
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-4, September 2013

30 Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1733073313/2013©BEIESP

Identifying the Software Failure Mechanisms

Using Data Mining Techniques

Nadhem Sultan Ali Ebrahim, V.P Pawar

Abstract. Software is ubiquitous in our daily life. It brings us

great convenience and a big headache about software reliability

as well: Software is never bug-free, and software bugs keep

incurring monetary loss or even catastrophes. In the pursuit of

better reliability, software engineering researchers found that

huge amount of data in various forms can be collected from

software systems, and these data, when properly analyzed, can

help improve software reliability. Unfortunately, the huge volume

of complex data renders simple analysis techniques incompetent;

consequently, Studies have been resorting to data mining for

more effective analysis. In the past few years, we have witnessed

many studies on mining for software reliability reported in data

mining as well as software engineering forums. These studies

either develop new or apply existing data mining techniques to

tackle reliability problems from different angles. In order to keep

data mining researchers abreast of the latest development in this

growing research area, we propose this Paper on mining for

software reliability.

Keywords- Reliability, Techniques

I. INTRODUCTION

Software Reliability is defined as: the probability of

failure-free software operation for a specified period of time

in a specified environment. Although Software Reliability is

defined as a probabilistic function, and comes with the

notion of time, we must note that, different from traditional

Hardware

Reliability, Software Reliability is not a direct function of

time. Electronic and mechanical parts may become "old"

and wear out with time and usage, but software will not rust

or wear-out during its life cycle. Software will not change

over time unless intentionally changed or upgraded.

Software Reliability is an important to attribute of

software quality, together with functionality, usability,

performance, serviceability, capability, installability,

maintainability, and documentation. Software Reliability is

hard to achieve, because the complexity of software tends to

be high. While any system with a high degree of

complexity, including software, will be hard to reach a

certain level of reliability, system developers tend to push

complexity into the software layer, with the rapid growth of

system size and ease of doing so by upgrading the software.

For example, large next-generation aircraft will have over

one million source lines of software on-board; next-

generation air traffic control systems will contain between

one and two million lines; the upcoming international Space

Station will have over two million lines on-board and over

ten million lines of ground support software; several major

life-critical defense systems will have over five million

source lines of software.

Manuscript received on September, 2013.
Nadhem Sultan Ali Ebrahim, SRTM University Department of

Computational Science Nanded Mahrashtra, India.

Dr.V.PPawar, SRTM University Department of Computational Science

Nanded Mahrashtra, India.

While the complexity of software is inversely related to

software reliability, it is directly related to other important

factors in software quality, especially functionality,

capability, etc. Emphasizing these features will tend to add

more complexity to software.

II. SOFTWARE FAILURE MECHANISMS

Software failures may be due to errors, ambiguities,

oversights or misinterpretation of the specification that the

software is supposed to satisfy, carelessness or

incompetence in writing code, inadequate testing, incorrect

or unexpected usage of the software or other unforeseen

problems. While it is tempting to draw an analogy between

Software Reliability and Hardware Reliability, software and

hardware have basic differences that make them different in

failure mechanisms. Hardware faults are mostly physical

faults, while software faults are design faults, which are

harder to visualize, classify, detect, and correct. Design

faults are closely related to fuzzy human factors and the

design process, which we don't have a solid understanding.

In hardware, design faults may also exist, but physical faults

usually dominate. In software, we can hardly find a strict

corresponding counterpart for "manufacturing" as hardware

manufacturing process, if the simple action of uploading

software modules into place does not count. Therefore, the

quality of software will not change once it is uploaded into

the storage and start running.

III. SOFTWARE RELIABILITY IMPROVEMENT

TECHNIQUES

Good engineering methods can largely improve software

reliability. Before the deployment of software products,

testing, verification and validation are necessary steps.

Software testing is heavily used to trigger, locate and

remove software defects. Software testing is still in its infant

stage; testing is crafted to suit specific needs in various

software development projects in an ad-hoc manner.

Various analysis tools such as trend analysis, fault-tree

analysis, Orthogonal Defect classification and formal

methods, etc, can also be used to minimize the possibility of

defect occurrence after release and therefore improve

software reliability.

To achieve the preceding goal, developers often want to

reuse existing frameworks or libraries instead of developing

similar code artifacts from scratch. The challenging aspect

for developers in reusing the existing frameworks or

libraries is to understand the usage patterns and ordering

rules (specifications) among Application Programming

Interfaces (APIs) exposed by those frameworks or libraries,

because many of the existing frameworks or libraries are not

well documented. Incorrect usage of APIs may lead to

violated API specifications,

leading to security and

robustness defects in the

software. Furthermore, usage

Identifying the Software Failure Mechanisms Using Data Mining Techniques

31 Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1733073313/2013©BEIESP

patterns and specifications might change with library re

factorings, requiring changes in the software that reuse the

library. To address these issues, we develop a technique

(based on data mining) that automatically mine usage

patterns and specifications, and detect re factorings from

source code. Our techniques aid developers in productively

reusing third party libraries to build reliable and secure

software. We present three infrastructures based on mining

source code to address the main issues faced by developers

in reusing API libraries. The tracing infrastructure

automatically mines API usage patterns and specifications

from API client code in local source code repositories. The

searching infrastructure expands the scope of mining to also

include billions of lines of open-source API client code

available on the web. The re factoring-detection

infrastructure automatically detects re factorings in libraries

by analyzing library API implementation code.

3.1 Tracing Infrastructure

A software system interacts with third-party libraries

through various APIs. Using these library APIs often needs

to follow certain usage patterns (how to use a given set of

APIs for a particular task?). Furthermore, ordering rules

(specifications) exist between APIs, and these rules govern

the secure and robust operation of the system using these

APIs.

Unfortunately, API usage patterns and various API

specifications are not well documented by the API-library

developers. API patterns cut across procedural boundaries

and an attempt to infer these patterns by manual inspection

of source code (API client code) is often inefficient and

inaccurate. Several problems exist even when the API

specifications are known. API specifications (when known)

can be formally written for third-party APIs and statically

verified against a software system. But manually writing a

large number of formal API specifications for static

verification is often inaccurate or incomplete, apart from

being cumbersome. Formal specifications are complicated

and lengthy mainly due to the various API details (such as

input/return type, error flags, and return values for APIs on

success/failure) and language syntax considerations required

for the specification to be accurate and complete. To address

these issues, we present the tracing infrastructure that mines

API details, patterns, and specifications by analyzing the

source code (API client code). In this section, we present

tracing infrastructure and the three tools based on the

infrastructure,namely, API Pattern Miner, API Error

Detector, and IDeaMiner (Section 3.2). The high-level

overview of the tracing infrastructure is shown in Figure 1.

The tracing infrastructure has four main components: trace

generator, scenario extractor, miners, and pattern extractor.

The trace generator uses compile-time push-down model-

checking (PDMC) to generate inter-procedural static traces,

which approximate run-time API behaviors. The PDMC

process verifies a property specified in the form of Finite

State Machine (FSM) over a given program. Using Triggers,

a form of FSM, we adapt the PDMC process to output static

traces in the program involving APIs of interest. A single

static trace from the model checker might involve several

API usage scenarios, being often interspersed. The scenario

extractor separates different usage scenarios from a given

trace, so that each scenario can be fed separately to the

miners, our next component. The miner component employs

various data mining techniques on these static traces to

output frequent partial orders or frequent sequences (based

on the employed data-mining technique) among APIs. The

miner output is then processed by the pattern extractor to

output API details, patterns, and specifications.

Figure 1:- Tracing Infrastructure

3.2 API Pattern Miners

API Pattern Miner employs the tracing infrastructure to

mine usage patterns and specifications that involve multiple-

API sequences from the static traces. Previous approaches

mine frequent association rules, item sets, or subsequences

that capture API call patterns shared by API client code.

However, these frequent API patterns cannot completely

capture some useful orderings shared by APIs, especially

when multiple APIs are involved across different

procedures. API Pattern Miner summarizes API usage

patterns as partial orders. Different API usage scenarios are

extracted from the static traces by our scenario extraction

algorithm and fed to a Frequent Closed Partial Order

(FCPO) miner. The miner summarizes different usage

patterns as compact partial orders. The usage patterns can be

used as a recommender, which shows how to use a set of

APIs for a particular task.

3.3 API Error Detectors

Incorrect handling of errors incurred after API invocations

(in short, API errors) can lead to security and robustness

problems, two primary threats to software reliability.

Correct handling of API errors can be specified as formal

specifications, verifiable by static checkers, to ensure

dependable computing. But API error specifications are

often unavailable or imprecise, and cannot be inferred easily

by source code inspection. Based on our tracing

infrastructure, we develop a technique called API Error

Detector, for tactically mining API error specifications

automatically from software package repositories, without

requiring any user input. Similar to API Pattern Miner, API

Error Detector employs the tracing infrastructure to

approximate run-time API error behaviors with static traces.

Frequent sequence mining is used on these static traces to

mine specifications that define the correct handling of errors

for relevant APIs used in the software packages. The mined

specifications are then used to uncover API error-handling

bugs.

3.4 IDeaMiner

Manually writing formal

specifications for static

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-4, September 2013

32 Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C1733073313/2013©BEIESP

verification can be cumbersome. Based on the tracing

infrastructure, we implement IDeaMiner, which infers API

details such as return values on success/failure, error flags,

and return value type from the static traces. IDeaMiner

implements simple data-flow extensions to the PDMC

process to infer API details. Based on these inferred API

details and the language syntax (user-provided, as a one-

time AST database for a given language), Specifier tool

translates user-specified generic API rules to concrete

formal specifications verifiable by static checkers. Users can

specify generic rules at an abstract level that needs no

knowledge of the source code, system, or API details.

IV. CONCLUSIONS

Software reliability is a key part in software quality. The

study of software reliability can be categorized into three

parts: modeling, measurement and improvement.

Software reliability measurement is naive. Measurement

is far from commonplace in software, as in other

engineering field. "How good is the software,

quantitatively?" As simple as the question is, there is still no

good answer. Software reliability can not be directly

measured, so other related factors are measured to estimate

software reliability and compare it among products.

Development process, faults and failures found are all

factors related to software reliability.

Software reliability improvement is hard. The difficulty of

the problem stems from insufficient understanding of

software reliability and in general, the characteristics of

software. Until now there is no good way to conquer the

complexity problem of software.

Complete testing of a moderately complex software

module is infeasible. Defect-free software product can not

be assured. Realistic constraints of time and budget severely

limits the effort put into software reliability improvement.

As more and more software is creeping into embedded

systems, we must make sure they don't embed disasters. If

not considered carefully, software reliability can be the

reliability bottleneck of the whole system. Ensuring

software reliability is no easy task. As hard as the problem

is, promising progresses are still being made toward more

reliable software. More standard components and better

process are introduced in software engineering field.

REFERENCES

1. Breuker J. and Van Der Velde W: Common KADS Library for

Expertise Modelling, Amsterdam: IOS Press, 1994.
2. Carroll J. M., Scenario-Based Design: Envisioning Work and

Technology in System Development, New York: Wiley, 1995.

3. Fenton N. and Pfleeger S.L. Software Metrics: A Rigorous Approach.
2nd ed. London: International Thomson Computer Press, 1997.

4. Fenton N.: Applying Bayesian belief networks to critical systems

assessment. Critical Systems. Club Newsletter, Vol 8, 3 Mar.
1999,pp. 10–13.

5. Fenton N., Maiden N.: Making Decisions: Using Bayesian Nets and

MCDA. Computer Science Dept, Queen Mary and Westfield College,
London, 2000

6. Frawley J, Piatetsky-Shapiro G, Matheus C. J.: Knowledge Discovery
in Databases: An Overview, in Knowledge Discovery in Databases.

Cambridge, MA: AAAI/MIT, 1991, pp. 1-27.

7. Goebel M. and Gruenwald L.: A Survey of Data Mining and
Knowledge Discovery Software Tools. ACM SIGKDD, June 1999,

Volume I, Issue 1-page20.

8. Gregoriades A., Sutclife A. and Shin J. E.: Assessing the Reliability
of Sociotechnical Systems. 12th Annual Symposium INCOSE (Las

Vegas, July 2002).

9. Hollnagel E.: Human Reliability Analysis-Context and Control.
Academic Press, Inc., New York, NY, 1993.

10. Pearl, J., Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, San Mateo, CA, 1988.

11. Reason J.: Human Error, Cambridge University Press. New York,

NY,1990.
12. Reason J.: Managing the Risks of Organizational Accidents.

Aldershot: Ashgate, 2000.

13. Sutcliffe A. G., Galliers J.: Human error and system requirements.
4Th International Symposium onon Requirements Engineering,

RE’1999, 1999.

14. Sutcliffe A., Gregoriades A.: Validating Functional System
Requirements with Scenarios. proceeding of the RE02 IEEE

international Conference. Essen, Germany.

