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Abstract— Adaptive direct modeling or system identification 

finds extensive applications in telecommunication, control 

system, instrumentation, power system engineering and 

geophysics. If the plants or systems are nonlinear, dynamic, 

single-input single-output (SISO), the identification task becomes 

more difficult. The dynamic system identification task is basically 

a model estimation process of capturing the dynamics of the 

system using the measured data. The Functional Link Artificial 

Neural Network (FLANN) is a single neuron single layer network 

first proposed by Pao. The structure of the FLANN is simple as it 

represents a flat net with no hidden layers. Therefore the 

computation and learning algorithm used in the architecture is 

straight forward. 

In the present investigation the identification problem is 

performed on three standard benchmark nonlinear dynamic 

series-parallel models using Differential Evolution (DE) for 

training the weights of FLANN structure. The performance of the 

proposed FLANN-DE identification model is compared with 

FLANN-Genetic Algorithm and FLANN-Back Propagation 

method. 

 

Index Terms— Differential Evolution, FLANN, Genetic 

Algorithm, System Identification. 

I. INTRODUCTION 

Identification of a nonlinear dynamic plant is a major area 

in engineering today. System identification is widely used in a 

numerous applications like biological processes [1], control 

system [2], signal processing [3] and communication 

engineering [4]. Many practical systems used in process 

control, robotics and autonomous system are nonlinear and 

dynamic in nature. To find a perfect model of these type of 

plants is a challenging task. There are certain classical 

parameterized models such as Winner-Hamarstein [5], 

Voltera Series [6] and Polynomial identification model [7-8] 

which offer a reasonable precision, but the problem with these 

methods is that they involve lot of computational complexity. 

Subsequently, many neural network based models using 

multi-layer perception (MLP), radial basis function (RBF) 

and recurrent neural network. have been proposed for 

nonlinear system identification problem. For basic neural 

network generally back propagation (BP) is used as an 

adaptive algorithm, to provide better accuracy.  Earlier 

Nerandra and Parthasarathy (1990) [9] have employed the 

multilayer perceptron (MLP) networks for effective 

identification and control of dynamic systems like 

truck-backer-upper problem [10]. 
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 However, the major disadvantage of earlier methods is 

that, they employ derivative based learning algorithm such as 

back propagation algorithm (BP), to train the system 

parameters which at times lead to local minima thereby 

leading to incorrect estimation. 

On the other hand the functional link artificial neural 

network (FLANN) is basically a single layer structure in 

which nonlinear mapping of the input is achieved by 

expanding them with nonlinear functions.   

The genetic algorithm (GA) is one of the most popular 

population based stochastic search algorithm, inspired by 

Darwin's theory of survival and is being used as a very useful 

optimization technique in many fields.[11-13]. In recent past 

a promising variant of GA namely, the differential evolution 

(DE) has been proposed by Storn and Price [14], which is also 

a population, based stochastic optimization [15].  The DE has 

proven to be superior to other optimization algorithms 

[16-19], in terms of convergence speed and robustness. It has 

also been used for many diverse applications such as digital 

filter design [20], electromagnetics [21], power system 

[22-23] and designing of array antenna [24]. 

The literature survey reveals that the identification models 

need further improvement in terms of achieving performance 

accuracy and architectural simplicity. These two issues have 

been addressed in this paper. Firstly a single layer nonlinear 

architecture incorporating nonlinear mapping of the inputs 

have been introduced as the back bone of the model. Secondly 

the feed forward as well as feedback parameters are proposed 

to be updated more accurately with DE based learning rule. 

The paper has been organized into 6 sections. In section 2 a 

brief introduction of nonlinear identification scheme is 

presented. A low complexity nonlinear architecture which 

serves as the backbone of the model is dealt in section 3. It 

also outlines the fundamental of DE algorithm and its variants 

which are used for training the weights of the model. Section 4 

provides evolutionary algorithm like GA and DE. Section 5 

provides GA and DE based nonlinear system identification. 

Final section provides simulation and results. 

II. NONLINEAR DYNAMIC SYSTEM 

IDENTIFICATION 

System Identification is defined as the problem of 

determining a mathematical model satisfying a set of 

input-output data. Once a system has been identified, its 

output can be predicted for a given input. Fig.1 shows an 

identification model of nonlinear dynamic plant.  

Where x(k) are input to both the plant and the model and yp 

and y
^
(k) are the desired and estimated outputs at k

th
 instant 

respectively. The objective of the identification task is to 

minimize the error e(k) recursively, , such that y
^
(k)  

approaches the desired plant output when same input x(k) is 

applied to  both the plant and the model.  
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For mathematical evaluation, three types of single-input 

single-output (SISO) plants [9] are described in difference 

equations (1) to (3) are considered. 

 
Fig. 1 Block diagram of nonlinear system identification 

Type-I:                    (1)                                                                                                                                                      

 

 

Type-2: 

                                                                                                                                                       

(2) 

Type-3                             (3) 

 

 

 

Where, x(k) and y(k) are the input and output of the SISO 

plant respectively at the k
th

 time instant under the condition 

that m ≤ n. Here ai(i≤n-1) and ai(i≤m-1) are the parameters of 

the feed forward and feedback paths of the plant. In addition 

f(.) and g(.) represent the nonlinear function associated with 

the output. The error signal obtained by the difference 

between plant and model outputs as well as the output 

information are used by a suitable learning algorithms to train 

the weights of the model so that the squared error value 

progressively decreases to a minimum value as iteration 

proceeds. When the squared error attains a lowest value, 

training is stopped and the adaptive structure corresponding 

to the last weight vector represents the desired identification 

model. 

III. DEVELOPMENT OF A NOVEL NONLINEAR 

IDENTIFICATION SCHEME 

Figure 2 shows a single layered nonlinear structure 

proposed by Pao, which is capable of forming complex 

decision regions by generating nonlinear decision boundaries 

[25]. In this structure, the nonlinear adaptive architecture 

input dimension is increased by nonlinearly mapping the input 

patterns by using trigonometric functions. For nonlinear 

dynamic system identification, a similar structure has been 

proposed in [26] in which the weights of the model are 

updated using a steepest decent algorithm. In order to identify 

dynamic plants a series-parallel scheme is employed during 

training phase [9] where the feedback is taken from the plant 

output instead of the model. A structure of a FLANN is shown 

in Fig.2. 

 
Fig.2 Structure of FLANN model 

Each input x(k) undergoes an  nonlinear expansion and 

then applied  to an adaptive linear combiner whose weights 

are updated by using adaptive algorithm. In [26] 

trigonometric expansion has been proposed, because it has 

yielded better performance for most of the applications. 

Accordingly in the proposed model sine and cosine 

expansions have been adopted. The expanded vector V(k) of 

x(k) is written as follows: 

                          

V(k)=[1,sin{πx(k)},cos{πx(k)}….sin{nπx(k)},cos{nπx(k)}]            

(4)                                       

        = [v0(k),v1(k)…….v2n(k)] 
T
                     (5)                                                                               

If n numbers of sine and cosine expansions of input samples 

are made and the first term  is an unity input then after 

expansion the total number of terms become N=2n+1There 

are  a total of  (2n + 1) numbers of terms in the input vector. 

The weight vector related to the k
th

 input vector defined in (6) 

is given as: 

 h(k) = [h0(k), h1(k), h2(k),…. h2n+1(k)]
T  

                    (6)
                                                                                                   

 

Hence the estimated output of the identification model is 

computed as: 

                                                                                            (7)                                                                                                  

IV. EVOLUTIONARY ALGORITHMS 

A.  Genetic Algorithm (GA) 

Genetic algorithm is a part of evolutionary computing. GA 

was first introduced by John Holland and was later developed 

by Goldberg and De Jong [27]. The Algorithm begins with an 

initial set of solutions (represented by chromosomes) which 

are called as population. Solutions from one population are 

taken and used to form a new population. This is motivated by 

a hope, that the new population will be better than the older 

one. Solutions which are then selected to form new solutions 

(offspring) are selected according to their fitness - the more 

suitable they are the more chances that they will reproduce. 

This is repeated until some condition (for example number of 

populations or improvement of the best solution) is satisfied. 

Ideally, there are five phases in a GA program: initialization, 

selection, crossover, mutation and elimination. 

Flow graph for Simple Genetic Algorithm 
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GA Operators:  

Depending upon the application, many individual solutions 

are created randomly to form an initial population, covering 

the entire range of possible solutions (this is called as search 

space). Each point in the search space represents one possible 

solution marked by its value (fitness). The crossover and 

mutation are the most important parts of the genetic algorithm 

which helps the algorithm to be trapped in local minima. The 

performance is influenced mainly by these two operators.  

Crossover:  

In crossover recombination between two parent 

chromosomes is done to produce offspring that contain some 

parts of both parents “genetic material”. A probability term, 

Pc, is set to determine the operation rate. Generally the 

probability of crossover is high. This is a determining factor 

that distinguishes the GA from all other algorithms. 

Mutation:  

Mutation operation introduces variations into the 

chromosomes. This is a process of making a good 

chromosome bad and vice versa in terms of its fitness. This 

variation can be global or local. The operation occurs 

occasionally (usually with small probability Pm) but it 

randomly alters the value of a particular string position. Each 

bit of a bit string is replaced by a randomly generated bit if a 

probability test is passed. Within a specific probability, 

certain digits are altered from either 0 to 1 or 1 to 0 in binary 

encoding. 

Selection:  

Finally the fitness (cost function) of original parents, 

offspring (children after crossover of selected parents) and 

mutated offspring are calculated. Again the best 

chromosomes are selected from the entire pools which are 

then treated as the parents of the next generation. The entire 

process continues till the global optimum is reached. 

B.  Differential Evolution: 

Differential Evolution (DE) is a global optimization 

algorithm. It is used frequently used in the field of numerical 

optimization problem because it adapts an encoding scheme 

with real valued number, instead of using binary encoding as 

was the case in GA. In DE, initially some vectors which are 

possible solution within a D-dimensional search space are 

randomly created much like GA, then evolved over a time, to 

explore the entire search area, thereby locating the minimum 

of objective function. The initial population is denoted by NP 

which is represented as Xi,j(G) , (i=0, 1, 2… (NP-1)) and (j = 

1,2,……D) where i is the population, j is the number of 

parameters and G is the generation to which the population 

belongs. 

STEPS IN DE: 
 

Initialization: 

The upper and lower bound of each parameter is to be 

specified before population initialization. Once initialization 

bounds have been specified, a random number generator 

assigns each parameter of every vector a value from within the 

prescribed range. For an example (G=0) the value of a j
th

 

parameter of an i
th

 vector is 

 

                                                                           (8)                                                                      

Where pU and pL are upper and lower bound, for range 

notification. 

 

Mutation: 

After initialization DE mutates unlike GA where first 

crossover is done after initialization In mutation the 

difference of two randomly selected vectors are multiplied by 

a constant factor and then added with a randomly selected 

vector from the population i.e. in DE a differential mutant 

operator is used. Equation (9) shows how to combine three 

different, randomly chosen vectors to create a mutant vector; 

Vi,j(G+1): 

                      (9) 

                                                                                                                                           

This type of mutation is called as de/rand/1. There are certain 

other formats of creating the mutant vector. DE mutation 

strategies like de/rand/2, de/best/1, de/best/2 and de/current to 

best/2 which are as described follows: 

 

                                                                                          (10)  

                                                               

                                                                                        (11) 

  

                                                                  

                                                                                                                                                          

(12) 

                                                                                                                                                           

 

(13) 

The scale factor, F is a positive real number which controls 

the rate at which the population evolves. While there is no 

upper limit on F, effective values are seldom greater than 1. 

In our simulation we used de/best/1 mutation strategy. 

Crossover: 

Now trail vector Ui,j(G+1) is created using crossover 

operator: 

                                                                                                                                                         

 

 

 

(14) 

The crossover probability, Cr [0,1], controls the fraction of 

parameter values that are copied from the mutant. In 

crossover if the value of the randomly generated number is 

less than Cr then the trial parameter is inherited from the 

mutant, Vi,j , otherwise it is copied from xi,j. 

Selection: 

If the objective function value of the trial vector, Ui,j, has an 

equal or lower than that of its target vector, Xi,j, it replaces the 

target vector in the next generation; otherwise, the target 

retains its place in the population for at least one generation. 

 

                     (15) 

                                                                                                                                                      

V. GA AND DE BASED NONLINEAR SYSTEM 

IDENTIFICATION 

A.  GA based Nonlinear System Identification: 

System Identification on a nonlinear dynamic system using 

FLANN as structure and GA as update algorithm is carried 

out according to these following stages: 

Step 1: Initialization of Parameter. 

 N= Initial population. 

 Pm= Mutation probability. 

 S= Selection rate. 
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Step 2: n uniformly distributed random signals over the 

interval [-1, 1] are generated and applied to the actual 

nonlinear dynamic system and to the adaptive model 

simultaneously. This serves as the input to both the system 

and the adaptive model. In the present investigation a series 

parallel identification model is used. 

Step 3: The plant’s output serves as the desired output. The 

estimated output is obtained from adaptive model by using 

equation (7).  

Step 4: Each of the desired output is compared with the 

corresponding estimated output and thus n numbers of errors 

produced. 

Step 5: For each i
th

 weight vector the mean square error 

(MSE) is calculated by using the following fitness function: 

                                                                                                                                                             

(16) 

 

Step 6: Random population of n chromosomes (suitable 

solutions for the problem) is then generated. 

Step 7: The fitness of each chromosome in the population is 

evaluated. 

Step 8: New population is then created by repeating following 

steps until the new population is complete. 

Step 9: Two parent chromosomes are selected from the initial 

population according to their fitness (the better fitness, the 

bigger chance to be selected).   

Step 10: With a crossover probability, the parents are crossed 

over to form new offspring (children). If no crossover is 

performed, offspring is the exact replica of the parents.  

Step 11: With a mutation probability new offspring at each 

locus (position in chromosome) are mutated. New offspring 

are then placed in the new population.  

Step 12: After each iteration minimum of MSE (MMSE) is 

calculated which shows the learning behavior of the adaptive 

model. 

Step 13:  Use newly generated population for a further run of 

the algorithm. If the end condition is satisfied then stop the 

process and return the best solution in current population. 

B.  DE based Nonlinear System Identification: 

Step 1: Initialize the parameter used in DE: 

 Np = Select the total number of population 

 F = Select the scale factor which controls the rate at which 

the population evolves.  

 CR = Initialize it with some constant value, which selects 

whether the new population is copied from the trial vector or 

from the target vector. 

 D = number of parameters of the FLANN model is to be 

optimized. 

 G = number of generations. 

 N = number of input samples.    

Step 2: n uniformly distributed random signals over the 

interval [-1, 1] are again generated and   are applied to both 

the actual nonlinear dynamic system and to the adaptive 

model simultaneously as we did in GA also. Here again the 

same series parallel identification scheme is used. 

Step 3: The plant’s output serves as the desired output and 

estimated output is obtained from adaptive model using 

equation (7).  

Step 4: Each of the desired output is compared with the 

corresponding estimated output and n numbers of errors are 

produced. 

Step 5: The mean square error (MSE) is calculated for each i
th

 

weight vector by using fitness function described in equation 

(16). 

Step 6:  Three random vectors are selected from the initial 

population and a mutant vector is obtained by using equation 

(11). 

Step 7:  Then it is checked whether the vector elements are 

within the search range or not. If it is not within the search 

range then bring it into specified search range. 

Step 8: Generate a random number and compare this with 

Crossover Ratio (CR), initially selected. Then using equation 

(14) obtains the trail vector. 

Step 9: The estimated output is obtained from the adaptive 

model by using this newly generated trail vectors.  n numbers 

of errors are obtained by comparing the estimated output with 

the desired output. The MSE is then calculated from equation 

(16). 

Step 10: According to equation (15) population for next 

generation are selected from the trail vector or from the target 

vector and new population is created for next generation. 

Step 11: After each iteration minimum of MSE (MMSE) is 

calculated which shows the learning behavior of the adaptive 

model. 

Step 12: Using the new generation the steps from 6 to 11 are 

repeated. If the end condition is satisfied then stop the process 

and return the best solution in the current population. 

VI. SIMULATION AND RESULTS 

For nonlinear dynamic plants described by difference 

equation in (1), (2) & (3), extensive simulation studies have 

been carried out. In this investigation a series-parallel model 

is used along with DE for training the weights of FLANN 

structure. The performance of the proposed FLANN-DE 

identification model is then compared with FLANN-GA and 

FLANN-BP methods. In FLANN-BP model an uniformly 

distributed random signal over the interval [-1, 1] is used as 

input, and 50,000 iterations are carried out for training.  

The testing is analyzed by parallel scheme. The input to the 

identified model is given as 

 

                                                               (17)                                                          

 

 

 

Normalized mean square error (NMSE) [28] is used, for 

comparison of two models. 

 

                                                                               (18)                                                                           

 

Where σ
2
 is the variance of desired signal and s is the testing 

sample. 
 

A.  Identification of SISO dynamic systems 

Example 1: 

In this example, the plant to be identified is of model-1 type 

and is represented by the difference equation [9] as follows: 

                                                                                         (19)                                                                                     

  

Where unknown nonlinear function g (.) are given by 
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NL-1:                                                                                                                                                   

                      (20) 

 NL-2:                                                                                                                                                   

 

 

 

(21) 

NL-3:                                                                                                                                                                                 

                         

(22) 

 

To identify the plant a series-parallel model is used which is 

described by following difference equation 

                                                                                                                                                             

(18) 

 

N[x(k)] is FLANN-BP, FLANN-GA or FLANN-DE model. 

The FLANN input is expanded to ten terms for NL-1 (20) and 

eleven terms for NL-2 (21) and NL-3 (22) respectively. In 

FLANN-GA model training is done for 500 iterations. The 

mutation probability (Pm) and selection rate (S) are chosen to 

be 0.05 and 0.5 respectively. In DE, CR=0.5, F=0.5, number 

of generations = 500 and DE/best/1 scheme is used for 

mutation. Both the convergence parameter µ and the 

momentum factor η are chosen to be 0.1 for FLANN-BP. The 

results of identification of (19) with nonlinear function (20), 

(21) and (22) are shown in Fig.3, Fig.4 and Fig.5 respectively.   
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(a) FLANN-BP (expansion 10) 
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(a) FLANN-GA (expansion 10) 
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(a) FLANN-DE (expansion 10) 

Fig.3 Comparison of output response of example-1 using 

nonlinearity defined in (20) 
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(a) FLANN-BP (expansion 11) 
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(b) FLANN-GA (expansion 11) 

0 100 200 300 400 500 600
-6

-5

-4

-3

-2

-1

0

1

2

3

Discrete Time

O
u

tp
u

ts

 

 

Plant

Model

 
(c) FLANN-DE (expansion 11) 

Fig.4 Comparison of output response of example-1 

using nonlinearity defined in (21) 
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(a) FLANN-BP (expansion 11) 
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(b) FLANN-GA (expansion 11) 
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(c) FLANN-DE (expansion 11) 

Fig.5 Comparison of output response of example-1 

using nonlinearity defined in (22) 

Example 2: 

In this example the plant to be identified is of model-2 type [9] 

and is represented by the difference equation: 

                        (23) 

                                                                                                                                                     

The unknown nonlinear function f(.) is given by 

                                                                                                                                                                  

(24) 

 

To identify the model a series-parallel model is used 

                                                                                    

 (25)                                                                         

Here value of µ and η are set as 0.05 and 0.1 respectively for 

FLANN-BP. All the parameters in FLANN-GA and 

FLANN-DE models are same as used in example-1. The 

FLANN inputs are expanded to 9 terms using trigonometric 

expansion. The response of the example 2 is shown in Fig.6. 

From these results it is evident that FLANN-DE method gives 

accurate identification of the present system. From these 

result it is observed that FLANN-DE identification model 

gives better result than FLANN-GA and FLANN-BP model. 

From table-I it is also evident that FLANN-DE approach 

gives lower NMSE than the other identification model. 
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(a) FLANN-BP (expansion 9) 
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(b) FLANN-GA (expansion 9) 
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(c) FLANN-DE (expansion 9) 

Fig.6 Comparison of output response of example-2 

 

Example 3: 

In this case the plant is of model-3 type [9] and represent by 

the difference equation: 

                      (26) 

                                                                                                                                                                 

Where f( ) and g() is nonlinear function and is given by 

                                   

                                        and              (27)                                                                                                                                 

                                                                                                                                                                   

       (28) 

 

The identification model of equation (22) is as follows: 

                                                                                                                                                                

(29) 

Where N1 and N2 is FLANN-BP, FLANN-GA or 

FLANN-DE model.   
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N1 and N2 contain 7 and 5 expansion respectively for 

FLANN-BP, FLANN-GA and FLANN-DE models. The 

parameters for GA and DE are retained same as was in 

example-1. For BP, convergence and momentum parameter is 

chosen as 0.1. The result of identification is shown in Fig.7 

where it is observed that FLANN-DE model shows better 

result than other two identification models. 
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(a) FLANN-BP (expansion 14) 
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(b) FLANN-GA (expansion 14) 
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(c) FLANN-DE (expansion 14) 

Fig.7 Comparison of output response of example-3    

This is the comparison table of three identification model 

for three nonlinear dynamic systems with respect no 

NMSE defined in (18). 

Table-I: Comparison of NMSE of different examples 

Examp

le 

Expa-nsio

ns 

NMSE in dB 

FLANN-B

P 

FLANN-

GA 

FLANN-

DE 

Ex-1wi

th (20) 
10 -31.8807 -35.8218 -41.9738 

Ex-1 

with 

(21) 

11 -19.5387 -18.913 -23.2431 

Ex-1 

with 
11 -24.967 -31.6241 -33.5503 

(22) 

Ex-2 9 -19.1246 -23.8696 -31.567 

Ex-3 14 -17.4129 -21.1247 -24.6214 

 

Further, we have also investigated on the convergence 

pattern of various variants of DEs. The various variants of 

Des are described in equation (10), (11), (12) and (13). For 

example-1 the convergence of various variants of DEs is 

plotted in figure-8. Similarly, in figure-9 and figure-10 the 

convergences of various DEs are plotted for example-2 and 

example-3 respectively.  

From the convergence graphs (Fig.8, Fig.9 and Fig.10) we 

conclude that for example-1 and example-2 DE/best/1 

performs best, but for example-3 DE/current to best/2 shows 

better results.  
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Fig. 8: Comparison of different DE strategies for 

example-1 
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Fig. 9: Comparison of different DE strategies for 

example-2 
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Fig. 10: Comparison of different DE strategies for 

example-3 
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VII. CONCLUSION 

In the present investigation, the identification problem is 

performed on three standard benchmark nonlinear dynamic 

series-parallel models. From the simulation study it is evident 

that FLANN-DE provides accurate identification for 

nonlinear dynamic models. When compared to FLANN-GA 

and FLANN-BP the FLANN-DE identification model gives 

better results. From table-I it is also evident that FLANN-DE 

approach gives lower NMSE than the other two identification 

models. 

From the convergence graphs (Fig.8, Fig.9 and Fig.10) we 

can conclude that for example-1 and example-2 DE/best/1 

performs well but for example-3 DE/current to best/2 shows 

better result.  
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