
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-4, September 2013

221

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D1838093413/2013©BEIESP

Abstract— Transaction management in homogeneous

distributed database system generates complexity and creates

replication and distribution of data. It has been widely used in the

area of distributed database system with multiple sites. One phase

commit protocol was commonly used in transaction management.

When a transaction runs across two sites one site may commit

and another one may fail due to an inconsistent state of the

transaction. The choice of commit protocol is an important design

decision for distributed database system. A commit protocol in a

distributed database transaction which should uniformly commit

to ensure that all the participating sites agree to the final outcome

and the result may be either a commit or an abort situation. In this

paper, we have enhanced the one phase commit protocol based on

two phase commit protocol. This phase either the " commit " or

the " abort " both sides which results the query process of

transaction management.

Index Terms—Database system, transaction management,

Homogeneous distributed database system, two phase commit

protocol.

I. INTRODUCTION

 A Transaction is a sequence of operations that takes the

database from a consistent state to another consistent state. It

represents a complete and correct computation. Two types of

transactions are allowed in our environment: query

transactions and update transactions. Query transactions

consist only of read operations that access data objects and

return their values to the user. Thus, query transactions do not

modify the database state. Two transactions conflict if the

read-set of one transaction intersects with the write-set of the

other transaction. During the voting process, Update

transactions consist of both read and write operations.

Distributed database system is a technique that is used to solve

a single problem in a heterogeneous computer network

system. A major issue in building a distributed database

system is the transactions atomicity. When a transaction runs

across into two sites. It may happen that one site may commit

and other one may fail due to an inconsistent state of

transaction. Two-phase commit protocol is widely used to

solve these problems. The choice of commit protocol is an

important design decision for distributed database system. A

Commit protocol in a distributed database transaction should

uniformly commit to ensure that all the participating sites

agree to the final outcome and the result may be either a

commit or an abort situation.

Manuscript received September, 2013.

Nitesh Kumar, M.Tech research scholar school of computer

Engineering, KIIT University, Bhubaneswar, India.

Ashish Kumar, M.Tech research scholar school of computer

Engineering, KIIT University, Bhubaneswar, India.

Md. Imran Alam, M.Tech research scholar school of computer

Engineering, KIIT University, Bhubaneswar, India.

II. DISTRIBUTED DATABASE SYSTEMS (DDBS)

Distributed DBMS can also be integrated as a multiple

process, single data n/w called MPSD, to allow more than one

computer to access a single database. Large corporations may

require an enterprise database to support May users over

multiple departments. This would required the

implementation of a multiple process, multiple data scenario,

or MPMD, in which many computers are linked to a fully

distributed client/server DDBMS. The DDBMS offer more

reliability by decreasing the risk of a single site failure. If one

computer in the n/w fails, the workload is distributed to the

rest of the computers. Furthermore, a DDBMS allows

replication of data among multiple sites, data from the failed

site may still be available at one sites. In a centralized

database can be implemented as a single process, single data

scenario or SPSD , in which one computer is linked to the host

DBMS to retrieve data .A centralized DBMS different

because a failed computer that houses the database will

debilitate the entire system. A distributed database is a

database in which storage devices are not all attached to a

common processing unit such as the CPU [1]. Controlled by a

distributed database management system (together sometimes

called a distributed database system). It may be stored in

multiple computers, located in the same physical location; or

may be dispersed over of interconnected computers. Unlike

parallel systems, in which the processors are tightly coupled

and constitute a single database system, a distributed database

system consists of loosely-coupled sites that share no physical

components. System administrators can distribute collections

of data (e.g. in a database) across multiple physical locations.

A distributed database can reside on network servers on the

Internet, on corporate intranets or extranets, or on other

company networks. Because they store data across multiple

computers, distributed databases can improve performance at

end-user worksites by allowing transactions to be processed

on many machines, instead of being limited to one [2].Which

all above are given in figure I.

A. Merits of Distributed database system (DDBS).

 Management of distributed data with different levels of

transparency like network transparency, fragmentation

transparency, replication transparency, etc.

 Increase reliability and availability.

 Economics — it may cost less to create a network of

smaller computers with the power of a single large

computer.

 Hardware,operatingsystem,networks,fragmentation,

DBMS, replication and location independence.

 Distributed query processing can improve performance.

 Distributed transaction

management.

Enhanced " One Phase Commit Protocol " In

Transaction Management

Nitesh Kumar, Ashish Kumar, Md. Imran Alam

Enhanced " One Phase Commit Protocol " In Transaction Management

222

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D1838093413/2013©BEIESP

 Single-site failure does not affect performance of system.

 All transactions follow A.C.I.D. property:

o A-atomicity, the transaction takes place as a whole or not

at all.

o C-consistency, maps one consistent DB state to another.

o I-isolation, each transaction sees a consistent DB.

o D-durability, the results of a transaction must survive

system failures.

B. Demerits of Distributed DBS

 Economics — increased complexity and a more

extensive infrastructure means extra labour costs

 Security — remote database fragments must be secured,

and they are not centralized so the remote sites must be

secured as well. The infrastructure must also be secured

(for example, by encrypting the network links between

remote sites).

 Difficult to maintain integrity — but in a distributed

database, enforcing integrity over a network may require

too much of the network's resources to be feasible

 Additional software is required.

C. Types of DDBMS

a. Homogeneous the same DBMS (eg.Oracle) is used at

each node.

b. Heterogeneous Potentially different DBMS(eg.Oracle

and DB2) are used at each node.

Fig I: Distributed DBMS architecture

III. FUNDAMENTAL OF TRANSACTION

MANAGEMENT

Transaction Management deals with the problems of keeping

the database in a consistent state even when concurrent

accesses and failures occur [3].

A. What is a Transaction?

A transaction consists of a series of operations performed on a

database. The important issue in transaction management is

that if a database was in a consistent state prior to the initiation

of a transaction, then the database should return to a consistent

state after the transaction is completed. This should be done

irrespective of the fact that transactions were successfully

executed simultaneously or there were failures during the

execution [4], [5]. A transaction is a sequence of operations

that takes the database from a consistent state to another

consistent state. It represents a complete and correct

computation. Two types of transactions are allowed in our

environment: query transactions and update transactions.

Query transactions consist only of read operations that access

data objects and return their values to the user. Thus, query

transactions do not modify the database state. Two

transactions conflict if the read-set of one transaction

intersects with the write-set of the other transaction. During

the voting process, Update transactions consist of both read

and write operations. Transactions have their time-stamps

constructed by adding 1 to the greater of either the current

time or the highest time-stamp of their base variables. Thus; a

transaction is a unit of consistency and reliability. The

properties of transactions will be discussed later in the

properties section. Each transaction has to terminate. The

outcome of the termination depends on the success or failure

of the transaction. When a transaction starts executing, it may

terminate with one of two possibilities: 1.The transaction

aborts if a failure occurred during its execution 2. The

transaction commits if it was completed successfully example

of a transaction that aborts during process 2 (P2). On the other

hand, an example of a transaction that commits, since all of its

processes are successfully completed [6], [7].

B. Properties of Transactions

A Transaction has four properties that lead to the consistency

and reliability of a distributed data base. These are Atomicity,

Consistency, Isolation, and Durability [3].

Atomicity. This refers to the fact that a transaction is treated as

a unit of operation. Consequently, it dictates that either all the

actions related to a transaction are completed or none of them

is carried out. For example, in the case of a crash, the system

should complete the remainder of the transaction, or it will

undo all the actions pertaining to this transaction. The

recovery of the transaction is split into two types

corresponding to the two types of failures: the transaction

recovery, which is due to the system terminating one of the

transactions because of deadlock handling; and the crash

recovery, which is done after a system crash or a hardware

failure.

Consistency. Referring to its correctness, this property deals

with maintaining consistent data in a database system.

Consistency falls under the subject of concurrency control.

For example, ―dirty data‖ is data that has been modified by a

transaction that has not yet committed. Thus, the job of

concurrency control is to be able to disallow transactions from

reading or updating "dirty data".

 Isolation. According to this property, each transaction should

see a consistent database at all times. Consequently, no other

transaction can read or modify data that is being modified by

another transaction. If this property is not maintained, one of

two things could happen to the data base. a. Lost Updates:

this occurs when another transaction (T2) updates the same

data being modified by the first transaction (T1) in such a

manner that T2 reads the value prior to the writing of T1 thus

creating the problem of loosing this update. b. Cascading

Aborts: this problem occurs when the first transaction (T1)

aborts, then the transactions that

had read or modified data that

has been used by T1 will also

abort.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-4, September 2013

223

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D1838093413/2013©BEIESP

 Durability. This property ensures that once a transaction

commits, its results are permanent and cannot be erased from

the database. This means that whatever happens after the

COMMIT of a transaction, whether it is a system crash or

aborts of other transactions, the results already committed are

not modified or undone.

IV. HOMOGENEOUS DISTRIBUTED DBMS

In homogeneous distributed database system, the sites

involved in distributed DBMS use the same DBMS software

at every site but the sites in heterogeneous system can use

different DBMS software at every site. While it might be

easier to implement homogeneous systems, heterogeneous

systems are preferable because organizations may have

different DBMS installed at different sites and may want to

access them transparently [8], [9]. Distributed DBMS can

choose to have multiple copies of relations at different sites or

choose to have only one copy of a relation [9]. The benefits of

data replication is increased reliability – if one site fails, then

other sites can perform queries for the relation. The

performance will increase, as transaction can perform queries

from a local site and not worry about network problems. The

problem with data replication is decreased performance when

there are a large number of updates, as distributed DBMS

have to ensure that each transaction is consistent with every

replicated data. This adds additional communication costs to

ensure that all copies of the data are updated at the same time.

 Fig II: Homogeneous distributed database environment.

A homogeneous distributed database environment is depicted

in Figure II. This environment is typically defined by the

following characteristics (related to the non-autonomous

category described previously):

• Data are distributed across all the nodes.

• The same DBMS is used at each location.

• All data are managed by the distributed DBMS (so there are

no exclusively local data).

V. RELATED WORK

Paper [10], [11] was mainly centered on the Simulation of the

2PC for ensuring atomicity in distributed transactions. RMI

was used in our message-passing and communication model,

instead of using Socket to handle communication . some other

considerations related to this protocol are also taken into

account and improved upon in order to construct an optimized

Simulation. In a generic system is Simulated in a distributed

environment to represent the real world scenario more widely.

the fact that distributed transaction processing systems are

widely used in many different organizations of varying size,

as well as the nature of task distribution in a networking

environment.

Transaction Management is an old concept in distributed

database management systems(DDBMS) research. However,

Oracle was the first commercial DBMS to implement a

method of transaction management the two phase commit.

though it was very difficult to obtain information on Oracle's

implementation of this method. Many organizations do not

implement distributed database because of its complexity.

However, with global organizations and multi-tier network

architecture, distributed implementation becomes a necessity.

organization in the implementation of distributed databases

when installing Oracle DBMS, or encourage organizations to

migrate from centralized to distributed DBMS. Universities

could also contribute to this process by having graduates with

the knowledge of Oracle DBMS capabilities [12].

In terms of transactions management, the system most related

to Camelot are Argus and Quicksilver. Camelot has taken

certain techniques, especially those related to communication

support, from another IBM research system, R* [13], [14].

Camelot and Argus have nearly the same transaction model;

these two projects represent the two implementations of

Moss-Model nested transactions. the only major difference is

that in Argus a transaction can make changes at only one site.

Diffusion must be done within a nested transaction. Argus has

paid close attention to the performance of their

implementation of two-phase commit [15].

VI. TWO PHASE COMMIT PROTOCOL

The 2-phase commit (2PC) protocol is a distributed algorithm

to ensure the consistent termination of a transaction in a

distributed environment. Thus, via 2PC an unanimous

decision is reached and enforced among multiple participating

servers whether to commit or abort a given transaction,

thereby guaranteeing atomicity. The protocol proceeds in two

phases, namely the prepare and the commit phase, which

explains the protocol‗s name. The protocol is executed by a

sender process, while the participating servers are called

participants. When the transaction‗s initiator issues a request

to commit the transaction, the sender starts the first phase of

the 2PC protocol by querying—via prepare messages—all

participants whether to abort or to commit the transaction The

master initiates the first phase of the protocol by sending

PREPARE (to commit) messages in parallel to all the

receivers. Each receiver that is ready to commit first

force-writes a prepare log record to its local stable storage and

then sends a YES vote to the master. At this stage, the receiver

has entered a prepared state wherein it cannot unilaterally

commit or abort the transaction but has to wait for the final

decision from the master. On the other hand, each receiver

that decides to abort force-writes an abort log record and

sends a NO vote to the master. Since a NO vote acts like a

veto, the cohort is permitted to

unilaterally abort the transaction

without waiting for a response

Enhanced " One Phase Commit Protocol " In Transaction Management

224

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D1838093413/2013©BEIESP

from the master. After the master receives the votes from all

the receivers, it initiates the second phase of the protocol. If

all the votes are YES, it moves to a committing state by force

writing a commit log record and sending COMMIT messages

to all the receivers. Each receiver after receiving a COMMIT

message moves to the committing state, force-writes a commit

log record, and sends an ACK message to the master. If the

master receives even one NO vote, it moves to the aborting

state by force-writing an abort log record and sends ABORT

messages to those receivers that are in the prepared state.

These receivers, after receiving the ABORT message, move

to the aborting state, force write an abort log record and send

an ACK message to the master. All above description are

given in figure III.

In a "normal execution" of any single distributed transaction,

i.e., when no failure occurs, which is typically the most

frequent situation, the protocol consists of two phases:

A. The commit-request phase (or voting phase), in which a

sender attempts to prepare all the transaction's participating

processes (named participants, receivers, or workers) to take

the necessary steps for either committing or aborting the

transaction and to vote, either "Yes": commit (if the

transaction participant's local portion execution has ended

properly), or "No": abort (if a problem has been detected with

the local portion), and

B. The commit phase (or completion phase), in which, based

on voting of the receivers, the sender decides whether to

commit (only if all have voted "Yes") or abort the transaction

(otherwise), and notifies the result to all the receivers. The

receiver then follow with the needed actions (commit or

abort) with their local transactional resources (also called

recoverable resources; e.g., database data) and their

respective portions in the transaction's other output (if

applicable).

Success: If the sender received an agreement message from all

receivers during the commit-request phase:

a) The sender sends a commit message to all the receivers.

b) Each receiver completes the operation, and releases all

the locks and resources held during the transaction.

c) Each receiver sends an acknowledgment to the sender.

d) The sender completes the transaction when all

acknowledgments have been received.

Failure: If any receiver votes No during the commit-request

phase (or the sender's timeout expires):

a) The sender sends a rollback message to all the receivers.

b) Each receiver undoes the transaction using the undo log,

and releases the resources and locks held during the

transaction.

c) Each receiver sends an acknowledgement to the sender.

d) The sender undoes the transaction when all

acknowledgements have been received.

Fig III: Query processing flow

VII. CONCLUSION AND FUTURE RESEARCH

DIRECTION

Distributed Database Systems, where data is distributed and

replicated. In this paper, based on two phase commit protocol

technique are used for, when a transaction runs across into

two sites. It may happen that one site may commit and other

one may fail due to an inconsistent state of transaction. ―Two

phase commit protocol‖ technique is widely used to solve

these problem .The choice of commit protocol is an important

design decision for distributed database system. A commit

protocol in a distributed database transaction should

uniformly commit to ensure that all the participating sites

agree to the final outcome and the result may be either a

commit or an abort situation.

After investigating all such research works, we could see that

the basic observation is that in 2PC, while one site is in the

―prepared to commit ―state , the other may be in either the "

commit " or the " abort " . From this analysis, we investigate

3PC to avoid such states and it is resilient to such failure. So

still lots of work are remaining to be done and the research

area is open to work.

REFERENCES

[1]. This article incorporates public domain material from the General

Services Administration document "Federal Standard 1037C".

[2]. O'Brien, J. & Marakas, G.M.(2008) Management Information

Systems (pp. 185-189). New York, NY: McGraw-Hill Irwin .

[3]. Ozsu, Tamer M., and Valduriez, Patrick [1991], Principles of

Distributed Database Systems, Prentice H.

[4]. Mohan, C.; Lindsay, B.; and Obermarck, R. [1986], ''Transaction

Management in the R* Distributed Database Management System."

ACM Transaction on Database Systems, Vol. 11, No. 4, December

1986, 379-395.

[5]. G. Coulouris, J. Dollimore, T. Kindberg: Distributed Systems,

Concepts and Design, Addison-Wesley, 1994.

[6]. S. Ceri, M.A.W. Houtsma, A.M. Keller, P. Samarati: A

Classification of Update Methods for Replicated Databases, via

Internet, May 5, 1994.

[7]. D. Agrawal, A.EI. Abbadi: The Tree Quorum Protocol: An Efficient

Approach for Managing Replicated Data. in Proc. of VLDB Conf. pp

243-254, 1990.

[8]. W. Cellary, E. Gelenbe, and T. Morzy. Concurrency Control in

Distributed Database Systems. North-Holland, 1988.

[9]. R. Ramakrishnan. Database Management Systems. McGraw-Hill

Book Company, 1998.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-4, September 2013

225

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D1838093413/2013©BEIESP

[10]. Oberg R., Mastering RMI: Developing Enterprise Applications in

JAVA and EJB, John Wiley & Sons, 2001.

[11]. Pitt E. and MCNiff K., java.rmi: The Remote Method Invocation

Guide, Addison-Wesley, 2001.

[12]. Oracle8 Server Distributed Database Systems, Oracle, 3-1-3-35.

[13]. B. Lindsay et. al., Computation and Communication in R*: A

Distributed Database Manager . ACM Trans. on Computer Systems,

2(1): 24-38, February 1984.

[14]. R. Obermarck C. Mohan and B. Lindsay. Transaction Management in

the R* Distributed Database Management System. ACM Trans. on

Database Systems,11(4): 378-396, December 1986.

[15]. B. H. Liskov B. M. Oki and R. W. Scheifler. Reliable Object Storage

to Atomic Actions. In Proc. Tenth Symp. on Operating System

Principles, page 147-159, ACM, December 1985.

Nitesh Kumar received his B.Tech

degree in the year 2012 from AMIETE,

Lodi Road, New Delhi, and currently

pursuing M.Tech in Computer Science

Engineering with a Specialization in

Database Engineering from KIIT

University, Bhubaneswar. His research

area includes Distributed Database

systems, Fuzzy Object Databases, Object

Modeling.

Ashish Kumar received his B.Tech

degree in the year 2010 from CEST,

Lucknow affiliated to Uttar Pradesh

Technical University(UPTU),

Lucknow(UP), and currently pursuing

M.Tech in Computer Science

Engineering with a Specialization in

Database Engineering from KIIT

University, Bhubaneswar. His research

area includes Distributed Database

systems, Fuzzy Object Databases, Object

Modeling.

Md. Imran Alam received his B.E degree

in the year 2011 from GTEC, Vellore

affiliated to Anna University, Chennai,

and currently pursuing M.Tech in

Computer Science Engineering with a

Specialization in Database Engineering

from KIIT University, Bhubaneswar. His

research area includes Distributed

Database systems, Task Scheduling,

Cloud Computing.

