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Abstract--Atmospheric Signal processing has been one field of 

signal processing where there is a lot of scope for development of 

new and efficient tools for cleaning of the spectrum, detection 

and estimation of the desired parameters.  Atmospheric signal 

processing deals with the processing of the signals received from 

the atmosphere when manually stimulated using atmospheric 

Radar. Removal of clutter and noise in the radar wind profiler is 

the utmost important consideration in radar. In this paper, we 

implement wavelet thresholding for removing clutter and noise 

from radar wind profiler data. By applying the concept of discrete 

multi-resolution analysis and non-parametric estimation theory, 

we develop wavelet domain thresholding rules, which identifies 

the coefficients relevant for clutter and noise and suppresses 

them and increases the accuracy of wind vector reconstruction. 

 

Keywords: Atmospheric Signal Processing, Spectrum, 

Detection, Clutter, Wind Profiler.  

I. INTRODUCTION 

RADAR (Radio Detection and Ranging) is a device that 

sends out electromagnetic waves.These waves reflect off of 

objects in space, and a proportion of the original wave 

energy is actuallybounced back towards the RADAR. The 

RADAR then reads this returning signal and analyzes it. 

This returning signal can be processed to determine many 

properties about the original object that the wave reflected 

off of. Two examples that can be determined from the 

returned signal are the location of the object  as well as the 

velocity of the object in relation to the radar. 

II. CONCEPT OF RADARS 

Radar itself is an abbreviation for Radio Detection and 

Ranging. Radar systems send out modulated waveforms 

using antennas in order to transmit electromagnetic energy 

into a specific volume of space to search for targets. Objects 

(i.e. targets) within a certain volume will reflect part of the 

energy (radar returns or echoes) back to the radar. From 

these radar returns, the radar receiver then extracts 

information such as velocity and range, angular position, 

and other identifying characteristics. If relative motion 

exists between target and radar, the shift in the carrier 

frequency of the reflected wave(Doppler effect) is a measure 

of target’s relative (radial) velocity and may be used to 

distinguish moving targets from stationary objects. National 

Atmospheric Research Laboratory (NARL) at Gadanki 

(13.47°N, 79.18°E) near Tirupati, India has been operating a 

1280 MHz atmospheric radar  for studying structure and 

dynamics of lower atmosphere. 
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The operating frequency of LAWP is 1280MHz. The phased 

antenna array consists of 8x8 elements occupying  an area of 

1.4mx1.4m.It transmits a peak power of 0.8KW.The number 

of coherent interations can be in the range of 4-1000.The 

number of fast fourier transform (FFT) points can be from 

1-256.To obtain the wind speed and direction,LAWP  

measures data in three directions,namely zenith, north and 

east in one observation cycle.The typical height coverage in  

the clear air is 3-4Km and 10Km during  precipitation.The  

selected parameters of  LAWP are shown in table. 

 

Specifications 

 Frequency                           1280 MHz 

Technique         Doppler beam Swinging 

AntennaType      Microstrip Patch Array 

Array Size               8x8 (1.4 m x 1.4 m) 

Beam Width                                         9
 0
 

Beam Form                              Passive 

Beams                                                  25 

Tx/Rx Type      Solid State Transceivers  

PeakPower                                   0.8 kW 

Duty Ratio                                Upto 10% 

Pulse Width                         0.25 – 8.0 μs 

NCI                                             4 - 1000 

NFFT                                         32 -1024 

Range Bins                                     1-256 

Receiver                        Super Hetrodyne 

Detection                       Direct IF Digital 

Dynamic Range                              70 dB 

Min.Height                                     100 m 

Max.Height                                   3-5 km 

 

Most of these RWP employ the Doppler-beam swinging 

(DBS) method for the determination of the vertical profile of 

the horizontal wind and, under certain conditions, the 

vertical wind component. These radars transmit short 

electromagnetic pulses in a fixed beam direction and sample 

the small fraction of the electromagnetic field backscattered 

to the antenna. 

At least three linear independent beam directions are 

required to transform the measured ’line-of-sight’ radial 

velocities into the wind vector. Due to the nature of the 

acting atmospheric scattering processes, the received signal 

is several orders of magnitude weaker than the transmitted 

signal. The received signal is Doppler shifted, which is used 

to determine the velocity component of “the atmosphere” 

projected onto the beam direction. [16] The goals of signal 

processing are: 

–  to provide accurate, unbiased estimates of the 

characteristics of the desired atmospheric echoes; 

–  to estimate the confidence/accuracy of themeasurement; 

–     to mitigate effects of interfering signals; 

–     to reduce the data rate. 
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Digital signal processing in a system using an analog 

receiver starts with the sampling of the in- and quadrature 

phase components of the received signal at a rate that is 

determined by the pulse repetition period T . [1], [3], [27] 

To reduce the data rate for further processing, hardware 

adder circuits perform a so-called coherent integration 

adding some N (typically ten to hundred) complex samples 

together.[8], [9], [19] If the radar system uses pulse 

compression techniques (e.g. phase coding using 

complementary sequences), then the next step is 

decoding.The coherently averaged and decoded samples are 

then used to compute the Doppler spectrum using the 

Windowed Fourier Transform (FFT) and [16] the 

Periodogram method.In our system, a Fourier transformed 

Hanning-window is convolved with the result of the FFT. 

[21] A number (typically some ten) of individual Doppler 

spectra is then incoherently averaged to improve the 

detectability of the signal.  

 
 

Fig 1: Data Processing Steps of  Radar Wind                                                                    

Profiler 

[12] Finally, the noise level is estimated with the method 

proposed by Hildebrand and Sekhon , and [18] the moments 

of the maximum signal in the spectrum are computed over 

the range where the signal is above the noise level.The 

problem with this type of signal processing is the underlying 

assumption that the signal consists of only two parts: the 

signal, that is produced by one atmospheric scattering 

process, and noise (different sources, mainly thermal 

electronic noise and cosmic noise). [10], [11]This is 

certainly not true, especially at UHF, where the desired 

atmospheric signal itself is often the result of two distinct 

scattering processes, namely scattering at inhomogenities of 

the refractive index (Bragg scattering) and scattering at 

particles, such as droplets or ice crystals (Rayleigh 

scattering). Therefore, even the desired atmospheric signal 

may have different characteristics. But, as experience shows 

us, the most serious problems are caused by the following 

contributions to the signal: 

Ground Clutter. Echo returns from the ground surrounding 

the site, which emerge from antenna’s sidelobes. 

Intermittent Clutter. Returns from unwanted targets, such  

as airplanes or birds, from both the antenna’s main lobe and 

the side lobes. 

III. APPLYING MULTIRESOLUTION ANALYSIS 

AND STATISTICAL ESTIMATIONS 

For the problem at hand, the goal of the signal processing 

should be signal component separation, i.e. an automatic, 

reliable and stable extraction of the different contributions to 

the signal (noise, clutter, interference). [5], [13], [17] Our 

purpose was to embed the filtering procedure into the known 

mathematical theory of wavelets. In general, mathematical 

experience concerning problems related to contamination 

removal or denoising shows that usually more than time 

domain filtering and Fourier domain filtering techniques are 

required to obtain optimum results. Often, most of the 

existing and implemented methods are insufficient. The 

main reasons for the particular effectiveness of wavelet 

analysis can be summarized as follows: 

– The fact that contamination appears often instationary or 

transient, and with a priori unknown scale structure, favors 

the superior localization properties of the wavelets. [2] A 

wavelet expansion may allow the separation of signal 

components that overlap both in time and frequency . 

– [4], [5], [20] In order to effectively localize clutter 

components, one can use a great variety of wavelet filters.To 

choose a certain wavelet that especially suits the desired 

signal component, one can determine the properties of the 

clutter signal; otherwise, one can select a wavelet 

empirically. 

–[2] The wavelet expansion coefficients, _jk, drop off 

rapidly for a large class of signals, which makes the 

expansion very efficient . 

–[2], [15], [17] The fast wavelet transform has a 

computationally complexity that is lesser than or equal to 

the fast Fourier  transform; the algorithm is recursive. This 

allows for an efficient implementation on digital 

computers.Thus, the application of wavelet techniques to 

our particular problem seems to be promising. Before we 

start, let us briefly repeat the basics of multi-resolution 

analysis. Let L2(R) be the space of functions of finite 

energy. Let  
∅  be some function in L2(R), such that the family of 

translates of  ∅  form an orthonormal system. We define   

∅𝑗𝑘  𝑥 = 2𝑗/2∅(2𝑗𝑥 − 𝑘),  𝑗𝜖𝑍, 𝑘𝜖𝑍. 

Further, we define linear spaces by  

𝑉0 = {𝑓 𝑥 =  𝑐𝑘
𝑘

∅ 𝑥 − 𝑘 :   𝑐𝑘  
2

𝑘

< ∞} 

𝑉𝑗 =   𝑥 = 𝑓 2𝑗𝑥 : 𝑓𝜖𝑉0 , 𝑗𝜖𝑍 

Assuming that ∅ is chosen in such a way that the spaces are 

nested: 
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𝑉𝑗 ⊂ 𝑉𝑗+1, 𝑗𝜖𝑍 and that   𝑉𝑗𝑗≥0 is dense in 𝐿2(𝑅) 

then the sequence  {𝑉𝑗 , 𝑗𝜖𝑍}  is called a multi-resolution 

analysis. This concept was introduced by Mallat and Meyer. 

Ǿ is called the father wavelet. Furthermore,one may define 

subspaces Wj by 

𝑉𝑗+1 = 𝑉𝑗⨁𝑊𝑗  

and iterating this we have 

 

 𝑉𝑗 = 𝑉0⨁ ⊕𝑗 𝑊𝑗  and 𝐿2 𝑅 = 𝑉0⨁ ⊕𝑗 𝑊𝑗  

Assuming that our data may be described by some  
𝑓𝜖𝐿2 𝑅  we can represent the signal as a series 

𝑓 𝑥 =  𝛼𝑘

𝑘

∅0𝑘 𝑥 +   𝛽𝑗𝑘

𝑘𝑗

𝜓𝑗𝑘 (𝑥) 

Where  𝜓𝑗𝑘  , 𝑘𝜖𝑍   is an orthonormal basis in Wj . The 

function is called mother wavelet.  

[6] This expansion is a special kind of orthogonal series. 

Hence, it would be useful to search in the framework of 

nonparametric statistical estimation theory for an applicable 

method to solve our problem. In case of orthogonal series 

estimation, the idea of reconstructing the desired 

atmospheric signal is simple. Basically, we replace the 

unknown wavelet coefficients in the wavelet expansion by 

estimates which are based on observed data. For that, we 

need a selection procedure to choose relevant coefficients 

since the main emphasis of performing wavelet domain 

filtering is to create a suitable, i.e. problem matched, 

coefficient selecting procedure. To separate the atmospheric 

signal component, we apply statistical estimation theory. A 

side effect of using statistics is to obtain a measure of 

reconstruction quality. A typical quality measure is a loss 

function/ estimation error. Minimizing the error function 

reveals an objective evaluation and a self-acting filter 

algorithm. The following sub-section describes the 

construction of our atmospheric-signal-estimator. In 

advance, we briefly remark that in the following section, we 

assume that our signal belongs to some Besov space, i.e. a 

generalized mathematical function space. One special 

example is the previously introduced function space L2(R). 

But sometimes it makes more sense to suppose that the 

derivatives of our signal are of finite energy as well. In this 

and other situations, the framework of Besov spaces is an 

adequate mathematical tool for our application. A Besov 

space, denoted by 𝐵𝑝𝑞
𝑠  , depends on three parameters: s 

smoothness, the number of bounded derivatives and p, q 

which describe the underlying function space  
𝐿𝑞(𝑙𝑝).  [6], [7], [14] In the following, we make use of 

some well-known facts of estimation theory, which are valid 

for almost all Besov spaces . If our signal is an element of 

one of these spaces (which is true for all practical signals), 

we can adapt wavelet threshold estimators. The main 

advantage of this framework is that we can use existing 

rules for evaluating bounds and rates of convergence for our 

loss function, which describes the quality of our 

reconstructed atmospheric signal component. By optimizing 

bounds and rates of convergence, we obtain self acting 

algorithms.  For our purpose, we only need the following 

characterization of Besov spaces: A function f belongs to 

𝐵𝑝𝑞
𝑠  if 

𝐽𝑝𝑞
𝑠 𝑓   =  𝛼 𝑙𝑝 + ( (2𝑗  𝑠+1 2 −1 𝑝   𝛽𝑗 𝑙𝑝)

𝑞

𝑗≥0

)1 𝑞 <  ∞ 

We are looking for optimal reconstructions of functions 

belonging to some subset     
𝐹𝑝𝑞

𝑠 𝑀 =  𝑓𝜖𝐵𝑝𝑞
𝑠 ∶  𝐽𝑝𝑞

𝑠 < 𝑀 .                                               

For our calculations, we assume that the function is in L2(R) 

and s is small.       From given measurements (Y1, . . . , Yn), 

we want to estimate the function f in the simple model 

𝑌𝑖 = 𝑓 𝑋𝑖 + 𝜀𝑖  

We assume that we have the Xi on a regular grid and is a 

random variable (a stochastic process which describes all 

non-atmospheric components). The basic idea is to replace 

the wavelet coefficients in the series expansion by empirical 

estimates. 

�̂�𝑘 =
1

𝑛
 𝑌𝑖 𝑛

𝑖=1 𝜑0𝑘(𝑋𝑖)       and  

𝛽 𝑗𝑘 =
1

𝑛
 𝑌𝐼

𝑛

𝑖=1

𝜓𝑗𝑘 (𝑋𝑖) 

where the Xi are time stamps and the Yi are observations. A 

straightforward linear estimation is given by the projection 

onto a subspace  𝑉𝑗1 

𝑓 𝑗1 𝑥 =  𝛼 𝑘
𝑘

𝜑0𝑘 𝑥 +   𝛽 𝑗𝑘
𝑘

𝑗1

𝑗=0

𝜓𝑗𝑘 (𝑥) 

Obviously, this kind of linear estimation includes oscillating 

components, in particular, the clutter components. This 

phenomenon occurs because we have taken the whole set of 

wavelet coefficients up to scale j1, i.e. we have not 

performed any filtering step thus far. In the following, we 

need a suitable selection procedure for the coefficients in 

order to perform the necessary filtering step. [6], [7] We 

apply a so-called hard thresholding and soft thresholding, 

respectively. It is based on taking the discrete wavelet 

transform (using a multiresolution analysis), passing the 

transform through a threshold (actually, the expansion 

coefficients are thresholded) and then taking the inverse 

DWT to obtain a filtered reconstruction. This type of 

thresholding is applied in a different way, by removing 

coefficients below a certain threshold in order to denoise the 

data().The functions for ard and soft thresholding are 

defined by 

𝜃 𝑢 =   {
𝑢,
0,

  𝑢 ≥ 𝜆
                 𝑢 < 𝜆                     

𝑎𝑛𝑑 

𝜃𝑠 𝑢 = {
 𝑢 −

𝜆𝑢

 𝑢 
 ,      𝑢 ≥ 𝜆

0,                      𝑢 < 𝜆

 

  The modified functions for hard and soft thresholding  tor 

clutter removal are defined by   

𝜂 𝑢 = {
𝑢,  𝑢 < 𝜆
0,  𝑢 ≥ 𝜆

            and 
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𝜂𝑠 𝑢 = {
𝑢,  𝑢 < 𝜆

𝜆𝑢  𝑢  ,  𝑢 ≥ 𝜆
 

  Here, 𝜆 is an adequate threshold. Applying this rule  to our 

linear wavelet estimator, we obtain a nonlinear estimator 

�̂�∗ 𝑥 =  𝜂∗

𝑘

 𝛼 𝑘 𝜑0𝑘 𝑥 +   𝜂∗

𝑘

𝑗1

𝑗=𝑗0

 𝛽 𝑗𝑘  𝜓𝑗𝑘 (𝑥) 

where 𝜂∗ is 𝜂𝑠 or 𝜂 ,respectively. 

If the threshold 𝜆 is specified according to the asymptotic 

distribution of the empirical coefficients, then only those 

coefficients remain which are supposed to carry significant 

signal information. These are finally used for the 

reconstruction by the inverse wavelet transform. [22] The 

resulting non-linear estimator does not only provide local 

smoothers, but, in many situations, achieves the 

nearminimax L2-rate for the risk of estimation, for (random) 

thresholds 𝜆𝑗𝑘  satisfying   

𝜎𝑗𝑘  2𝑙𝑜𝑔𝑀𝑗 ≤ 𝜆𝑗𝑘 ≤ 𝐶 
log 𝑛

𝑛
  

  for any positive constant where 𝜎𝑗𝑘  is the variance and Mj 

denotes the number of the coefficients used in the nonlinear 

estimator. The optimal threshold rate (
1

𝑛
)

2𝑠

(2𝑠+1)  is attained 

only for the ideal threshold. However, in practice, this is 

unknown. Therefore, we have to replace 𝜎𝑗𝑘  by some 

estimation �̂�𝑗𝑘  which results in random thresholds 

�̂�𝑗𝑘 = �̂�𝑗𝑘  2𝑙𝑜𝑔𝑀𝑗     for clutter removal  and �̂�𝑗𝑘 =

𝑚𝑎𝑑 2𝑙𝑜𝑔𝑀𝑗 /.6745  for denoising.   where variance  

𝜎𝑗𝑘
2 = 𝑉𝑎𝑟(𝛽 𝑗𝑘 ) and mad is mean absolute deviation. 

IV. CLUTTER REMOVAL AND DENOISING 

In this section, we will demonstrate the performance of 

nonlinear wavelet filtering. For a better understanding, we 

have inserted the wavelet tool in the signl processing 

algorithm. To apply our procedure, a more substantiated 

algorithm flow diagram is shown in Fig. . Following the first 

box in the algorithm flow diagram, one has first to 

determine the analyzing wavelet (high and low pass filter 

coefficients). Usually, the decomposition of a signal in a 

basis (i.e. a wavelet series) has the goal of highlighting 

particular properties of the signal. There have been no 

detailed investigations thus far about the regularity 

properties of contaminating wind profiler signals, but there 

is evidence that these can be both “quite regular” (ground 

clutter) or “not so regular” (intermittent clutter). Thus, the 

Daubechies family was selected. The order of the 

Daubechies wavelet was chosen according to the regularity 

condition, 

 
Fig 2: Left: The flow diagram using wavelet tool.           

 Right:  The wavelet algorithm flow diagram. 

Which we have conservatively chosen to be rather small 

(s≤ 1)To approximate correctly a function of Bsp q ,we 

need to select an analyzing wavelet of regularity [s] + 1. A 

wavelet with regularity of the order of s = 2 and minimal In 

the problem of wind profiler signal filtering, the desired 

atmospheric signal component can be contaminated with 

spurious signal components. The ultimate goal is obviously 

to find a wavelet basis, which would allow a separation of 

the desired and the unwanted parts of the signal, i.e. which 

would have the ability to approximate the unwanted signal 

components (ground clutter, intermittent clutter) with only a 

few non-zero wavelet coefficients. In other words, the 

wavelet 𝜓  has to be chosen in such a way that a maximum 

number of wavelet coefficients, 𝛽𝑗𝑘  are close to zero. This 

depends primarily on the regularity of the (contaminating) 

signal f , the number of vanishing moments of the wavelet 𝜓 

, and the size of the wavelets support. If f is regular and   has 

𝜓 enough vanishing moments, then the coefficients  𝛽𝑗𝑘   are 

guaranteed to be small for small scales. If, however, the 

signal f contains isolated singularities, the strategy to have a 

maximum number of small wavelet coefficients would be to 

reduce the support size of the wavelet. Unfortunately, there 

is a tradeoff between both properties for orthogonal 

wavelets: if 𝜓  has p vanishing moments, then its support 

size is at least 2p − 1. The best compromise between those 

two requirements are Daubechies wavelets, which are 

optimal in the sense that they have minimum support for a 

given number of vanishing moments. compact support is the 

Daubechies-2-wavelet; hence, we have chosen this one for 

our calculations. Mathematically, it is no problem to 

increase the wavelet order (regularity), but the wavelet 

support size and the number of filter coefficients also 

increases, and this will decelerate the algorithm. Finally, we 

note, in passing, that we have concentrated on the fast 

wavelet transform (multiresolution analysis), which is a 

special case of the discrete wavelet transform. Obviously, 

for an online algorithm, the number of operations per data 

point is limited. The fast wavelet transform is, therefore, the 

best choice, since it has the highest numerical efficiency (i.e. 

it is faster than the fast Fourier transform). This, of course, 

restricts the possible choices of the underlying basis 

wavelet. The number of decomposition scales is determined 

by balancing the stochastic and the deterministic part of the 

MISE.  

 

Thus, the optimal scale may be evaluated automatically by 

the rule 2𝑗1(𝑛) ≅ 𝑛
1

(2𝑠+1) After fixing the main parameters, 

one may start the wavelet decomposition of the in-phase and 

the quadrature-phase time series. To separate the 

atmospheric component, the algorithm calculates for each 

decomposition level the local thresholds  �̂�𝑗𝑘 . 
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V. RESULTS 

 
Fig 3: Signal with Clutter. 

 
Fig 4:  Signal after clutter removal 

 
 

Fig 5: Signal with Noise. 

 
 

Fig 6: Signal with out Noise. 

VI. CONCLUSION 

This paper discusses an signal processing algorithm which 

implements discrete multiresolution analysis and nonlinear 

estimation theory for separating the atmospheric Doppler 

signal in Radar Wind Profiler measurements in  the presence 

of contaminating signals.We have demonstrated that wavelet 

thresholding is effective in removing ground  clutter  and 

noise from the Radar Wind Profiler raw data (I/Q 

timeseries). 
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