the current study

are compared with adaptive neuro- fuzzy inference system and it is

revealed that which model is more useful.

Index Terms— Module oriented approach (MOA), Aspect

oriented software approach (AOSA), Object Oriented

Approach(OOA), Fuzzy Inference System (FIS), Adaptive Neuro-

Fuzzy Inference System (ANFIS)

I. INTRODUCTION

The brisk enlargement of software products in dimension and

complication has drawn the consideration of researchers to be

more decisive on quality assessment. Several reliability

calculation approaches such as classical statistical methods

(Linear and Logistic Regression) and modern machine

learning methods such as Artificial Neural Network (ANN),

Support Vector Machine (SVM), Decision Tree (DT), Group

Method of Data Handling (GMDH), Genetic Algorithms

(GAs), Fuzzy Inference System (FIS), Adaptive

Neuro-Fuzzy Inference System (ANFIS), Gene Expression

Programming (GEP) proposed[1,2,3,4,5,6,7].

There are various ways to expand the software using the high

level languages. The growth of software is also depends on

type of application to be developed .

The Module-Oriented Approach (MOA) [13] is the leading

approach for the software development. Modular

programming is a process which is based upon the concept of

procedure (subroutine, methods and functions). Any

procedure can be executed during program‟s execution.

Modular programming is an improved option rather than

simple, conventional, sequential or unstructured

programming in several circumstances. MOA engage

excessive complexity or which necessitate momentous

straightforwardness towards maintainability.

Manuscript Received July, 2013.

Amarpal Singh, Masters of Technology, CS&E Amity school of

Engineering Technology, Amity University Uttar Pradesh, Noida, India.
Piyush Saxena, Masters of Technology, CS&E Amity school of

Engineering Technology, Amity University Uttar Pradesh, Noida, India .

Abhishek Singhal, Assistant Professor, CS&E Department, Amity
school of Engineering Technology, Amity University Uttar Pradesh, Noida,

India.

The Important Features and limitation of MOA are as

follows:

1. The ability to recycle and reuse the code at different

place of the program without bootlegging it.

2. It is an easier way to retain the path of code flow than „go

to‟ or „jump‟ statement.

3. A method that is highly modular than configuration.

4. To enhance the features of any module where new code

is obligatory to write.

5. It does not give a proper way to compile the data along

with their operations.

Progressively, complexity grow we necessitate enhanced

methods. Object-Oriented Approach (OOA) is way to

remove the obstruction that arises in MOA.

Today, OOA attains its position and become the typical

programming concept for real world applications. OOA helps

to disintegrate the objects into its abstract behaviour.

Object-Oriented Programming (OOP) consists of various

fundamental concepts like modularity, encapsulation,

inheritance and polymorphism.

Some Important features of OOA [13] are as following:

1. Pressure on data relative as compared to procedure.

2. It allows the system to interrelate with objects.

3. It allows reusable codes via inheritance.

4. It allows message passing b/w functions via objects.

5. It allows elasticity for adding new data and functions

wherever required.

6. It allows the idea of polymorphism to employ universal

performance of objects and boundary for related

concepts.

7. Preservation of large side project, along with strewn

various objects.

Aspect Oriented Software Development (AOSD) is a new

methodology of splitting up of concerns in software

development. The process of AOSD promises to modularize

coding in a system. Similar objects in Object-Oriented Soft.

Development may happen at any stage of software lifecycle,

requirement specification, design and implementations etc.

Some examples of crosscutting concerns are synchronization,

logging, exception handling and resource sharing.

Programming codes cannot be efficiently encapsulated in

terms of modules or objects but must be scattered throughout

the code which are the restriction of OOA.

An “aspect weaver” takes the aspects and the core modules

and composes the concluding system.

II. ASPECT ORIENTED PROGRAMMING

LANGUAGE

The aspect-oriented approach to programming not only is

applicable for object oriented systems but also for

module-oriented systems.

Software Testing Estimation using Soft

Computing Techniques

Amarpal Singh, Piyush Saxena, Abhishek Singhal

Estimation of Software Testing Time with Fuzzy Inference System and Adaptive Neuro Fuzzy Inference System

59

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C1630073313/2013©BEIESP

1 AspectJ

Out of the existing AOP languages, AspectJ is the most

admired and mainly used in research areas. AspectJ is a

straightforward expansion of Java.

Some significant quality of AspectJ is as follow:

1. provides definition of new constructors,

2. Support for modular implementation of crosscutting

concerns.

3. Enables plug-and-play implementations of crosscutting

concerns such as synchronization, consistency checking,

protocol management and others.

2 CaesarJ

CaesarJ is an aspect-oriented language which is known for

reusability.

Some significant quality of CaesarJ is as follow:

1. It wires some more features like virtual classes, mix-in

composition, aspectual polymorphism, and bindings.

2. It combines the aspect-oriented constructs, point cut.

3. It provides the mechanisms for advanced object-oriented

modularization.

3 Hyper/J

Hyper/J urbanized by IBM, is also appropriate and admired

as the part of AOP languages. While by means of Hyper/J, a

program developer initiates with three inputs:

1. hyperspace file that describes the Java class files that

can be manipulated by Hyper/J,

2. concern mapping file that describes which pieces of the

Java source map to each dimension of concern, and

3. hypermodule file that describes which dimensions of

concern should be incorporated (i.e., which hyperslices)

and how that incorporation should proceed.

III. LITERATURE SURVEY

Numerous prediction methods such as LR, ANNs, SVM, DT,

FIS and ANFIS, are used for predicting software reliability

prediction effectively. Even though, these methods are

infrequently applied for assessing testing time based on past

failure behaviour. Khoshgoftar et al. [8] made an ample study

in the area of connectionist models to provide the software

reliability prediction.

They also introduced a loom for static reliability modelling.

He founded that neural network models are capable for

providing the better quality of fit and high accuracy. Several

other empirical studies based on multivariate linear

regression and neural network methods have been carried out

for prediction of software reliability growth trends.

There are the following methods for predicting software

testing time based on different severity level:

(i) Linear regression (LR):
It is a process that is used for analysing dependent variable

from the set of self-governing variables. On using uni-variate

linear regression process for showing relations b/w

dependent variables and each self-governing variable.

(ii) Radial basis function network (RBFN):

Radial basis function neural network is a method for

approximating software testing time using Gaussian

activation function. The structural design of radial basis

function neural network divides into three layers, i.e. Input

layer, hidden layer and output layer.

(iii) Generalized regression neural network (GRNN):

Generalized Regression Neural Network (GRNN) is a

method for assessing software testing time based on diverse

severity stage of errors. The GRNN architecture has one

radial basis layer and a special linear layer used for function

approximation with sufficient number of hidden neurons.

(iv) Support Vector Machine (SVM):

It is a learning process that constructs an N-dimensional

hyper plane that differentiates data in 2 categories. The basic

use of SVM modelling is to separate groups of vectors in a

way that case with one group of dependent variable on one

part of the plane and the cases of the self-governed variables

on the other side of the plane.

(v) Decision Tree (DT):

Decision trees (DTs) are used as a predictive model which

maps observations of a variable to the target‟s value. DT‟s are

used as a „predictive machine – learning model‟ that is used

to decide the average time to failure (MTTF). This is the final

value as a dependent variable of a fresh sample on the

attributes of independent variables [10].

(i) Fuzzy Inference System (FIS) :

 The Fuzzy Inference System is used to deploy the proposed

model. Fuzzy inference system consists of five components

namely data base, rule base, fuzzification, defuzzification and

decision making. Fuzzy works on both mamdani and sugeno

type systems.

(ii) Adaptive Neuro-Fuzzy Inference System (ANFIS):

Employ of adaptive Neuro-FIS for assessing software testing

time based on different severity stage of errors. In fuzzy

inference system the partisanship function is accepted

randomly or used as constant value. But, in case of ANFIS

the partisanship function and connected attributes can be

selected automatically that results in improved forecast of

correctness of the process.

IV. METRICS SUITE FOR GENERIC ASPECT

ORIENTED SYSTEM

This section of the paper describes the metrics complexity

of generic AOS, it is essential to begin with a appropriate

harmonized, clear and functioning terminology and

formalism.

An AO system (S) consists of a set of three factors,

(C(S)).they are namely set of characteristics (Att(c)), a set of

operations (Op(c)) and a set of nested factors (Nested(c)).

 The set of members of a factor c is defined by following

equation [14].

 M(c) = Att(c)  Op(c)  Nested(c).

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-3, July 2013

60

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C1630073313/2013©BEIESP

Fig 1: Factors of an Aspect-Oriented System

 Definition: Built-in types, user-defined types and factor

types

 BT(S): set of built-In types for structure S.

 UDT(S): set of user defined types of structure S.

 CT(S): set of factor types of the structure S.

 T(S): set of all available types

 T(S) = BT(S) * UDT(S) * CT(S)

Complexity of AO system falls on two major factors:

(i) code complexity of Component Set (C(S))

(ii) Complexity of interactions between the factors (

IC(S)) of Component Set.

a. complexity of operation invocation

(CMPXOI(c))

b. complexity of characteristic references

(CMPXAR(c))

c. Complexity of statements (CMPXSTMT(c)).

1. Complexity of AO system [14] :

CMPXAOS =CMPXC(s) + CMPXIC(S)

Here,

CMPXAOS =complexity of AO system,

CMPXC(s) = the code complexity of Factor Set

CMPXIC(S) = interaction complexity of the Factor Set.

2. Code Complexity of Factor Set [14]:

CMPXAOS=CMPXc(s)+ CMPXIC(S)

Here,

X = sum of no. of factors set

CMPXM(cx)= code complexity of factor cx .

3. Code Complexity of a Factor [14]:

 CMPXM(C)=α*CMPXAtt(c)+β*CMPXop(c)+γ *CMPXNested(c)

Here,

α, β, γ = coefficients for CMPXAtt(c) ,CMPXOp(c) and

CMPXNested (c).

CMPXAtt(c) = complexity of characteristics in factor c,

CMPXOp(c) = complexity of operations in factor c,

CMPXNested (c) = complexity of nested factors in factor c.

4. Complexity of Characteristics [14]:

𝐶𝑀𝑃𝑋𝐴𝑡𝑡 (𝑐) = 𝑤𝑖

𝐿

𝑖=1

∗ 𝐴𝑡𝑡𝑖(𝑐)

Here,

 L = sum of no. of characteristics in factor c

wl= equivalent weight assessment of characteristic

(Attl(c)).

5. Complexity of Operations [14]:

𝐶𝑀𝑃𝑋𝑂𝑝 𝑐 = 𝑤𝑚

𝑀

𝑚=1

∗ 𝑂𝑝𝑚 (𝑐)

Here,

 M=total no. of operations in factor c

 wm = equivalent weight assessment for operation Opm(c).

6. Complexity of Nested Factors [14]:

𝐶𝑀𝑃𝑋𝑁𝑒𝑠𝑡𝑒𝑑 𝑐 = 𝑤𝑛

𝑁

𝑛=1

∗ 𝑁𝑒𝑠𝑡𝑒𝑑𝑛 (𝑐)

Here,

 N = total no. of nested factors in c,

 wn=equivalent wt. assessment of nested factor Nestedn(c).

finally, we calculated Code Complexity of a Factor as:

𝐶𝑀𝑃𝑋𝑀(𝑐) = 𝛼 ∗ 𝑤𝑖

𝐿

𝑖=1

∗ 𝐴𝑡𝑡𝑖 𝑐 + 𝛽

∗ 𝑤𝑚 ∗ 𝑂𝑝𝑛 𝑐 + 𝛾

𝑀

𝑚=1

∗ 𝑤𝑛 ∗ 𝑁𝑒𝑠𝑡𝑒𝑑𝑛 (𝑐)

𝑁

𝑛=1

7. Code Complexity of Factor Set [14]:

𝐶𝑀𝑃𝑋𝑀(𝑐) = (

𝑥

𝑥=1

 𝛼 ∗ 𝑤𝑖

𝐿

𝑖=1

∗ 𝐴𝑡𝑡𝑖 𝑐 + 𝛽

∗ 𝑤𝑚 ∗ 𝑂𝑝𝑛 𝑐 + 𝛾

𝑀

𝑚=1

∗ 𝑤𝑛 ∗ 𝑁𝑒𝑠𝑡𝑒𝑑𝑛 𝑐

𝑁

𝑛=1

)

Complexity of Interactions among Factors [14]:

CMPXIC(S)=CMPXOI(S)*CMPXAR(S)*CPMXSTMT(S)

Here,

CMPXIC(S) = complexity of interactions between the

factors of system S,

CMPXOI (S) = complexity of operation creations in factors

of system S,

CMPXAR(S) = complexity of characteristic references in

factors of system S and

 CPMXSTMT (S) = complexity of statements in workings

of system S.

Estimation of Software Testing Time with Fuzzy Inference System and Adaptive Neuro Fuzzy Inference System

61

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C1630073313/2013©BEIESP

Complexity of Operation Invocation [14]:

𝐶𝑀𝑃𝑋𝑂𝐼(𝑆) = (

𝑋

𝑥=1

 𝑤𝑑

𝐷

𝑑=1

∗ 𝐼𝑂𝐼𝑆𝑇𝑑 (𝑜) 𝑐𝑥 + 𝑤𝑐

𝐸

𝑒=1

∗ 𝐼𝑂𝐼𝐷𝑌𝑁𝑐
 𝑐𝑥

+ 𝑤𝑓 ∗ 𝐸𝑂𝐼𝑆𝑇
𝑓 𝑜 ,𝑜 ′

 𝑐𝑥

𝐹

𝑓=1

+ 𝑤𝑔

𝐺

𝑔=1

∗ 𝐸𝑂𝐼𝐼𝐷𝑔 𝑜 𝑐𝑥)

Here X = total no. of workings in system S ,

D = total no. of hidden operation creations. These

operation can completely statically evaluated in factor cx ,

E = entire no. of hidden operation creations. These

operation can only dynamically evaluated in factor cx ,

F = entire no. of explicit operation creations. These

operation can completely statically evaluated in factor cx and

G = entire no. of explicit operation creations, i.e. for

implementing family of the operations factor in factor cx .

 wd = equivalent weight assessment of IOISTd(o)(cx) , we

is the equivalent weight assessment of IOIDYNe(o)(cx) ,

wf = equivalent weight assessment of EOISTf (o, o')(cx)

and

 wg =equivalent weight assessment of EOIIDg(cx) .

Complexity of Characteristic References [14]:

𝐶𝑀𝑃𝑋𝐴𝑅(𝑆) = (

𝑋

𝑥=1

 𝑤𝑘

𝐻

𝐻=1

∗ 𝐴𝑅𝑆𝑇𝑕
 𝑐𝑥 + 𝑤𝑖

𝐼

𝑖=1

∗ 𝐴𝑅𝐼𝐷𝑖
 𝑐𝑥 + 𝑤𝑗 ∗ 𝐴𝑅𝐹𝐼𝑗 𝑐𝑥

𝐽

𝑗 =1

+ 𝑤𝑘

𝐾

𝑘=1

∗ 𝐴𝑅𝑆𝑇𝑘
 𝑐𝑥 ,𝑐𝑥 ′)

Here,

 X = total no. of factors in system S,

H = total no. of characteristic references, accounting only

for statically determined feature in factor cx ,

J = total no. of characteristic references, accounting only

for the first statically determined implementation,

K = total no. of define sets with a meta variable

representing the target factor in factor cx .

 wh = equivalent weight assessment of 𝐴𝑅𝑆𝑇𝑕
 𝑐𝑥 ,

wi = equivalent weight assessment of 𝐴𝑅𝐼𝐷𝑖
 (cx) ,

wj = equivalent weight assessment of 𝐴𝑅𝐹𝐼𝑗 𝑐𝑥
 and

wk = equivalent weight assessment of 𝐴𝑅𝑆𝑇𝑘
 𝑐𝑥 ,𝑐𝑥 ′

Complexity of Statements [14]:

𝐶𝑀𝑃𝑋𝑆𝑇𝑀𝑇(𝑆) = (

𝑋

𝑥=1

 𝑤𝑝

𝑃

𝑝=1

∗ 𝐸𝑥𝐶𝑝
 𝑐𝑥 + 𝑤𝑞

𝑄

𝑞=1

∗ 𝐴𝑟𝑟𝐶𝑞 𝑐𝑥 + 𝑤𝑟 ∗ 𝑇𝑦𝑝𝑒𝐶𝑟 (𝐶𝑥))

𝑅

𝑟=1

Here,

X = total no. of factors in system S ,

P = total no. of exception occurred in factor cx ,

Q=total no. of array creations in factor cx , and

R = total no. of type casting in factor cx .

wp = equivalent weight assessment of Excp(cx) ,

wq = equivalent weight assessment of ArrCq(cx) , and

wr = equivalent weight assessment of TypeCr(cx) .

V. RESEARCH METHODOLOGY

The research methodology is adopted to estimate software

testing time using soft computing method is as follows.

1. Fuzzy Inference System (FIS)

We analyse the performance of the proposed system by the

use of fuzzy inference system. Fuzzy inference system is akin

to a neural network type configuration that is able to map

inputs via input membership functions and affiliated

attributes.

As It is feasible to use Fuzzy Logic Toolbox [9] via

functioning rigorously via the command line. It‟s easy to

make the system with Graphics User Interface (GUI). There

are 5 important tools for constructing, editing, and observing

fuzzy inference systems in Fuzzy Logic Toolbox. These are:

 Fuzzy Inference System (FIS) Editor

 Membership Function Editor

 Rule Editor

 Rule Viewer

 Surface Editor

2. Adaptive Neuro Fuzzy Interference System (ANFIS)

Fig 2: Flow chart for ANFIS

The FIS is a limitation that maps:

 Input characteristics to input membership functions,

 Input membership functions to rules,

 Rules to set of output characteristics,

 Output characteristics to output membership functions,

 Output membership functions to a solitary evaluation

output

 Result concurrent with output

3. ANFIS Model Learning and Inference

 The Neuro-Adaptive learning process provides a

technique for the fuzzy modelling exercise for study of

data sets, in instruct to calculate the membership

function attributes which permit the best fuzzy inference

system to follow the provided input or output data [11].

 It permits the fuzzy system to adapt and study from the

information and data it model.

4. FIS Configuration and Parameter Adjustment

 Network type config. analogous to neural network maps

inputs via partisanship functions and linked attributes, &

then through output partisanship functions and allied

attributes, to be used to analyse input and output.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-3, July 2013

62

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C1630073313/2013©BEIESP

 The attributes connected with the partisanship functions

are used to adapt by means of a training process/ method.

 The analysis and calculation of these attributes or their

adjustments will be assisted by a ramp vector and that

provides an analysis of how well the fuzzy inference

system has modelled the input and output data for a

provided set of attributes.

 Any of the various optimization techniques can be

applied to adjust the parameter as to reduce the error

measurement.

 Anfis uses backpropogation or least mean squares

estimation and backpropogation.

 When the gradient vector is achieved, one of the

optimization techniques is applied for adjusting the

attributes so as to reduce error measurement.

 Anfis uses backpropogation method or least square

estimation with back propagation for membership

function estimation.

Fig 3: ANFIS editor

5. Automatic FIS Configuration Generation with

ANFIS

• Partition method: grid partitioning (default) or subtractive

clustering.

• For generating FIS choose first the no. of partisanship

functions, MFs, then the type of input and output partisanship

functions.

Fig 4: FIS configuration

We can inspect the construction of the resulting FIS:

6. ANFIS Training

• The two „anfis‟ parameter optimization process options

offered for FIS training are hybrid.

• Error Tolerance is used to generate a training stopping

measure, i.e. related to the error size.

• Running training for 40 epochs gives the error results.

• Notice the checking error decreases up to a certain point

in the training and then it increases.

• This increase represents the point of model over fitting.

• „anfis‟ chooses the model parameters associated with the

minimum checking error (just prior to this jump point).

Fig 5: ANFIS Training

• An example for the assessment data opportunity of

„anfis‟ is helpful.

Testing the FIS in resistance to the checking data gives the

following results.

Fig 6: Checking Data.

7. Evaluation Criteria

To analyse the outcomes, we analyse the efficiency of

proposition form with the use of different attributes as

follows:

𝑀𝐴𝑅𝐸 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 −𝑎𝑐𝑡𝑢𝑎𝑙

𝑎𝑐𝑡𝑢𝑎𝑙
 𝑛

𝑖=1 % 𝑛

Mean absolute error is a amount use to measure how near

prediction are to the actual outcomes. MAE guess the

network output for each observation to estimate whether the

projected method is subjective and tend to over/under

estimate. P is the predicted assessment from the model and

A is the actual observed assessment.

Estimation of Software Testing Time with Fuzzy Inference System and Adaptive Neuro Fuzzy Inference System

63

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C1630073313/2013©BEIESP

𝑅𝑀𝑆𝐸 = (𝑃 − 𝐴)2 /𝑛𝑁
𝑖=1

VI. A FUZZY LOGIC APPROACH TO

COMPLEXITY METRICS

Our fuzzy model for integrating AO factor complexity

CMPXM(C) accounts the effect of complexity of

characteristics CMPXAtt(c), complexity of operation

CMPXOp(c) and complexity of nested factors CMPXNested

(c)[12]. The Block diag. for fuzzy representation id shown.

Fig 7: Fuzzy Model for Complexity Measurement of a

Factor [12].

The fuzzy model contains the 4 models:

1. The fuzzy model is the first step in execution of any

fuzzy model that changes crisp values to fuzzy

assessments.

2. In the next phase the assessments are analysed in fuzzy

field by interface engine on the production rules i.e.

knowledge base that is given by the domain experts. In

this phase fuzzy operators are applied.

3. In the third phase insinuation process is applied and all

the outputs are averaged.

4. In the final phase, the processed outputs are converted to

crisp values via defuzzification method.

Membership Functions For Input Parameters

 Complexity of factor CMPXM (C) have been taken in the

scale of 0 to 1 and member functions as Null, Extremely Low,

Low „L‟, Medium „M‟, High „H‟, Extremely High. Because

nested factor is also a factor, member function of nested

factor will be same as of a factor i.e. NIL, VL, L, M, H and

VH.

Complexity of nested factor CMPXNested (c) can be

evaluated recursively with terminal condition as the factor is

without nested factor i.e. CMPXNested (c) as NIL for that

factor. For simplification, CMPXAtt(c) and CMPXOp(c)

assessments have also been accepted in between 0 and 1. For

CMPXAtt(c) and CMPXOp(c) , member functions have been

considered as NIL, L, M and H.

Fig 8: Member Functions of Input Variable CMPXOp

VII. FUZZY RULES FOR PROJECTED MODELS

We have used fuzzy logic and have designed 96 fuzzy

rules (4 member functions of CMPXAtt(c) *4 member

functions of CMPXOp(c) *6 member functions of

CMPXNested (c)). Here, mamdani method for defining fuzzy

rules issued, which is used for nonlinear equations.

These rules are designed on the basis of experience and

expertise knowledge of the field that‟s why these are also

known as knowledge base. For sample, some of the rules are

listed in Table 5.4. First column labeled Rule# represent rule

no., second column is for input linguistic variables,

CMPXAtt(c) ,CMPXOp(c) and CMPXNested (c) and third

column is for output linguistic variable CMPXM (C) .

Table 4: Some Sample Rules of the Complexity Fuzzy

Model

Using projected methodology and model, complexity of all

the factors of the software system can be measured and can

evaluate average of these complexity assessments. The

average complexity assessment will be between 0 and 1 and

will fall in any of the categories, VL, L, M, H and VH. With

the help of this assessment, we can specify complexity level

of AO system. Three dimensional surface view of this rule

base is in Fig 9.

Fig 9: Surface Viewer of AOP Complexity

VIII. CALCULATIONS

Table 5: complexity of factors

Table 6: Code complexity of factor set

Code complexity of factor set

For nil: 3.9

For Very Low: 3.9

For Low: 3.9

CMPXatt(c) 5.63

CMPXop(c) 5.0

CMPX(nested) 5.25

Code complexity of factor: 10.4

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3 Issue-3, July 2013

64

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C1630073313/2013©BEIESP

For Medium: 5.5

For High: 11.9

For Very High: 15.68

Table 7: Error Observed

IX. CONCLUSION AND FUTURE SCOPE

 We have used fuzzy logic for defining software

complexity metrics as linguistic variables and for the

software testing time. Motivation of applying fuzzy logic is

due to difficulties faced to get total complexity of a factor in

generic aspect-oriented system because factors, which

contribute in the complexity of a factor, are different in nature

and have different type of complexity assessment. Using

common terminology, formalism and generic/unified

framework new complexity metrics have been defined. These

metrics are defined for measuring code complexity and

interaction complexity of AO system. Software testing time

is only code complexity has been evaluated. A fuzzy model

has been defined to measure code complexity of a factor.

Mean Absolute Error (MARE), Root Mean Square Error

(RMSE) and Average complexity of all the factors available

in the AO software system will be indicator of the complexity

level of the system. Using this model, complexity of software

developed in most of the AO languages can be measured,

which further may be used as an indicator to external

software quality such as maintainability, reusability,

adaptability and understand ability. In future work, by

applying similar approach, interaction complexity may also

be assessed for AOS.

REFERENCES

1. Aggarwal, K.K., Singh, Y., Kaur A, Malhotra R. 2009. Empirical

analysis for investigating the effect of object-oriented metrics on fault

proneness: A replicated case study. Software Process: Improvement
and Practice 2009; (14): pp. 39-62, DOI=

http://onlinelibrary.wiley.com/doi/10.1002/spip.389.

2. Han, J., Kamber, M. 2001. Data Mining: Concepts and Method.
Harchort India Private Limited, 2001.

3. Ho, S, Xie, M, Goh, T.N. 2003. A study of the connectionist models

for software reliability prediction. Computers and Mathematics with
Applications 2003; (46): pp. 1037-1045.

4. Hosmer, D., Lemeshow, S. 1989. Applied Logistic regression, John

Wiley and Sons 1989.
5. Jun, Z. 2007. Predicting software reliability with neural network

ensembles. Expert Systems with Applications 2009; 36(2): pp. 216-222.

DOI= http://10.1016/j.eswa.2007.12.029.
6. Kai, Y.C., Lin, C., Wei, D.W., Zhou, Y.Y., and David, Z. 2001. On the

neural network approach in software reliability modeling, Journal of

Systems and Software 2001; (58): pp. 47-62.
7. Karunanithi, N., Whitley, D., and Malaiya, Y.K. 1992. Prediction of

software reliability using connectionist models. IEEE Transactions on

Software Engineering, 1992; 18(7): pp. 563-574.
8. Lyu, M.R. 1999. Handbook of Software Reliability Engineering.

McGraw Hill, India, 1999; 131-151.

9. MATLAB TOOLBOX, http://www.mathworks.com “MatLab
Toolbox for ANN, FIS, ANFIS”.

10. Ping, F.P., and Wei, C.H. 2006. Software reliability forecasting by
support vector machines with simulated annealing algorithms. The

Journal of Systems and Software 2006; 79: pp. 747–755.

11. Ross, Q. C4.5: 1993. Programs for Machine Learning. Morgan
Kaufman Publishers, San Mateo, CA 1993: 231-254.

12. Rajesh Kumar, P.S. Grover, and Avadhesh Kumar “A Fuzzy Logic

Approach to Measure Complexity of Generic Aspect-Oriented

Systems”, Journal of Object Technology (JOT), Volume 9, No. 3,

pp: 43-57, May/June 2010.
13. Avadhesh Kumar, Rajesh Kumar, and P.S. Grover, “A Comparative

Study of Aspect-Oriented Methodology with Module-Oriented and

Object-Oriented Methodologies”, ICFAI Journal of Information

Technology, Volume 2, No 4, pp: 7-15, December 2006.

14. Avadhesh Kumar, Rajesh Kumar, and P.S. Grover, “Towards a

Unified Framework for Complexity Measurement in Aspect-Oriented
Systems” , 2008 International Conference on Computer Science &

Software Engineering (CSSE 2008), Wuhan, China, pp: 98-103, IEEE

Computer Society, December 12-14, 2008.

AUTHORS PROFILE

Amarpal Singh Pursuing Master of Technology in

Computer Science and Engineering from Amity School of
Engineering and Technology, Amity University Uttar

Pradesh, Noida, India, Area of Interest: Software

Engineering and Soft Computing.

Piyush Saxena Pursuing Master of Technology in

Computer Science and Engineering from Amity School of

Engineering and Technology, Amity University Uttar
Pradesh, Noida, India, Area of Interest: Data Mining and

Warehousing and Soft Computing.

Abhishek Singhal is working as an assistant professor in
Amity University Uttar Pradesh, Noida. He has obtained

B.E. M.Tech. from MJP Rohilkhand University, Bareilly

and U.P. Technical University, Lucknow respectively.
Currently he is pursuing PhD from Amity University Uttar

Pradesh, Noida, His research interest includes software

testing, aspect-oriented systems, image processing and

software engineering.

Error Observed

Mean Absolute Error 5.23

Root Mean Square Error 30.50

http://onlinelibrary.wiley.com/doi/10.1002/spip.389
http://10.0.3.248/j.eswa.2007.12.029

