
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-5, November 2013

177

Abstract—In this paper, parallel and digit-serial

implementations of area-efficient 3-operand decimal adders are

proposed. By using proposed analyzer circuits and the generation

of correction terms with recursive schemes, our proposed decimal

adders could perform efficient additions with three operands. Unit

gate estimates and synthesis results show that our proposed adders

are more area-efficient than those previously proposed decimal

adders with three operands under the same delay constraints. Also

the power consumptions for our decimal adders are lesser. In

addition to parallel implementations, the digit-serial 3-operand

adders are easily developed to increase the throughput and the

operating frequency due to area efficiency. Our proposed decimal

adders could be applied to ease the tremendous computation

efforts for decimal computations such as multi-operand decimal

additions, decimal multiplications and divisions.

Index Terms—Computer arithmetic, Decimal additions,

Parallel-prefix adders, VLSI design,

I. INTRODUCTION

Since the growth of decimal arithmetic in commercial,

financial and internet-based applications, the use of hardware

support for decimal arithmetic is becoming more and more

important for the hardware designers and users. The decimal

arithmetic is natural for human as we use ten fingers for

counting numbers. In the past decades, although binary

arithmetic is widespread used in the processors, there are

some constraints in its use. For example, the binary numbers

can not be used for the representations of some fractions, e.g.,

0.310=0.01001.….2, which will require infinite bits for

representation. This is not suitable for exact decimal

fractions, since the incorrect results for the approximate

representation of inputs will lead to subsequent

approximation errors and thus will degrade the accuracy for

the entire computations.

To remedy the drawback, the binary coded decimal (BCD)

numbers is used as a common representation of decimal

numbers, as BCD can recode each digit of decimal numbers

from 0 to 9 using four bits 00002 to 10012, respectively. In the

above example of the representation of 0.310, the BCD

numbers can only be recoded as 0.0011 (BCD) in finite and

exact representations. Recently, the specifications for decimal

floating-point arithmetic have been included in the draft of

IEEE-754r standard for floating-point arithmetic [1].

Manuscript received November, 2013.

Tso-Bing Juang is with the Department of Computer Science and

Information Engineering, National Pingtung Institute of Commerce,

Pingtung 900, Taiwan.

Hsin-Hao Peng is with the Department of Computer Science and

Information Engineering, National Pingtung Institute of Commerce,

Pingtung 900, Taiwan.

Han-Lung Kuo is with the Department of Computer Science and

Information Engineering, National Pingtung Institute of Commerce,

Pingtung 900, Taiwan.

Hence, designs of efficient decimal hardware are helpful in

the operations of decimal numbers; and in the past the

processors that include the compatibilities of IEEE-754r have

been presented in the designs of IBM Power 6, z9 and z10

processors. However, the problems for using BCD numbers in

decimal operations are the corrections of the digits when the

range are greater than or equal to 10, the correction terms

(01102) will be added to the digit and then producing the

carries into the next digit so that may lead to long carry chain

within the consecutive higher significant digits. In previously

reported literature, the fast BCD adders with two and multi-

operands are proposed in [2-11], the software

implementations supported for IEEE-754r was proposed in

[12], and the methods of fast BCD multiplications/divisions

are presented in [13-24]. As for the survey of decimal units

which can be referred in [25].

Our focus here is to design a decimal adder with three

operands. Although this is a subset case of the multi-operand

decimal additions which are already given in [5-6]. In this

paper, we will point out under some conditions, the correction

terms are required by using the 3-operand decimal adders

proposed in [6], and thus the corrected implementation of [6]

will be given. To achieve area-efficient implementation, our

design is to improve the known fast BCD adders with two

operands to perform the fast additions with three operands.

The implementation of our proposed decimal adders provides

a more economical way to achieve high-speed decimal

addition with three operands and is very suitable for

digit-serial implementation to increase the throughputs. By

adopting proposed analyzer circuits and the generation of

correction terms with recursive schemes, our proposed

decimal adders could perform fast addition with three

operands of four and eight digits with up to 67.4% area

savings under the same delay constraints. The area overhead

of our proposed adders is also lower than that of the corrected

implementations of multi-operand decimal adders proposed

in [6].

The rest of this paper is organized as follows. In Section II,

we will introduce the designs of previous decimal adders with

three operands. Then our proposed parallel and digit-serial

implementations of area-efficient 3-operand decimal adders

are given in Section III. The CMOS VLSI implementation

results and comparisons will be presented in Section IV, and

Section V concludes our work.

II. PREVIOUS PROPOSED 3-OPERAND DECIMAL

ADDERS

Before we introduce the designs of multi-operand decimal

adders proposed in [5-6], we will describe two designs of

previous decimal adders with two operands. Given two inputs

of one digit BCD numbers X and Y, the conventional

architecture of the decimal addition of X and Y is depicted in

Fig. 1, After using 1 digit adder composed of 4 consecutive

Parallel and Digit-Serial Implementations of Area-

Efficient 3-Operand Decimal Adders

Tso-Bing Juang, Hsin-Hao Peng, Han-Lung Kuo

Parallel and Digit-Serial Implementations of Area- Efficient 3-Operand Decimal Adders

178

full adders to sum up the values of X and Y, another 1 digit

adder is used to produce the decimal sum of X and Y (i.e.,

Result[3:0]) with the correction value 0110, which is

determined by the output of c (S[3] · S[2]) (S[2] · S[1]),

where and · are denoted as logical OR and logical AND

operations, respectively, and c is the carry-out of the binary

sum of X and Y.

We can observe that the delay of Fig. 1 will become longer as

the digit-width of the decimal inputs increases since it will

take the delay of 8 full adders and extra logic circuits for

determining the correction term to be added with one-digit

summation.

Cout 1 digit Adder

Y [3:0]X [3:0]

S[0]S[1]S[2]S[3]

Result

[3:0]

44

4

cout

1 digit Adder

00
·

c

Fig. 1: Conventional hardware for performing one-digit BCD addition [26].

In [9], the authors proposed a method for fast BCD addition,

which the adder is known as a fast decimal adder and was

been slightly improved in [29] with almost the same delay and

area complexity for fixing a few incorrect cases; hence we

only describe the architecture in [9], which is depicted in Fig.

2 for four digit decimal addition with two operands X[15:0]

and Y[15:0] and the carry-in Cin.

˙˙˙
Carry Network

X[15:0] Y[15:0]

Cin

Adder + Analyzer
S[3:0]S[7:4]S[15:12]

˙˙˙

DG0 DP0DG1 DP1DG3 DP3

Carry[0]

‘0' 44

4

Carry[1]

4

Carry[3]

˙˙˙
‘0'‘0'

Result[3:0]

S[15:12] S[7:4] S[3:0]

One-digit adder

4

Result[7:4]

One-digit adder

4

Result[15:12]

One-digit adder
˙˙˙

Fig. 2: The architecture of the reduced delay BCD adder proposed in [9].

In Fig. 2, it consists of three stages for fast BCD addition: in

stage 1, two inputs are divided into four digits, and sent to the

Adder+Analyzer hardware to produce the binary sums S[15:0]

using four 4-bit carry lookahead adders (CLA). Also the Digit

Propagate signals (i.e., DPi) and the Digit Generate signals

(i.e., DGi) are produced for i=0 to 3. DPi and DGi signals are

used to identify the conditions of the binary sums are equal to

9 and greater than 9, respectively.

 = + ([3] ([2]+ [1]))

 = [3] [1]

outi

i

DG C S i S i S i

DP S i S i

 (1)

The logical expressions for DPi and DGi are denoted as Eq.

(1), and the corresponding hardware is shown in Fig. 3. In

stage 2, the signals DPi and DGi are sent to the Carry Network

composed of parallel-prefix computation units to compute the

real decimal carries Carry[i], i.e.,

Carry[i]=DGi+DPi˙Carry[i-1]. Then in the last stage, the

correction values are parallel added to the binary sums

produced by stage 1 to produce the real decimal sums

Results[15:0] using four one-digit adders, and the carry-out

for each one-digit adder can be discarded.

CLA

X[i+3:i] Y[i+3:i]

S[i+3:0]

4

S[
i]

S[
i+

1]

Cout

S[
i+

3]

S[
i+

2]

DGi

S[
i+

3]

DPi

Analyzer

S[i+3:0]

Fig. 3: The hardware of Adder+Analyzer for producing DGi and DPi

proposed in [9].

Based on the methods in [26] and [9], the hardware for

performing decimal addition with three 4-digit operands X, Y

and Z can be developed straightforward. As the number of

operands increases by 1, the hardware will be doubled. In

addition, although the area consumption based on [26] is very

lower compared to the one based on [9] for 3-operand decimal

addition, the operation time for addition and correcting

constitute to longer delays. On the other hand, the hardware

based on [9] can perform parallel decimal additions, with

larger area overhead than that of [26], which are composed of

Analyzer and Carry Network.

In [6], high-speed multi-operand decimal adders were

proposed. The authors proposed three architectures to

speed-up the multi-operand decimal addition, including

single correction, double correction, and nonspeculative ones.

Among these, nonspeculative adder can achieve the highest

speed, thus we only introduce the architecture of

nonspeculative adder and use it with the ones based on [9] and

[26] for comparison metrics in section 4.

Fig. 4 shows the architecture of one-digit, 3-operand

nonspeculative adder. Using carry save adder (CSA) to

produce the carry and sum vectors first, then the carry and

sum vectors are summed using a 5-bit carry propagate adder

accepting the previous most-significant bit of carry (i.e.,

c’1[3]) to produce the intermediate sum z’[4:0] and to be

corrected with g using another 4-bit carry propagate adder

(CPA) to obtain the final sum Result[3:0]. The

most-significant bit of carry vectors (i.e., c1[3]) is used with

the values of z’[3:0] to generate the 4-bit correction terms g

and the carry-out (i.e., cout) of the results using the circuit

named as Sum and Carry Correction Logic, in which the

corresponding function can be referred to [Table 4, 6].

According to [6], we have found that some incorrect digits

will be produced in the final sum. Fig. 5 is the numerical

example of 4-digit, 3 operand nonspeculative addition

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-5, November 2013

179

adopted by [6]. We can observe that the final sum digits may

be equal to or greater than 10; therefore, extra circuits for

detecting incorrect digits, generation and the addition of

correction terms (i.e., 01102) which are similar to Fig. 1 are

required to produce the final correct sums as shown in Fig. 6,

leading to time- and area-consuming due to cascaded carry

propagations, where FA denotes a full adder.

X[3:0] Y[3:0] Z[3:0]

CSA

s1 c1

CPA

Sum and Carry Correction Logic

c1[3]

CPA

z'[3:0]

Result[3:0]cout

z'[4:0]

g

c1[3]

c'1[3]

Fig. 4: One-digit, 3-operand nonspeculative adder proposed in [6].

Fig. 5: Numerical example of incorrect result adopted by the method in [6].

Fig. 4Fig. 4Fig. 4Fig. 4

Z[15:12]X[15:12]

Y[15:12]

Z[11:8]X[11:8]

Y[11:8]

Z[7:4]X[7:4]

Y[7:4]

Z[3:0]X[3:0]

Y[3:0]

r[3:0]

c
1
[3]c

1
[3]

coutr[7:4]r[11:8]r[15:12]

CPACPACPAFA

{c,Result[7:4]} = (r[7:4] > 9) ?

r[7:4] + 6 : r[7:4]

Result[17:16]

c
1
[3] c

1[3]

coutcoutcout

Result[15:12] Result[11:8] Result[7:4] Result[3:0]

{c,Result[11:8]} = (r[11:8] > 9) ?

r[11:8] + 6 : r[11:8]

{c,Result[15:12]} = (r[15:12] > 9) ?

r[15:12] + 6 : r[15:12]

Added for corection

Fig. 6: The corrected architecture in [6] for nonspeculative decimal addition with three 4-digit operands.

Parallel and Digit-Serial Implementations of Area-Efficient 3-Operand Decimal Adders

180

In order to achieve area-efficient implementation, we improve

the fast known BCD adders with two operands [9, 29] to

perform fast decimal addition with three operands. In the next

Section, we will propose the parallel and digit-serial

implementations of area-efficient 3-operand decimal adders.

III. PROPOSED AREA-EFFICIENT 3-OPERAND

DECIMAL ADDERS

Similar to the method proposed in [9], our proposed parallel

decimal adder shown in Fig. 7, which also consists of three

stages. The first stage is to produce the binary sums and digit

propagation and generation signals (i.e., DP and DG) using

CSA+CLA+Analyzer circuit, then using a parallel-prefix

Carry Network to generate the correction values for each digit.

In the last stage the real decimal sums can be obtained by

adding the binary sums and the correction values.

Fig. 8 is our proposed architecture of one-digit

CSA+CLA+Analyzer circuit. Since there are three operands,

we use one CSA and CLA to compute the sums S[i+3:i] and

the carry-out (Cout) first. The ranges of the sums are between 0

and 27, that is to say, the real decimal carry-outs may be 0, 1,

and 2. In the design of Analyzer part, we use the following

signals to indicate the conditions of sums as shown in Table 1:

the digit generation signal (i.e., DG) is composed of 2-bit

signals, which identifies if the sums are greater than 9 or 19 or

not; and the digit propagation signal (i.e., DP) is composed of

4-bit signals, which identifies if the sums are equal to 8, 9, 18

and 19 or not, since the decimal carry-ins from the digits with

lower weight may be 0, 1 and 2. It should be noted that each

bit of DG or DP is exclusive with each other, respectively,

and the corresponding logic expressions of DG and DP are

given in Eq. (2).

CSA+CLA+Analyzer

X[3:0] Y[3:0] Z[3:0]

S[3:0] DP0 DG0

CSA+CLA+Analyzer

X[7:4] Y[7:4] Z[7:4]

S[7:4] DP1 DG1

CSA+CLA+Analyzer

X[15:12] Y[15:12] Z[15:12]

S[15:12] DP3 DG3

Carry Network
Cin

CLA

Corr0[3:0]Corr1[3:0]Corr3[3:0]

CLACLA

Result[3:0]Result[7:4]Result[15:12]

242424

4

4

4

44

4

4

CSA+CLA+Analyzer

X[11:8] Y[11:8] Z[11:8]

S[11:8] DP2 DG2

24

Corr2[3:0]

CLA

Result[11:8]

4

4

444

Corr4[3:0]

4

Result[17:16]

Fig. 7: The architecture of our proposed decimal adder with three 4-digit

operands.

CSA + CLA

X[i+3:i] Y[i+3:i] Z[i+3:i]

S[i+3:i]

4

S
[i

]

S
[i

+
1

]

Cout

S
[i

+
3

]

S
[i

+
2

]

DPi[2]DGi[1]

S
[i

+
2

]

S
[i

+
1

]

DPi[4]

S
[i

]

DPi[3]

S
[i

+
3

]

DGi[2]

S
[i

+
3

]

DPi[1] S[i+3:i]

Analyzer

Fig. 8: One-digit hardware of our proposed CSA+CLA+Analyzer circuit.

TABLE I: DIGIT GENERATION AND PROPAGATION SIGNALS FOR IDENTIFYING

THE CONDITIONS OF SUMS IN EACH DIGIT.

Signals Conditions of the sum in each

digit

[1]iDG >9

[2]iDG >19

[1]iDP =9

[2]iDP =8

[3]iDP =19

[4]iDP =18

[1]= +([3] [2])+([3] [1])

[2]= ([3] [2])

[1]= [2] [1]

[2]= [3]

[3]= [4] []

[4]= [+1]

out

out

outi

i

i i

i

i i

i

DG C S i S i S i S i

DG C S i S i

DP DP S i

DP S i

DP DP S i

DP C S i

 (2)

Now we define C20[i] and C10[i] as the values of carry-outs

which are equal to 2 and 1 produced by i-th digit, respectively.

The values of C20[i] and C10[i] can be obtained by Eq. (3)

which is performed by the Carry Network stage shown in

Fig.8:

10 10 20

20 10 20

[] [1] [1] [1] [2] [1]

[] [2] [3] [1] [4] [1]

i i

i i

C i DG DPi C i DP C i

C i DG DP C i DPi C i

 (3)

It can be easily seen that C10 and C20 can be computed by two

any independent parallel-prefix computation unit

simultaneously. After producing the values of C10 and C20 for

each digit, the correction values denoted as Corri[3:0] can be

obtained by:

20 10

20 10 20

20 10 20 10 20

20 10 20 20

[0]= [1] [1]

[1]=([] []) [1]

[2]=([] [] [1]) ([] [])

[3]=([] [] [1]) []

i

i

i

i

Corr C i C i

Corr C i C i C i

Corr C i C i C i C i C i

Corr C i C i C i C i

 (4)

In the last stage, the correction stage, the binary sums of the

first stage can be added by the correction values for each digit

to produce the correct decimal sums. Since each carry-out

produced by the sums of each digit of X, Y and Z is used to

compute the digit propagation and generation signals;

therefore, in the correction stage, the carry-outs produced by

the sums and the correction values can be discarded, thus we

can limit the carry propagation delay within one digit in the

correction stage, and it won’t cause longer carry propagation

as [6] (corrected as shown in Fig. 6), [9] and [26]. Fig. 9 is the

numerical example of our proposed decimal adders.

Table II summarizes the delay and area costs of our proposed

and previous 3-operand n-digit decimal addition architectures,

in equivalent gates, all assuming the unit gate model [27]. We

assume the parallel-prefix adders used in [9] and our

proposed method both follow the Brent-Kung architecture

[28]. In order to produce the correct sums for the architecture

proposed in [6], extra digit-adders shown in Fig. 6 are

required for every digit except the least-significant digit;

therefore, the delay and area costs will increase than the

original one proposed in [6]. We can observe that the

delay/area efficiency of our proposed method can outperform

the ones proposed in [6] (corrected), [9] and [26].

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-5, November 2013

181

In addition to parallel implementation of 3-operand decimal

adders, we have also proposed the digital-serial adders as

shown in Fig. 10, where clk denotes the clock cycle for

completing the parallel implementation of n-digit 3-operand

decimal addition. Since the area overhead for our proposed

parallel design shown in Fig. 8 is much lower than that of

previous proposed methods in [6] (corrected), [9] and [26],

we can easily modify the parallel implementation into

digit-serial ones to increase the throughput. In Fig. 10, the

n-digit 3-operands are divided into n one-digits and sent into

CSA+CLA+Analyzer from the least-significant digit first to

the most-significant one. In every cycle, i.e., 1/n clk, the

binary sum and the corresponding signals DP and DG are

computed and output to the Carry Network to produce the

correction terms with carry-in comes from the previous digit,

and the carry-out and real sums are computed and stored in

registers to be used in the next cycle. Since the Carry Network

performs only 4-bit parallel-prefix computation, using CLA

also has almost the same area and delay costs compared to

using the parallel-prefix computation unit. As for the CMOS

VLSI implementation results and comparisons will be given

in the next Section.

TABLE II AREA AND DELAY COSTS ACCORDING TO THE UNIT-GATE MODEL

Architecture Delay Area

[6] (corrected) 61.5n-34.5 157n-31

[9] 4log2n+14 128n-2log2n-0.5

[26] 68n+2 118n+3.5

Proposed 2log2n+15 4log2n+88n-4

IV. CMOS VLSI IMPLEMENTATION RESULTS AND

COMPARISONS

All 3-operand decimal adders (including the corrected adder

in [6] and the ones in [9], [26] and ours) were described in

Verilog HDL and synthesized and mapped into a TSMC 0.18

m CMOS standard-cell library using typical process

parameters. The average dynamic power estimations for all

adders were obtained by applying 1,000,000 random input

vectors at a 250-MHz frequency at each design netlist and

measured using Primepower. Table III and IV show the delay

and area estimations for our proposed and previous adders in

[6] (corrected and shown in Fig. 8), [9] and [26] with three

4-digit and 8-digit operands, respectively. The term N.A.

denotes not available in the synthesis results. Table V shows

the area and power consumptions under the minimum delays.

According to Tables III and IV, we can observe that the area

savings for our proposed adders can achieve up to 58.7% and

67.4% compared to the four-digit and eight-digit adders in [6],

[9] and [26], respectively.

CSA+CLA+Analyzer

X Y Z

4 4 4

Carry Network

DGiDPi

4 2

adder

4

register

Cin

Correct

s

Result

Cout 4

2

2

4

1/n clk

…

1/n clk2

Fig 10: The architecture of our proposed digit-serial 3-oprand, n-digit

decimal adder.

Fig. 9: Numerical example of our proposed methods.

According to Table V, the minimum delay of our proposed

adders with three operands for four and eight digits is 2.9 ns

and 3.9 ns, respectively, which can outperform previous

adders proposed in the corrected ones in [6] (4.3 ns for n=4

and 8.9 ns for n=8), [9] (3.5 ns for n=4 and 4.1 ns for n=8) and

[26] (7.4 ns for n=4 and 12.5 ns for n=8).

Also we can obtain that our proposed adders could achieve up

to 86.8% and 90.8% ADP (Area×Delay×Power) product

savings over previous adders under n=4 and 8, respectively.

The reasons for the ADP product efficiency achieved by our

proposed adders are that we use two independent

parallel-prefix computation units to compute the correction

terms at the same time, and we limit the carry propagation

delay of final correcting into one digit only. The minimum

delay and the corresponding area (including extra registers)

for our proposed digit-serial adder are 1.5 ns and 3,153 m
2
,

respectively. In other words, the working frequency of our

proposed digit-serial adder could be up to 666 MHz.

TABLE III AREA COMPARISONS UNDER DIFFERENT DELAY CONSTRAINTS

(3-OPERAND, 4-DIGIT ADDERS)

Delay

(ns)

Area (m2) Area savings over (%)

 [6]

(corrected)
[9] [26] Ours

 [6]

(corrected)
[9] [26]

7.4 9869 4960 8116 4071 58.7 17.9 49.8

3.7 N. A. 9862 N.A. 4667 N.A 52.6 N.A.

2.9 N. A N. A. N.A 7158 N.A N.A N.A

TABLE IV AREA COMPARISONS UNDER DIFFERENT DELAY CONSTRAINTS

(3-OPERAND, 8-DIGIT ADDERS)

Delay

(ns)

Area (m2) Area savings over (%)

 [6]

(corrected)
[9] [26] Ours

 [6]

(corrected)
[9] [26]

13.1 24239 9407 17051 7903 67.4 15.9 56.6

4.1 N. A. 19702 N. A. 12067 N. A. 38.7 N. A.

3.9 N. A. N. A. N. A. 14536 N. A.
N.

A.
N. A.

TABLE V AREA AND POWER CONSUMPTIONS UNDER THE MINIMUM DELAYS
Architectures Area(m2) Delay(ns) Power (mW)

Parallel and Digit-Serial Implementations of Area-Efficient 3-Operand Decimal Adders

182

n=4 n=8 n=4 n=8 n=4 n=8

[6] (corrected) 19273 38233 4.3 8.9 1.48 3.33

[9] 10123 19702 3.5 4.1 1.67 2.95

[26] 8432 19331 7.4 12.5 1.23 2.99

Ours 7158 14536 2.9 3.9 0.78 1.84

V. CONCLUSIONS

 We have proposed parallel and digit-serial

implementations of area-efficient 3-operand decimal adders.

By using proposed analyzer circuits and the generation of

correction terms with recursive schemes, our proposed

decimal adders could perform fast addition of three operands

with up to 67.4% area savings under the same delay

constraints. Also the corrected hardware for multi-operand

decimal adders in [6] is given. The proposed decimal adders

could be applied to ease the tremendous computation efforts

for decimal computations such as multi-operand decimal

additions, decimal multiplications and divisions.

REFERENCES

[1] Draft IEEE Standard for floating-point arithmetic. New York: IEEE,

Inc., 2004, http://754r.ucbtest.org/drafts.

[2] M. S. Schmookler and A.W.Weinberger. “High speed decimal

addition,” IEEE Transactions on Computers, Vol. 20, No. 8, pp.

862–867, Aug. 1971.

[3] M. A. Erle, M. J. Schulte, and J. M. Linebarger, “Potential speedup

using decimal floating-point hardware,” Proc. of the Thirty-Sixth

Asilomar Conference on Signals, Systems and Computers, Vol. 2, pp.

1073–1077, Nov. 2002.

[4] M. F. Cowlishaw, “Decimal floating-point: algorism for computers,”

Proc. of 16th IEEE Symposium on Computer Arithmetic (ARITH-16),

pp. 104–111, June 2003.

[5] R.D. Kenney and M.J. Schulte, “Multioperand decimal addition,” Proc.

IEEE Computer Society Ann. Symp. VLSI, pp. 251-253, Feb. 2004.

[6] R.D. Kenney and M.J. Schulte, “High-speed multioperand decimal

adders,” IEEE Transactions on Computers, pp. 953-963, Vol. 54, No.

8, Aug. 2005.

[7] Thapliyal, H, Kotiyal. S, Srinivas, M.B., “Novel BCD adders and their

reversible logic implementation for IEEE 754r format”, Proc. 19th

IEEE International Conference on VLSI Design, pp. 3-7, Jan. 2006

[8] Sreehari Veeramachaneni, M.Kirthi Krishna, Lingamneni Avinash,

Sreekanth Reddy P, M.B. Srinivas, “Novel, high-speed 16-digit BCD

adders conforming to IEEE 754r format,” Proc. IEEE Computer

Society Ann. Symp. VLSI (ISVLSI'07), pp. 343-350, May 2007.

[9] A. Bayrakci and A. Akkas, “Reduced delay BCD adder,” Proc. IEEE

18th International Conference on Application-specific Systems,

Architectures and Processors, (ASAP), pp. 266-271, July 2007.

[10] G. Bioul, M. Vazquez, J. P. Deschamps, and G. Sutter, "Decimal

addition in FPGA," Proc. SPL. 5th Southern Conference on

Programmable Logic, pp. 101-108, 2009.

[11] A. Vazquez and E. Antelo, "A high-performance significand BCD

adder with IEEE 754-2008 decimal rounding," Proc. 19th IEEE

Symposium on Computer Arithmetic (ARITH-19), pp. 135-144, 2009.

[12] E. Cornea, J. Harrison, J. C. Anderson, P. Tang, E. Schneider, and E.

Gvozdev, “A software implementation of the IEEE 754r decimal

floating-point arithmetic using the binary encoding format,” IEEE

Transactions on Computers, Vol. 58, No. 2, pp. 148-162, Feb. 2009.

[13] M.A. Erle and M.J. Schulte, “Decimal multiplication via carry-save

aAddition,” Proc. IEEE 14th Int’l Conf. Application-Specific Systems,

Architectures, and Processors, pp. 348-358, June 2003.

[14] M. A. Erle, E. M. Schwarz, and M. J. Schulte, "Decimal multiplication

with efficient partial product generation," Proc. 17th IEEE Symposium

on Computer Arithmetic (ARITH-17), pp. 21-28, 2005.

[15] M. A. Erle, M. J. Schulte and B. J. Hickmann, "Decimal floating-point

multiplication via carry-save addition," Proc. 18th IEEE Symposium

on Computer Arithmetic (ARITH-18), pp. 46-55, 2007.

[16] B. J. Hickmann, A. Krioukov, A.M. J. Schulte and M. A. Erle, "A

parallel IEEE P754 decimal floating-point multiplier," Proc. 25th

International Conference on Computer Design (ICCD), pp. 296-303,

2007.

[17] G. Jaberipur, and A. Kaivani, "Binary-coded decimal digit

multipliers," IET Computers & Digital Techniques, Vo1. 1, No. 4, pp.

377-381, 2007.

[18] A. Vazquez, E. Antelo and P. Montuschi, “A new family of high

performance parallel decimal multipliers," Proc. of the 18th IEEE

Symposium on Computer Arithmetic (ARITH-18), pp. 195-204, 2007.

[19] R. K. James, T. K. Shahana, K. P. Jacob, and S. Sasi, “Decimal

multiplication using compact BCD multiplier,” Proc. International

Conference on Electronic Design (ICED), pp. 1-6, 2008.

[20] G. Jaberipur and A. Kaivani, “Improving the speed of parallel decimal

multiplication,” IEEE Transactions on Computers, Vol. 58, No. 11, pp.

1539-1552, Nov. 2009.

[21] A. Vazquez, E. Antelo and P. Montuschi, “Improved design of

high-performance parallel decimal multipliers,” IEEE Transactions on

Computers, Vol. 59, No. 5, pp. 679-693, May 2010.

[22] H. Nikmehr, B. Phillips, and C. -C. Lim, “Fast decimal floating-point

division,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 14, No. 9, pp. 951-961, Sept. 2006.

[23] T. Lang, and A. Nannarelli, “Division unit for binary integer

decimals,” Proc. 20th IEEE International Conference on

Application-specific Systems, Architectures and Processors (ASAP),

pp. 1-7, 2009.

[24] T. Lang and A. Nannarelli, “A radix-10 digit-recurrence division unit:

algorithm and architecture,” IEEE Transactions on Computers, Vol.

56, No. 6, pp. 727-739, June 2007.

[25] L. -K. Wang, M. A. Erle, C. Tsen, E. M. Schwarz and M. J. Schulte, “A

survey of hardware designs for decimal arithmetic,” IBM Journal of

Research and Development, Vol. 54, Issue 2, pp. 8:1-8:15, 2010.

[26] P. Parhami, Computer arithmetic: algorithms and hardware designs.

New York: Oxford Univ. Press, 2000.

[27] A. Tyagi, “A reduced-area scheme for carry-select adders,” IEEE

Transactions on Computers, Vol. 42, No. 10, pp. 1163–1170, Oct.

1993.

[28] R. Brent and H. Kung, “A regular layout for parallel adders,” IEEE

Transactions on Computers, Vol. 31, No. 3, pp. 260-264, 1982.

[29] C. Sundaresan, CVS Chaitanya, PR Venkateswaran, Bhat

Somashekara, and J. Mohan Kumar, “Modified reduced delay BCD

adder,” Proc. 4th International Conference on Biomedical

Engineering and Informatics pp. 2148-2151, 2011.

Tso-Bing Juang received the PhD degree of the Computer Science and

Engineering from National Sun Yat-Sen University, Taiwan, in Dec. 2004.

He served as a lecturer and assistant professor at Ta Jen University during

Aug. 1998 to Jan. 2006 prior to joining the department of Computer Science

and Information, National Pingtung Institute of Commerce (NPIC), Taiwan

in Feb. 2006, where now he is currently an Associate Professor since Aug.

2010. He has received the Best Tutoring Award and Outstanding Teaching

Award by NPIC in 2010 and 2011, respectively. Since Dec. 2011, he was the

visiting researcher at the Centre for High-Performance Embedded Systems

(CHiPES), Nanyang Technological University (NTU) in Singapore under

financial support by National Science Council in Taiwan.

Dr. Juang was a receiver of Xerox Best Thesis Award in Taiwan for the

contributions of his master thesis in 1995. He has co-authored one textbook

about full-custom IC design (in Chinese) and authored more than 40 research

papers in referred international and domestic journals and conferences. He

was the principal investigator and the co-investigator of 7 research projects

supported by National Science Council in Taiwan since 2007. Also he was

the principal investigator of 3 industry-academy research projects supported

by the Ministry of Education in Taiwan, in 2007, 2008 and 2009,

respectively. He served as the peer reviewers for IEEE journals such as IEEE

Transactions on Circuits and Systems (I) and (II), IEEE Transactions on

Computers, and IEEE Transactions on VLSI Systems.

 Hsin-Hao Peng received his Master’s degree from the Department of

Computer Science and Information at National Pingtung Institute of

Commerce, Taiwan, in 2011.

Han-Lung Kuo received his Master’s degree from the Department of

Computer Science and Information at National Pingtung Institute of

Commerce, Taiwan, in 2012.

