Increase the Security of Web Service without Effect on its Performance by Using Blowfish Cryptography Algorithm

Shaymaa Mohammed Jawad Kadhim, Manjusha Joshi, Shashank Joshi

Abstract: Day by day network and internet applications are becoming very popular. Sensitive information requires ensured information security and safety measures. Security is the most challenging aspect in the internet and network applications.

Encryption algorithm offers the necessary protection against the data intruders’ attacks by converting information from its normal form into an unreadable form.

In the first part of the work described in this paper, we are going to use the Blowfish algorithm and apply it on a web service (employing management system) and in second part we will provide a fair comparison between two web services one without applying on it the algorithm and the other using Blowfish.

The comparison is made on the basis of three parameters:
- Response time, MTBF (mean time between failure) and MTTR (mean time to repair).

Index Terms— blowfish, cryptography, performance, Web Service.

I. INTRODUCTION

Internet and networks are admiring day by day in our life. Widespread for using internet, wired and wireless networks, and web services makes the need for protection of information.

Cryptographic algorithms play a major role for data user security. As the complexity of algorithm is high the risk of breaking the original plaintext from that of cipher text is less. Greater complexity means greater security. Encryption is the process of encoding plain text into cipher text (secure data). Decryption is the reverse of the encryption process by which cipher text is converted to plain text, as shown in figure (1).

![Figure 1](image1) Figure (1) shows the encryption and decryption process by using the same key (symmetric key cryptographic algorithm).

There are many Encryption algorithms which are used for user data security.

They are divided into two cryptographic mechanisms, depending on what keys are used, which are symmetric and asymmetric encryptions. In symmetric encryption only one key is used for both encrypt and decrypt the data. Strength of the symmetric encryption depends upon the size of the key. For the same algorithm, encryption using the longer key is tough to break than one using smaller key. While in asymmetric encryption two keys are used, one is used to encrypt and other is used to decrypt the data [1]. In the following part we will describe briefly the algorithm that we are going to use it in this paper:

Blowfish is a symmetric encryption algorithm, meaning that it uses the same secret key to both encrypt and decrypt user data. It takes a variable-length key, from 32 bits to 448 bits, making it ideal for securing data. Blowfish is also a block cipher, meaning that it divides a data up into fixed length blocks during encryption and decryption. The block length for blowfish is 64bits [2].

The Blowfish algorithm is Feistel network, iterating a simple encryption function 16 times. The block size is 64 bits, and the key can be any length up to 448 bits. Blowfish was designed in 1993 by Bruce Schneir as a fast, free alternative to existing encryption algorithm, it is unpatented and license-free, and is available free for all uses.

Blowfish is suitable for applications where the key does not change often, like a communications link or an automatic file encryption. It is significantly faster than most encryption algorithms when implemented on 32-bit microprocessors with large data caches [3].

The algorithm consists of two parts: a key expansion part and a data encryption part. Key expansion converts a key at the most 448 bits into several sub key arrays totaling 4168 bytes. Data encryption occurs via a 16-round Feistael network. Each round consists of a key dependent permutation, and a key- and data- dependent substitution. In figure (2) the blowfish algorithm.

![Figure 2](image2) Figure (2) : shows the blowfish algorithm

Manuscript Received November, 2013.

Shaymaa Mohammed Jawad Kadhim, follow up and planning department, Ministry of transport, Baghdad, Iraq.

Mrs. manjusha Joshi, research scholar, computer Dept BVU Pune, India.

Dr. Shashank Joshi, Professor, computer engineering Dept BVDUCOE, Pune, India.
II. PREVIOUS WORKS

1) The paper [4] provides a fair comparison between three most common symmetric key cryptography algorithms.
2) The paper [5] presents the implementation of Blowfish algorithm.
5) The paper [8] presents includes a mechanism that implements the Blowfish algorithm with a 64 bit length
 key with as improved security assurance.

III. PROPOSED ARCHITECTURE

For our work we first use the blowfish algorithm to provide security in a web service that we have already coded (an
employing management system).

In a second step we analyze the performance of the web service by measuring the three parameters response time,
MTBF (mean time between failure) and MTTR (mean time to repair).

1) Applying blowfish algorithm on the web service.

Blowfish algorithm uses a large number of subkeys. These keys must be recomputed before any data encryption or
decryption. The P-array consists of eighteen 32-bit sub keys: P1,P2,..P18.

There are four 32-bit S-boxes with 256 entries each:
S1,0,S1,1………………..S1,255.
S2,0,S2,1………………..S2,255.
S3,0,S3,1………………..S3,255.
S4,0,S4,1………………..S4,255.

ENCRYPTION
Blowfish has 16 rounds as shown if figure (3). The input is a 64bit data element , divide x into two 32-bit halves : xL,xR.

Then for l = 1 to 16
xL=xL XOR Pi
xR=F(xL) XOR xR

swap xL and xR

after the sixteenth round swap xL and xR again to undo

the last swap. Then , xR=xR XOR P17 and xL=xL XOR P18.

Finally , recombine xL and xR to get the cipher text.

P1,P2,……P18 are used in the reverse order.

Generating the subkeys:
The subkeys are calculated using the Blowfish algorithm:
1) Initialize first the P-array and then the four S-boxes, in
 order, with a fixed string.
2) XOR P1 with the first 32 bits of the key , XOR P2 with
 the second 32bits of the key, and so on for all bits of the
 key (possibly up to P14). Repeatedly cycle through the
 key bits until the entire P-array has been XORed with
 key bits.
3) Encrypt the all-zero string with the Blowfish algorithm
 with the modified subkeys described in steps (1) and (2).
4) Replace P1 and P2 with the output of step (3).
5) Encrypt the output of step (3) using the Blowfish
 algorithm with the modified subkeys.
6) Replace P3 and P4 with the output of step (5).
7) Continue the process, replacing all entries of the P array,
 and then all four S-boxes in order, with the output of the
 continuously changing Blowfish algorithm. In total,
 521 iterations are required to generate all required
 subkeys. Applications can store the subkeys rather than
 execute this derivation process multiple times [9].

This blowfish algorithm is applied in our web service
(employing management system). All data are stored in a
data base that the web service is connected to. Data are stored
in cipher text so no one can understand it, without breaking
the algorithm itself.

2) result and analysis

The score of our work is to provide a performance analysis
between a web service without any security and the same web
service applying security on it by using blowfish algorithm.
We used a private web service, which is an employing
management system in different operating systems.

On the first operating system, which is windows 7 with 32
bit architecture, we used our web service without applying
any security algorithms on it. This means the data will be
store in it's database in plain text , so anyone can easily enter
it and read it’s information and even modify it .

On the second OS, Window7 64bit, we used the same web
service (Employing management system), but this time we
applied the cryptography algorithm Blowfish to provide
security, so all data will stored in cipher text.

The web service is coded in the programming language
C#.

The parameters that were used to analyze the performance
are
1) Response time.
2) MTBF (mean time between failure)
3) MTTR (mean time to repair)

A. The first set of experiments were conducted by
measuring the response time from both web services, the web
service with the cryptography algorithm and the web service
without the algorithm. The result is shown in figure (4)
below: The response time that of the encrypted web service
(green bar) is higher than in the non-encrypted web service
(blue bar). The results were measured in millisecond though,
the difference is small and can almost be neglected
compared to the gain of

Figure (3) : shows the 16 rounds of blowfish algorithm.

Decryption is exactly the same as encryption, except that
providing a good security to our web service.

In the second part of our work we compared the performance of the web service with and without security. The parameters measured in our work were Response time, MTBF (mean time between failure) and MTTR (mean time to repair). The results displayed above as figures and charts show that a web service that provides good security (Blowfish) can almost have the same performance as services without any security.

FUTURE WORK

Customer satisfaction is the main aim of every system. We should provide better, faster and more secure systems to the customer.

By applying the Blowfish algorithm we could provide a much better security standard on our web service without a crucial effect on it’s performance. All aims could be reached at minimal expenses.

Our future work will focus on necessary hardware improvements, thus improving the performance with security at the same time.

REFERENCE

2. Bill Gatliff, courtesy of “Embedded systems programming” jul 15 2003
4. jawahar Thakur, Nagesh Kumar “DES,AES and Blowfish: Symmetric key cryptography algorithms simulation based performance analysis”.
5. Kevin Allison , Keith Feldman , Ethan Mick “ Blowfish”.

AUTHOR PROFILE

First Author Shuyamaa Mohammed Jawad Kadhim received her B.E degree in computer engineering from Baghdad university ,college of engineering in 2000, doing her the M.E. Computer Engineering at Bharati Vidyapeeth Deemed University Pune. She is currently working in transport ministry in Iraq / Baghdad her research interests include web technologies and security.

Second Author Mrs. Manjusha Joshi received his B.E. degree in Computer from Walchand College of Engineering, Sangli in 1991, the M.E. Degree in Computer Engineering from Bharati Vidyapeeth Deemed University Pune and currently pursuing her Ph. D. in Computer Engineering Department Bharati Vidyapeeth Deemed University College of Engineering, Pune. Her research interests include software engineering, SPI, distributed systems.

Third Author Shashank Joshi received his B.E. degree in Electronics and Telecommunication from Govt. College of Engineering, Pune in 1988, the M.E. and Ph. D. Degree in Computer Engineering from Bharati Vidyapeeth Deemed University Pune. He is currently working as the Professor in Computer Engineering Department Bharati Vidyapeeth Deemed University College of Engineering, Pune. His research interests include software engineering. Presently he is engaged in SDLIC and secure software development methodologies. He is innovative teacher devoted to Education and Learning for the last 23 yrs.